Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 231-494-8 | CAS number: 7585-41-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Link to relevant study record(s)
Description of key information
The organic part of the BONA-based metal laked pigments has no potential for bioaccumulation.
Key value for chemical safety assessment
- Bioaccumulation potential:
- no bioaccumulation potential
- Absorption rate - oral (%):
- 50
- Absorption rate - dermal (%):
- 50
- Absorption rate - inhalation (%):
- 100
Additional information
The toxicokinetic properties of BONA based metal laked pigments are derived from acute and subacute toxity studies and physico-chemical data. Repeated-dose toxicity data including a treatment-free recovery element is available for Pigment Red 48:2(Ca), Pigment Red 57:1(Ca) and Pigment Red 57(Sr) salt. The organic part was found to be deprotonized at the sulfonate and the carboxylate function (Kennedy et al. (2000) Angew. Chem. Int. Ed. 2000, 39, No. 3). Protonation of the pigment in stomach acid therefore results in disintegration into the organic acid and the metal cation. The sodium salts of the pigments have an orange colour. For oral application of high doses, both red staining of faeces and orange discolouration of urine are observed starting the first day of dosing and resolving within days after the last dose. From this it is concluded that while a fraction of the pigment passes the intestine without uptake, another fraction is taken up and the organic acid is eliminated via the kidney. Considering the orange discolouration, the azo bond of the chromophore should still be at least partly intact. As the solubility of the sodium salt was measured as 0.3 g/L and 1.5 g/L for the sodium salt of Pigment Red 57 and Pigment Red 48, respectively (unpublished data, Ciba 2009), the organic acid is indeed sufficiently soluble for elimination without further metabolism. Enzymatic cleavage of azo bonds to the respective amines is also possible and this would result in non-coloured soluble metabolites. Azo reduction of 1-amino-2-naphthol-based azo dyes was reported to by catalysed by human intestinal microflora [Xu, H., et al.: Anaerobic metabolism of 1-amino-2-naphthol-based azo dyes (dyes) by human intestinal microflora. Appl Environ Microbiol, 2007.73(23): p. 7759 -7762]
Regarding the dermal and inhalation route, only acute data is available. In none of these studies, discolouration of urine or faeces was noted. No indication of toxicity or uptake was observed in the acute inhalation studies with Pigment Red 57:1(Ca) and Pigment Red 57(Na). Upon acute inhalation of Pigment Red 48:1(Ca), one of ten rats died. The male that died during the study showed swollen and abnormally dark lungs and pink contents in the small intestine at necropsy. No abnormalities were detected in surviving animals at the end of the study.
During studies for acute dermal toxicity, no signs of clinical toxicity and no discolouration of urine or faeces were observed for Pigment Red 48:1(Ba), 48:2(Ca), 48:4(Mn) and 57:1(Ca). Coloured remnants of the test material at the application site were observed at the end of the observation period.
Based on the experimental toxicity data and the physico-chemical properties, the organic part of the BONA-based metal laked pigments has no potential for bioaccumulation.
Pigment Red 48:1(Ba) is of very low solubility. Experimental data on inorganic Barium salts indicates that the solubility increases in the acidic environment of the stomach as Barium chloride is of high solubility in water. To what extent this happens depends on the actual pH in the stomach. Dissolved Ba2+ is detected rapidly in the blood after ingestion. It is eliminated to a higher extent in the feces than in the urine and is also incorporated into the bone and detected in tissues.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.