Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 233-469-7 | CAS number: 10192-30-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Description of key information
Takinginto account(i) the rapid dissociation of ammonium hydrogen sulfite and decomposition of sulfites and transformation of ammonium upon dissolution in environmental solutions, including soil porewater, and respective participation in the natural nitrogen and sulfur cycle, (ii) ubiquitousness of ammonium and inorganic sulfur substances in soil, (iii) essentiality of sulfur, and (iv) the lack of a potential for bioaccumulation and toxicity to aquatic organisms, the hazard potential ofammonium hydrogen sulfite in soil can be expected to be low.
Additional information
Abiotic and biotic processes determining the fate of ammonium hydrogen sulfite in soils
Ammonium hydrogen sulfite dissociates into sulfite anions and the respective ammonium cations upon contact with soil moisture.Whereas ammonium is a natural and common component of the environment and living organisms, is rapidly degraded and not likely to bioaccumulate, sulfite anions are unstable under environmentally relevant conditions, are rapidly transformed into other sulfur species and ultimately become part of the global sulfur cycle. Therefore, terrestrial toxicity of ammonium hydrogen sulfite is not expected due to its inherent physico-chemical properties.
(a) Ammonium ions rapidly degrade and do not persist in soils. Available evidence points to rapid transformation of ammonium under aerobic conditions. In the terrestrial environment, ammonium is part of the nitrogen cycle. Briefly, saprophytic microorganisms such as bacteria and fungi use organic material as source of energy and food by transferring it to inorganic end products such as NH4+ (ammonium - ammonification) and NO3- (nitrate - ammonium oxidation or nitrification). Ammonium and nitrate are plant nutrients and may under anaerobic conditions be transferred to gaseous end products N2O or N2 (nitrate oxidation or denitrification) by heterotrophic bacteria such as Agrobacterium, Bacillus or Pseudomonas. Nitrification and denitrification proceed simultaneously in soil (Gisi, 1997). Any quantitatively relevant adsorption onto soils is not expected for ammonium.
(b) Sulfites are unstable in the environment, including in topsoil, and become part of the natural sulfur cycle. Under oxygen-rich conditions, sulfites are rapidly oxidized catalytically by (air) oxygen or by microbial action to sulfate. Microbial oxidation of reduced sulfur species including elemental sulfur (S), sulfide (HS-), sulfite (SO32-) and thiosulfate (S2O32-) is an energetically favorable reaction carried out by a wide range of organisms, i.e. sulfur oxidizing microorganisms (SOM) resulting in ultimate transformation into sulfate (SO42-, Simon and Kroneck, 2013).
In highly reduced (water-logged) soils, reduction to sulfides may take place with subsequent formation of solid-phase minerals and metal sulfides of very low bioavailability/solubility, including FeS, ZnS, PbS and CdS (Lindsay, 1979, Finster et al., 1998). Thus, under anoxic conditions, sulfate is readily reduced to sulfide by sulfate-reducing bacteria (SRM) that are common in anaerobic environments. Other sulfur-containing microbial substrates such as dithionite (S2O42-), thiosulfates (S2O32-) or sulfite (SO32-) may also be anaerobically utilised, ultimately resulting in the reduction to sulfide (H2S).
In sum, a significant set of microbial populations grows by disproportionation of sulfite, thiosulfate or elemental sulfur, ultimately yielding sulfate or sulfide (Simon and Kroneck 2013 and references therein; Janssen et al. 1996, Bak and Cypionka, 1987).
Therefore, sulfites may reasonably be considered chemically unstable under most environmental conditions, are rapidly transformed into other sulfur species and ultimately become part of the global sulfur cycle.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
