Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 231-102-5 | CAS number: 7439-93-2
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Additional ecotoxological information
Administrative data
- Endpoint:
- additional ecotoxicological information
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- study well documented, meets generally accepted scientific principles, acceptable for assessment
Data source
Reference
- Reference Type:
- publication
- Title:
- Determination of lithium bioretention by maize under hydroponic conditions
- Author:
- Antonkiewicz, J.
- Year:
- 2 017
- Bibliographic source:
- Archives of Environmental Protection, Vol. 43, no. 4, pp. 94–104,2017
Materials and methods
Test guideline
- Qualifier:
- no guideline followed
- Principles of method if other than guideline:
- - Principle of test:
Bioretention of lithium and its toxicity to maize was determined under hydroponic conditions.
- Short description of test conditions: Seeds of maize were used. Ten lithium concentrations in nutrient solution (each in four replicates) were tested: one control and 9 levels of lithium.
- Parameters analysed / observed:
1. Yield
2. Tolerance index
3. EC50
4. Lithium concentration in the individual plant parts
5. Translocation factor
6. Bioaccumulation factor
7. Lithium uptake was calculated
8. Utilization factor - GLP compliance:
- not specified
Test material
- Reference substance name:
- Lithium chloride
- EC Number:
- 231-212-3
- EC Name:
- Lithium chloride
- Cas Number:
- 7447-41-8
- Molecular formula:
- ClLi
- IUPAC Name:
- Lithium chloride
Constituent 1
Results and discussion
Any other information on results incl. tables
Observations during the plants vegetation
Plants of the two highest concentrations were smaller and had shorter and thinner stems compared to the control. Chloroses, necroses and browning which usually resulted in leaf drying was observed regarding the above ground parts. The roots showed changes in colouring and growth inhibition. Plants exposed to lower concentrations were well developed.
Maize yield
Assuming the yield is an indicator of plant response to the presence of lithium in the nutrient solution, it needs to be stated that the concentration in solution ranging from 1 to 64 mg Li/dm³ had a stimulating effect, whereas a depression in yielding occurred only at the concentrations of 128 and 256 mg Li/dm³.
EC50 values
For assessment of lithium toxicity the concentration that results in a 50% reduction in the yield of maize (EC50) was determined as 140 mg Li/L for an exposure period of two months under hydroponic conditions.
Bioaccumulation factor
The following BAF values were determined for the different dose groups:
Doses |
BAF |
D1 |
— |
D2 |
11.42 |
D3 |
12.87 |
D4 |
13.22 |
D5 |
14.42 |
D6 |
12.21 |
D7 |
13.23 |
D8 |
14.93 |
D9 |
15.69 |
D10 |
9.96 |
Applicant's summary and conclusion
- Executive summary:
Abstract:
"Irrigation of cultivated plants can be a source of toxic lithium to plants. The data on the effect of lithium uptake on plants are scant, that is why a research was undertaken with the aim to determine maize ability to bioaccumulate lithium. The research was carried out under hydroponic conditions. The experimental design comprised 10 concentrations in solution differing with lithium concentrations in the aqueous solution (ranging from 0.0 to 256.0 mg Li/L of the nutrient solution). The parameters based on which lithium bioretention by maize was determined were: the yield, lithium concentration in various plant parts, uptake and utilization of this element, tolerance index (TI) and translocation factor (TF), metal concentrations in the above-ground parts index (CI) and bioaccumulation factor (BAF). Depression in yielding of maize occurred only at the highest concentrations of lithium. Lithium concentration was the highest in the roots, lower in the stems and leaves, and the lowest in the inflorescences. The values of tolerance index and EC50 indicated that roots were the most resistant organs to lithium toxicity. The values of translocation factor were indicative of intensive export of lithium from the roots mostly to the stems. The higher uptake of lithium by the above-ground parts than by the roots, which primarily results from the higher yield of these parts of the plants, supports the idea of using maize for lithium phytoremediation."
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.