Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 265-222-4 | CAS number: 64754-95-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
All of the substances in the lithium salts of monocarboxylic acids C14-C22 category are considered to be readily biodegradable.
The substances in the lithium salts of monocarboxylic acids C14 -C22 category consist of a lithium cation and an organic fatty acid anion. The substances in the category meet the criteria for readily biodegradability though the biodegradation of the substances is relevant only to the organic section. Fatty acids biodegrade readily and completely according to the β-oxidation pathway including three major steps (activation in the cytosol, transport into mitochondria, β-Oxidation until the entire C-chain is cleaved into acetyl CoA units). The final breakdown products of the substances are carbon dioxide and water from the fatty acid anion and lithium from the cation. Thus, stable degradation products are not being formed in the environment. According to column 2 of REACH Annex VII, the ready biodegradability study of the lithium cation does not need to be conducted as the substance is inorganic. Readily biodegradability has also been demonstrated for fatty acid salts with other cations, such as sodium and potassium.
Proprietary data are available for lithium behenate showing ready biodegradability (Harlan 2013). Published data are available on lithium 12-hydroxystearate from regulatory reviews (MITI 1994, API 2008) showing ready biodegradability. The results from these studies also indicate that the lithium ion is not inhibitory to microorganisms, and does not prevent the ready biodegradation of the fatty acid component. Mizuki et al (2010) has been read across to the category, showing that a mixture of ~60% sodium oleate (C18) and ~40% potassium laurate (C12) is readily biodegradable. This indicates that shorter carbon chain length substances are expected to have the same properties as those of longer chain substances.
Experimental data on category members and data on other metal salts of fatty acids in the carbon number range of the category have been read across within the category. Substances with shorter carbon chain lengths are expected to be more water soluble and therefore more bioavailable to aquatic microorganisms for degradation. Reading across from longer chain length substances to shorter chain length substances is therefore considered valid. Therefore, all of the substances in the lithium salts of monocarboxylic acids C14-C22 category are considered to be readily biodegradable.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.