Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 202-859-9 | CAS number: 100-51-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Acute Toxicity: inhalation
Administrative data
- Endpoint:
- acute toxicity: inhalation
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: guideline study according OECD 403 and GLP
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 1 990
- Report date:
- 1990
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 403 (Acute Inhalation Toxicity)
- Version / remarks:
- (1981)
- GLP compliance:
- yes
- Test type:
- standard acute method
- Limit test:
- no
Test material
- Reference substance name:
- Benzyl alcohol
- EC Number:
- 202-859-9
- EC Name:
- Benzyl alcohol
- Cas Number:
- 100-51-6
- Molecular formula:
- C7H8O
- IUPAC Name:
- phenylmethanol
- Details on test material:
- - Name of test material (as cited in study report): Benzylalkohol
- Purity: 99.99 %
- Appearance: clear colourless liquid
Constituent 1
Test animals
- Species:
- rat
- Strain:
- Wistar
- Sex:
- male/female
- Details on test animals or test system and environmental conditions:
- TEST ANIMALS
- Strain: Bor: WISW (SPF-Cpb)
- Source: Winkelmann, Borchen (Paderborn), Germany
- Age at study initiation: young adult, corresponding to body weight 2-3 months
- Weight at study initiation: 180-210 g
- Housing: conventionally in groups of 5 in Makrolon Type III cages
- Diet: ad libitum
- Water: ad libitum
- Acclimation period: at least 5 days
ENVIRONMENTAL CONDITIONS
- Temperature (°C): 22 +/- 2
- Humidity (%): approx. 50
- Air changes (per hr): approx. 10
- Photoperiod (hrs dark / hrs light): 12/12
Administration / exposure
- Route of administration:
- inhalation: aerosol
- Type of inhalation exposure:
- nose/head only
- Vehicle:
- air
- Details on inhalation exposure:
- GENERATION OF TEST ATMOSPHERE / CHAMBER DESCRIPTION
- Mode of exposure: Animals were head/nose-only exposed to the aerosolised test article in restrainers made of plexiglas. Restrainer tubes were chosen that accommodated the animal's size. Inhalation chambers used were comercially available (Fa. Rema Labortechnik, Hofheim, Germany).
- Generation of aerosol: The test substance was nebulized neat using conditioned (dry, oil-free) compressed air. To increase the efficiency of the generation of respirable particles and to prevent larger particles from entering the chamber a preseparator/ baffle system was used (Tillery et. al., Environmental Health Perspectives, 16, 1976, 25). The inhalation chamber had the following dimensions: diameter = 30 cm, height = 28 cm (Volume: 20 L). The ratio between the air supplied and exhausted was chosen so that approx. 80% of the supplied air is removed via the exhaust system.
- Generation of atmospheres: Atmospheres were generated under dynamic conditions using a binary nozzle (Fa Rema Labortechnik, Hofheim, Germany). The air supply was 10 L/min; dispersion pressure approx. 500 kPa. The achieved air exchange was approx. 30- times/hour. Under such test conditions steady state is attained within approx. 6 minutes.
- Conditioning of compressed air: Compressed air was supplied by Boge compressors and was conditioned (i.e. freed from water, dust, and oil) automatically by a VIA compressed air dryer.
- Exhaust air treatment: The exhaust air was purified via filter systems.
- Temperature and humidity measurements revealed a mean temperature of 25 °C and a rel. humidity of 34% (inhalation chamber with animals).
TEST ATMOSPHERE
- The integrity and stability of the aerosol generation and exposure system was measured by using a RAS-2 real-time aerosol photometer (MIE, Bedford, Massachusetts, USA).
- Samples taken from breathing zone: yes
- Brief description of analytical method used: Samples were collected via Florisil-filled glass tubes. The benzylalcohol was quantitatively eluated using ethanol and its concentration was determined via gas-chromatographie (FID).
- Particle size distribution: The particle-size distribution was analysed using an aerodynamic particle sizer with laser-velocimeter (TSI-APS 3300). According to this method approx. 50-60 % of the particles were < 3 µm and therefore respirable for the rat. In fact, the actual rate of particles < 3 µm should be higher; vapourisation of smaller particles during sampling leads to an artificial shift of the particle distribution towards larger particles.
- MMAD (Mass median aerodynamic diameter) / GSD (Geometric st. dev.): 2.70-2.93 µm/1.58
VEHICLE
No vehicle used. - Analytical verification of test atmosphere concentrations:
- yes
- Duration of exposure:
- 4 h
- Concentrations:
- 0, 3297, and 4178 mg/m³ (analytical conc.)
- No. of animals per sex per dose:
- 5
- Control animals:
- yes
- Details on study design:
- - Duration of observation period following administration: 14 days
- Frequency of observations: several times on exposure day and twice daily thereafter
- Frequency of weighing: prior to exposure, on 3rd and 7th post exposure-day and once weekly thereafter
- Necropsy of survivors performed: yes
- Other examinations performed: Investigation of reflexes was performed according to Irwin (Psychopharmacologica, 13, 1968, 222-257) - Statistics:
- Based on the maximum-likelihood method according to Bliss (Q. J. Pharm Pharmacol, 11, 1938, 192-216)
Results and discussion
Effect levelsopen allclose all
- Sex:
- male/female
- Dose descriptor:
- LC50
- Effect level:
- > 4 178 mg/m³ air
- Exp. duration:
- 4 h
- Remarks on result:
- other: maximum technically achievable concentration
- Sex:
- male/female
- Dose descriptor:
- other: NOAEC
- Effect level:
- 3 297 mg/m³ air
- Exp. duration:
- 4 h
- Remarks on result:
- other: piloerection and slight bradypnea after exposure at next higher concentration (4178 mg/m³) with recovery within 1 day
- Mortality:
- None of the animals died in the course of the study.
- Clinical signs:
- other: 0 and 3297 mg/m³ air: no symptoms 4178 mg/m³ air: piloerection and slight bradypnea. Approx. 3 hours after exposure respiration frequency returned to normal. All rats were without symptoms from 1st postexposure day onwards.
- Body weight:
- Toxicological relevant influence on body weights were not observed.
- Gross pathology:
- No evidence of pathological alterations of the organs detected at gross pathological examination.
- Other findings:
- Examinations of reflexes on first post exposure day revealed no treatment-related findings.
Any other information on results incl. tables
4178 mg/m³ was the maximum technically achievable concentration.
NOEL = 3297 mg/m³ air (male + female rats)
The transient clinical signs observed were seen by the author as causally related to the slight irritant effect by the test article to the upper respiratory tract (reflex bradypnoea caused by sensory irritation). No indication of respiratory damaging property was found.
Applicant's summary and conclusion
- Executive summary:
In a study according to OECD TG 403 groups of 5 young adult Wistar rats/sex were subjected to a single 4-hour head/nose-only exposure to aerosol concentrations of 0 (air control), 3297, and 4178 mg/m³ air and observed for 14 days post exposure. The concentration of 4178 mg/m³ was proven to be the maximum technically achievable concentration. The generated aerosol was respirable for rats.
No mortality occurred in the course of the study. Transient clinical signs (piloerection, slight bradypnoea; recovery within 1 day) were seen as causally related to the slight irritant effect of the test article to the upper respiratory tract (reflex bradypnoea caused by sensory irritation). No indication of respiratory damaging property was found in this study.
Therefore, the LC50 (4h) was concluded to be > 4178 mg/m³ air for male and female rats. No effects were noted at 3297 mg/m³ air(Bayer AG 1990).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.