Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 907-131-0 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro cytogenicity / chromosome aberration study in mammalian cells
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- study well documented, meets generally accepted scientific principles, acceptable for assessment
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 1 986
- Report date:
- 1986
Materials and methods
Test guideline
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- OECD Guideline 473 (In Vitro Mammalian Chromosome Aberration Test)
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- other: in vitro mammalian chromosome aberration test
Test material
- Reference substance name:
- 2,2'-(ethylenedioxy)diethanol
- EC Number:
- 203-953-2
- EC Name:
- 2,2'-(ethylenedioxy)diethanol
- Cas Number:
- 112-27-6
- Molecular formula:
- C6H14O4
- IUPAC Name:
- 2,2'-[ethane-1,2-diylbis(oxy)]diethanol
- Test material form:
- liquid
Constituent 1
- Specific details on test material used for the study:
- - Appearance: Slightly viscous; water-clear liquid
- Purity: 100%
- Specific gravity: 1.1254
- pH in a 50% solution: 7.51
Method
Species / strain
- Species / strain / cell type:
- Chinese hamster Ovary (CHO)
- Metabolic activation:
- with and without
- Metabolic activation system:
- rat liver S-9 mix
- Test concentrations with justification for top dose:
- 35, 42, 50 mg/mL
- Vehicle / solvent:
- water
Controls
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- triethylenemelamine
- cyclophosphamide
- Details on test system and experimental conditions:
- - Dose selection: Appropriate concentrations for cytogenetic testing were determined by preliminary measurements of cytotoxicity to CHO cells using a broad range of concentrations from 1 - 50 mg/mL tested both the presence and absence of a rat liver S-9 metabolic activation system. Selection of a suitable range of concentrations for testing was based upon an estimate of the doses which would not excessively inhibit mitotic cell invasion of the treated cells. A maximum concentration of 50 mg/mL is tested for non-cytotoxic test chemicals.
- Test procedure: For evaluation of direct clastogenic potential, CHO cells were exposed to TEG and appropriate controls for a continuous 6- or 10-hour period without S-9 activation. Indirect genotoxic potential, requiring metabolic activation by liver S-9 homogenate, was studied with a 2-hour exposure period to test chemical and S-9 activation system. Following the 2-h exposure period, cells were rinsed, fresh medium was added and cells were then harvested at 6 and 10 h after the start of exposure. Chromosomes were prepared by standard procedures. A total of 50 cells/culture/harvest interval was examined for chromosome damage using duplicate cultures for the test agent and solvent controls. At least 5 dose levels were tested both with and without metabolic activation. Incidence of chromosome damage was determined for the highest 3 doses which did not produce excessive cytotoxic inhibition of cell division (mitosis). - Statistics:
- Analyses of the test data employed the Fisher's Exact Test (one-tailed) to determine statistical significance and differences between the test and control populations.
Results and discussion
Test results
- Species / strain:
- Chinese hamster Ovary (CHO)
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- not specified
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- Results obtained in this study demonstrated that the test substance did not produce significant increases in the proportion of cells with chromosome aberrations. The predominant type of chromosome damage observed in this study was simple chromatid breakage. None of the other types of typical chromosome damage scored in this test system were remarkable different from normal variations generally encountered with these cultured cells.
Applicant's summary and conclusion
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.