Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 205-746-2 | CAS number: 149-74-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Vapour pressure
Administrative data
Link to relevant study record(s)
- Endpoint:
- vapour pressure
- Type of information:
- (Q)SAR
- Adequacy of study:
- key study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
- Justification for type of information:
- See attached QMRF/QPRF
- Principles of method if other than guideline:
- The result was obtained using an appropriate QSAR method (see attached QMRF and QPRF for details).
The model is an adaptation of the existing SRC model MPBPVPWIN v 1.43, which is a component of the EPI Suite. This existing model uses the normal boiling point as input. Whilst this method is good in principle, the model was developed using a wide range of organic chemicals and only a few organosilicon compounds. Therefore, a validation procedure was undertaken to assess the applicability of the model to organosilicon compounds. It was noted that the MBBPVPWIN model gave a systematic error; therefore, the current model was developed to correct this. The current model is a linear regression based QSAR, with the vapour pressure prediction from MPBPVPWIN as the descriptor. The adapted model applies to organosilicon substances. - Key result
- Test no.:
- #1
- Temp.:
- 25 °C
- Vapour pressure:
- 32 Pa
- Conclusions:
- A vapour pressure value of 32.0 Pa at 25°C has been obtained for the substance using an appropriate estimation method. The result is considered reliable.
Reference
Description of key information
Vapour pressure [dichloro(methyl)(phenyl)silane]: 32 Pa at 25°C (QSAR)
Vapour pressure [methylphenylsilanediol]: 0.0036 Pa at 25°C (QSAR)
Key value for chemical safety assessment
- Vapour pressure:
- 32 Pa
- at the temperature of:
- 25 °C
Additional information
There is no reliable measured vapour pressure study for the registered substance. Therefore, the vapour pressure of the registered substance has been predicted to be 32 Pa at 25°C using a validated QSAR estimation method. The result is considered to be reliable and is used as key study.
In a handbook or collection of reliable data, vapour pressure value of 47 Pa at 20°C was reported for the substance.
In a secondary source to which reliability could not be assigned, vapour pressure value of <200 Pa at 20°C was reported for the substance.
In contact with water, dichloro(methyl)(phenyl)silane hydrolyses very rapidly to form methylphenylsilanediol and hydrochloric acid.
The vapour pressure of the silanol hydrolysis product, methylphenylsilanediol was determined to be 0.0036 Pa at 25°C using a validated QSAR estimation method.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.