Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 202-774-7 | CAS number: 99-63-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in mammalian cells
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- migrated information: read-across based on grouping of substances (category approach)
- Adequacy of study:
- key study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: see 'Remark'
- Remarks:
- This study is used for read-across and therefore has been assigned a reliability of 2 (reliable with restrictions). The study, if used in support of isophthalic acid, has a reliability of 1 (reliable without restriction). This study was selected as the key study because the information provided for the hazard endpoint is sufficient for the purpose of classification and labeling and/or risk assessment.
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 1 991
- Report date:
- 1991
Materials and methods
Test guideline
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- OECD Guideline 476 (In Vitro Mammalian Cell Gene Mutation Test)
- Deviations:
- no
- Remarks:
- The study was conducted according to the guideline in effect dated 1997.
- GLP compliance:
- yes
- Type of assay:
- mammalian cell gene mutation assay
Test material
- Reference substance name:
- Isophthalic acid
- EC Number:
- 204-506-4
- EC Name:
- Isophthalic acid
- Cas Number:
- 121-91-5
- Molecular formula:
- C8H6O4
- IUPAC Name:
- benzene-1,3-dicarboxylic acid
- Details on test material:
- - Purity: Not reported
Constituent 1
Method
Species / strain
- Species / strain / cell type:
- Chinese hamster Ovary (CHO)
- Details on mammalian cell type (if applicable):
- - Type and identity of media: agar culture
- Properly maintained: yes
- Periodically checked for Mycoplasma contamination: yes
- Periodically checked for karyotype stability: not reported
- Periodically "cleansed" against high spontaneous background: no reported - Additional strain / cell type characteristics:
- other: hypoxanthine-guanine phospho ribosyl transferase (HGPRT)
- Metabolic activation:
- with and without
- Metabolic activation system:
- Aroclor-induced rat liver S-9
- Test concentrations with justification for top dose:
- initial assay - non-activated: 3000, 2000, 1500, 500, 250 and 125 μg/mL
initial assay - presence of S-9: 3000, 2000, 1500, 1000, 500 and 250 μg/mL
confirmatory assay - in the absence and presence of S-9: 4000, 3500, 3200, 3000, 2000, 1000 and 500 μg/mL - Vehicle / solvent:
- - Vehicle(s)/solvent(s) used: dimethylsulfoxide (DMSO)
- Justification for choice of solvent/vehicle: not reported
Controls
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- other: Ethyl methanesulfonate (EMS) was used as the positive control in the non-activated study at a final concentration of 0.2 μg/mL. Benzo(a)pyrene (B(a)P) was used as the positive control in the S-9 activated study at a final concentration of 4 μg/mL.
- Details on test system and experimental conditions:
- METHOD OF APPLICATION: in agar (plate incorporation)
The testing procedure is summarized as follows.
Cultures of CHO cells were grown in the absence of antibiotics for several passages. Mycoplasma agar plates and broth tubes were inoculated directly with the culture material and separate sets of cultures were inoculated aerobically and anaerobically. The broth tubes were subcultured three times
onto agar plates. The agar plates were examined no sooner than 14 days postinoculation for the presence of mycoplasma colonies. For the Hoechst staining procedure, the culture material was directly inoculated onto Vero cell cultures. After incubation for 3-5 days, the cell cultures were stained with the DNA--=binding fluorochrome and were evaluated microscopically by epifluorescence for the presence of mycoplasma.
SELECTION AGENT (mutation assays):
Biological Reagents:
Ham's F-12 medium without hypoxanthine supplemented with 5% dialyzed FBS, 1% penicillin-streptomycin and 1% L-glutamine (F12FBS5-Hx)
Hank's Balanced Salt Solution (HBSS), Ca + + and Mg+ + -free (CMF-HBSS)
Trypsin, 0.05%
6-Thioguanine (TG, 2-amino-6-mercaptopurine), 20 mM in 0.1 N NaOH
Cofactor pool (final concentration in S-9 mix): 4 mM nicotinamide adenine dinucleotide phosphate (NADP), 5 mM glucose-6-phosphate, 30 mM potassium chloride (KCl), 10 mM calcium chloride (CaCl2), 10 mM magnesium chloride (MgCl2) and 50 mM sodium phosphate buffer, pH 8.0
S-9, 9000 x g supernatant of an Aroclor-1254 induced Sprague-Dawley rat liver
homogenate, lot R-413
Giemsa stain, 10% aqueous
Methanol, 95%
NUMBER OF REPLICATIONS: initial treatment - duplicates; for evaluation of cytotoxicity, the replicates from each treatment condition were subcultured independently in F12FBS5-Hx, in triplicate, at a density of 100 cells/60 mm dish; For expression of the mutant phenotype, the replicates from each treatment condition were subcultured independently in F12FBS5-Hx, in duplicate, at a density of approximately 1,000,000 cells/100 mm dish; For selection of the TG-resistant phenotype, the replicates from each treatment condition were pooled and replated, in quintuplicate, at a density of 2 x 10e5 cells/100 mm dish in F12FBS5-Hx containing 10 μM TG.
NUMBER OF CELLS EVALUATED: The mutant frequency (MF) for each treatment condition was calculated by dividing the total number of mutant colonies by the number of cells selected (10e6 cells: 10 plates at 2 x 10e5 cells/plate), corrected for the cloning efficiency of cells prior to mutant selection. and is expressed as TG-resistant mutants per 10e6 clonable cells.
DETERMINATION OF CYTOTOXICITY
- Method: cloning efficiency; relative total growth - Evaluation criteria:
- The cloning efficiency of the solvent and untreated controls must be greater than 50%. The spontaneous mutant frequency in the solvent and untreated controls must fall within the range of 0-25 mutants per 10e6 clonable cells. The positive control must induce a mutant frequency at least three times that of the solvent control.
- Statistics:
- not reported
Results and discussion
Test results
- Species / strain:
- Chinese hamster Ovary (CHO)
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- TEST-SPECIFIC CONFOUNDING FACTORS
- Effects of pH: no data
- Effects of osmolality: no data
- Evaporation from medium: no data
- Water solubility: no data
- Precipitation: no data
- Other confounding effects: no data
RANGE-FINDING/SCREENING STUDIES:
An initial and confirmatory mutagenicity assay were performed. Dose levels for the CHO/HGPRT mutation assay were selected following a preliminary toxicity test. Toxicity was based upon cloning efficiency after treatment relative to the solvent control. CHO cells were exposed to solvent alone and to nine concentrations of test article ranging from 5000 to 0.5 μg/mL in the toxicity test in the absence and presence of an S-9 reaction mixture. The osmolality of the highest concentration in treatment medium tested, 5000 μg/mL, was 417 mOsm/kg with a measured pH of 4.4. The pH of each treatment condition was measured and adjusted, as needed, to approximately 6.8-7.0 using 1 N NaOH. The highest soluble concentration in culture medium was approximately 1250 μg/mL, therefore, one-half of the doses selected for each assay were usually partially to completely insoluble in culture medium. The initial cytotoxicity study demonstrated large cytotoxic effects at 5000 μg/mL. This cytotoxic effect most likely resulted from the large amount of precipitate in the dosing flask since the limit of solubility in culture medium was achieved at 1250 μg/mL. All doses were prepared by combining sufficient treatment medium for the replicate flasks at each treatment condition in an appropriately sized container with the pH adjusted as necessary. The highest concentrations tested in the study required several pH adjustments at intervals during dose preparation. Multiple pH adjustments were necessary because precipitation in the treatment media caused the pH to again decline. The pH of the dosing solutions were adjusted prior to the addition of the dosing solutions to flasks containing the target cells. Dose levels of 4500, 3500, 2000, 1500, 1000 and 500 μg/mL for the non-activated study and 5000,4000,3000, 2000 and 1000 μg/mL for the activated study were selected. This study was terminated prior to selection due to excessive toxicity exhibited at most of the treatment levels tested. New doses were selected for the initial mutagenesis assay. These dose levels were 3000, 2000, 1500, 500, 250 and 125 μg/mL in the absence of S-9 and 3000, 2000, 1500, 1000, 500 and 250 μg/mL in the presence of S-9. The doses selected for the confirmatory mutagenesis assay were 4000, 3500, 3000, 2000, 1500 and 1000 μg/mL in the absence and presence of S-9. Inconsistencies in the cytotoxicity results were noted between replicate treatments. The results from this study were not reported and an additional study was performed using the dose levels of 4000, 3500, 3200, 3000, 2000, 1000 and 500 μg/mL in the absence and presence of S-9. Due to inconsistent results between the replicate flasks of the 4000 μg/mL treatment in the non-activated study, the plate counts for the "B" treatment were not included in any of the calculations performed for concurrent cytotoxicity or mutation frequency for this treatment condition. - Remarks on result:
- other: all strains/cell types tested
- Remarks:
- Migrated from field 'Test system'.
Any other information on results incl. tables
Additional tables containing cytotoxicity and mutagenicity data are in the attached pdf document.
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results (migrated information):
negative
This study and the conclusions which are drawn from it fulfill the quality criteria (validity, reliability, repeatability).
Under the conditions of these mutagenicity tests, test substance was negative in both the absence and presence of exogenous metabolic activation. - Executive summary:
The test substance was tested in the CHO/HGPRT mutation assay in the absence and presence of metabolic activation with Aroclor-induced rat liver S-9. The initial assay was conducted at dose levels of 3000, 2000, 1500, 500, 250 and 125 μg/mL in the non-activated study and at 3000, 2000, 1500, 1000, 500 and 250 μg/mL, in the presence of S-9. The confirmatory assay was conducted at dose levels of 4000, 3500, 3200, 3000, 2000, 1000 and 500 μg/mL in both the absence and presence of S-9. Under the conditions of these mutagenicity tests, test substance was negative in both the absence and presence of exogenous metabolic activation.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
