Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 235-804-2 | CAS number: 12767-90-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
Background on boron chemistry of environmental relevance
Boron is almost exclusively found in the environment in the form of boron-oxygen compounds, which are often referred to as borates. The high strength of the B-O bond relative to those between boron and other elements makes boron oxide compounds stable compared to nearly all non-oxide boron materials. Indeed, the B-O bond is among the strongest found in the chemistry of naturally occurring substances. As a result of the high relative stability of boron oxides compared to other boron compounds they are the thermodynamically favoured decomposition products. This is an inescapable outcome of the laws of thermodynamics.
Although virtually all boron compounds ultimately decompose under environmental conditions to the thermodynamically most stable state represented by boric acid, many boron compounds exhibit high kinetic stability and decompose extremely slowly under environmental conditions - in some cases so slowly that they can be regarded chemically inert for practical purposes.
Only two soluble boron species in ordinary soils can be expected (Adriano, 2001). The nonionized species, [B(OH)3], is the predominant species expected in soil solution. Boric acid, [B(OH)3], is a very weak, monobasic acid that acts as a Lewis acid by accepting a hydroxyl ion to form the borate anion, [B(OH)4]-. At pH greater than 9.2, [B(OH)4]- becomes predominant.
B(OH)3 + 2H2O ↔ [B(OH)4]- + H3O+ pKa = 9.2
In the pH range of 7 to 11, both species can be found. With higher boron concentrations (B > 0.025 M) and increasing pH also polymeric boron forms can also precipitate, which are usually very rare and unstable in soils. Therefore, boric acid and borate ions are the predominant B-forms in the natural soil system (Power and Woods, 1997; de Vette et al., 2001).
Boron as a natural element is not degradable. However, boron and its inorganic compounds are subject to chemical transformation processes (adsorption, complexation, precipitation,fixation) once released to the environment. One consequence of the transformation is that the mobility/bioavailability and the potential for toxicity, induced by the borate species, is changed and in many cases reduced or even removed over time. Thus, these natural processes achieve a similar result as is sought in the demonstration of biotic and abiotic degradation of synthetic organic chemicals.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.