Registration Dossier

Ecotoxicological information

Short-term toxicity to aquatic invertebrates

Administrative data

Endpoint:
short-term toxicity to aquatic invertebrates
Type of information:
calculation (if not (Q)SAR)
Remarks:
Migrated phrase: estimated by calculation
Adequacy of study:
key study
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: no GLP (but other Quality Assurance); software
Cross-referenceopen allclose all
Reason / purpose:
reference to same study
Reason / purpose:
reference to other study

Data source

Reference
Reference Type:
other: software
Title:
Unnamed
Year:
2010

Materials and methods

Principles of method if other than guideline:
Aquatic toxicity of the UVCB substance was determined by classifying based on Mixture rules from EU CLP.
GLP compliance:
not specified
Remarks:
(other Quality Assurance was applied)

Test material

Reference
Name:
Unnamed
Type:
Constituent
Details on test material:
Typical across industry as defined in IUCLID 1.2.

Test organisms

Test organisms (species):
other: Standard species relevant to environmental classification

Study design

Test type:
other: Standard tests relevant to environmental classification
Total exposure duration:
48 h

Test conditions

pH:
pH 6

Results and discussion

Effect concentrations
Remarks on result:
other: Results determined based on elemental composition.
Details on results:

The Arche Tool CLP was run using available data from elemental composition (each as Total % constituent) and compared to the ecotoxicity reference values of the relevant metals.

Applicant's summary and conclusion

Validity criteria fulfilled:
yes
Conclusions:
Result can be used to predict EC50 for crustacea and determine Classification of the UVCB substance.
Executive summary:

The study provided a conservative estimate of the EC50 (for crustacea), derived on basis of the Classification outcome (Mixture toxicity rules) from the worst case typical elemental compositions across the industry as defined in IUCLID section 1.2 and 1.4).

The result is applicable to all intermediates that fall under the defined concentration ranges (IUCLID section 1.2).

Validity of the model used:

  1. Defined end points: aquatic toxicity (acute & chronic)
  2. Unambiguous algorithm from EU CLP Guidance:summation/additivity formula to determine Classification and, back-calculation to related hazard criteria
  3. Applicability domain: applicable to classify complex metal containing materials in a Tiered approach (see EU CLP Guidance pg 499 Annex IV.5.5, and for conceptual outline ICMM Fact Sheet “Ores & Concentrates – An industry approach to EU hazard classification”, Nov 2009). Available input information: elemental composition, representative mineralogical information and Transformation/dissolution (Higher Tier, includes correction for bioavailability).
  4. Mechanistic interpretation - metal-ion additivity:  (1) The additivity assumption for the toxicity of mixtures of metals was evaluated by De Schamphelaere (2009) - in JAB Bass et al. in "Environmental Quality Standards for trace metals in the aquatic environment", UK Environment Science Report 2009 (Appendix 2):  No clear conclusions could be made from the literature review but a targeted experimental design with aquatic algae, showed that the additivity mode could predict the toxicity of metal mixture:  the toxicity of simultaneous Cu, Zn, Ni, Cd and Pb additions to two distinct surface waters could be predicted by the additive toxic unit approach.    (2)  A. Stockdale, E Tipping, S Lofts & SJ Ormod, combined metal speciation to the additive toxicity approach and  predicted the combined metal toxicity in a range of UK river systems impacted by metals: in "Modelling multiple metal toxic effects in the field - evaluation of the Toxicity Binding Model (TBM)", ICA Report November 2009.  

Adequacy of prediction: the substance falls within the applicability domain described above and, therefore, the predicted value can be considered as reliable. The prediction is moreover conservative as the highest release rates obtained for the T/D at pH6 were used as a translator across the industry. Same conclusions apply to the prediction of the Aquatic toxicity value.