Registration Dossier

Diss Factsheets

Environmental fate & pathways

Endpoint summary

Currently viewing:

Administrative data

Description of key information

Additional information

Stability

Hydrolysis

The performance of a test for hydrolysis as function of pH is scientifically unjustified and dangerous. The study does need not to be conducted as lithium is known to violently react with water and therefore classified and labelled as water react. 1 (category 1) H260, R14/15. The reaction yields lithium hydroxide and flammable hydrogen gas.

Biodegradation in water: screening test, Biodegradation in water and sediment, Biodegradation in soil

In accordance with column 2 of REACH Regulation 1907/2006/EC Annex VII section 9.2.1.1, a biodegradation test does not need to be conducted as the test substance lithium is an inorganic substance. Furthermore according to REACH Annex X, Section 9.2, Column 2, further biotic degradation testing shall be proposed, if the chemical safety assessment according to Annex I indicates the need to investigate further degradation.

The CSA does not indicate any need to further assess degradation. Risk assessment was already performed assuming worst case conditions including “no biodegradation”. All risks are adequately controlled. Thus, any further information that would lead to the conclusion that the registered substance is not biodegradable would not influence the chemical safety assessment. Please refer to the attached CSR in IUCLID section 13 for further information.

Bioaccumulation

Lithium is not considered to bioaccumulate. The highest BCF/BAF was determined by Antonkiewicz et al. (2017) for terrestrial plants under hydroponic conditions with values between 9 and 16 over the different dosing groups. Barber et al (2006) determined a BCF of around 8 L/kg in freshwater fish. Other publications indicate BCF/BAF values of 1 (Karlsson et al. 2002) or below 1 (Pokorska et al., 2012). Kastanek (2015) concluded in his study with three different algae species that the bioaccumulation potential of lithium is neglible.

Transport and distribution

Lithium is inorganic and thus OECD guideline 121 and OECD guideline 106 cannot be used to determine the partition coefficient. Kd values were found for soil and marine sediment. Both values are below the threshold of 3 and thus the substance adsorption potential can be regarded as low.

Categories Display