Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 266-340-9 | CAS number: 66402-68-4 This category encompasses the various chemical substances manufactured in the production of ceramics. For purposes of this category, a ceramic is defined as a crystalline or partially crystalline, inorganic, non-metallic, usually opaque substance consisting principally of combinations of inorganic oxides of aluminum, calcium, chromium, iron, magnesium, silicon, titanium, or zirconium which conventionally is formed first by fusion or sintering at very high temperatures, then by cooling, generally resulting in a rigid, brittle monophase or multiphase structure. (Those ceramics which are produced by heating inorganic glass, thereby changing its physical structure from amorphous to crystalline but not its chemical identity are not included in this definition.) This category consists of chemical substances other than by-products or impurities which are formed during the production of various ceramics and concurrently incorporated into a ceramic mixture. Its composition may contain any one or a combination of these substances. Trace amounts of oxides and other substances may be present. The following representative elements are principally present as oxides but may also be present as borides, carbides, chlorides, fluorides, nitrides, silicides, or sulfides in multiple oxidation states, or in more complex compounds.@Aluminum@Lithium@Barium@Magnesium@Beryllium@Manganese@Boron@Phosphorus@Cadmium@Potassium@Calcium@Silicon@Carbon@Sodium@Cerium@Thorium@Cesium@Tin@Chromium@Titanium@Cobalt@Uranium@Copper@Yttrium@Hafnium@Zinc@Iron@Zirconium
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Epidemiological data
Administrative data
- Endpoint:
- epidemiological data
- Type of information:
- migrated information: read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- supporting study
- Study period:
- 1995 - 1996
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: Basic data given.
Data source
Reference
- Reference Type:
- publication
- Title:
- Relationships between alumina and bauxite dust exposure and cancer, respiratory and circulatory disease.
- Author:
- Friesen et al.
- Year:
- 2 009
- Bibliographic source:
- Occup Environ Med. 2009 Sep; 66(9):615-618.
Materials and methods
- Study type:
- cohort study (prospective)
- Endpoint addressed:
- repeated dose toxicity: inhalation
Test guideline
- Qualifier:
- no guideline required
- GLP compliance:
- not specified
Test material
- Reference substance name:
- Bauxite and alumina
- IUPAC Name:
- Bauxite and alumina
- Details on test material:
- Name of test material (as cited in study report): bauxite and alumina
Details were not provided on the physical state, impurities (identity and concentrations) or other co-exposures.
Constituent 1
Method
- Type of population:
- occupational
- Ethical approval:
- not specified
- Details on study design:
- HYPOTHESIS TESTED (if cohort or case control study):
The objective of this study was “to examine the associations between alumina and bauxite dust exposure and cancer incidence and circulatory and respiratory disease mortality among bauxite miners and alumina refinery workers.”
STUDY PERIOD: 1983-2002
SETTING: Four bauxite mines and three alumina refineries in Western Australia
STUDY POPULATION & SAMPLE
- Inclusion criteria: Male workers hired on or after 1 January 1983, for whom work history information was available (n=5770). Fifty eight subjects were excluded because of unavailable job history information.
- Total number of subjects in the study: 5770
- Sex/age/race: male. Mean age at study entry 32 years (SD 10.5 years), maximum age at study entry – 64 years.
Mean duration of employment – 14.1 years (SD 8.7 years), maximum – 40 years. The study population included smokers and non-smokers (further detail is provided in the results section).
COMPARISON POPULATION
- Type: State registry / Regional registry / National registry / Control or reference group / Other:
- Details: unexposed workers within the cohort
METHOD OF DATA COLLECTION
Interview /
Questionnaire /
Record review /
Work history /
Clinical tests /
other: national mortality and national and state cancer incidence registries
- Details of data collection:
Work histories and smoking information for cohort members whose employment ended before 1995 were abstracted from company records. Work histories and smoking information for all other cohort members were collected at interviews during a 1995-1996 survey and later during the follow-up period. Mortality and cancer incidence information was obtained by linkage with national mortality and national and state cancer incidence registries for the period 1983-2002.
HEALTH EFFECTS STUDIED
- Disease(s):
Cancer incidence based on linkage with national and state cancer incidence registries
- Mortality:
Mortality from non-malignant respiratory diseases and from circulatory diseases (cardiovascular and cerebrovascular) based on linkage with the national mortality registry
FOLLOW-UP: 1983-2002 - Exposure assessment:
- estimated
- Details on exposure:
- TYPE OF EXPOSURE:
Inhalation
TYPE OF EXPOSURE MEASUREMENT: Area air sampling / Personal sampling / Exposure pads / Biomonitoring (urine) / Biomonitoring blood / other:
Individual cumulative exposures to bauxite and alumina were calculated as described below:
Time-weighted average monitoring data for inhalable dust were received from the company. Air sampling before 1998 was performed with a closed-face 37 mm cassette for total dust (NIOSH N-0500) which could underestimate the inhalable fraction. After 1998, the Institute of Medicine inhalable sampling head was used. The annual arithmetic mean was calculated for each combination of site, department, job and task. Tasks for which there were no monitoring data were assigned a proportion of value from a similar monitored task (from 5 to 100%, determined by a hygienist). Values were also extrapolated to years for which no measurements were available. A value of half the limit of detection was assigned to tasks with no monitoring data and considered to have very low exposure. For workers who quit before 1986 work histories were available only at the job level. For all workers, a job-exposure matrix was developed from the TEM by weighting tasks performed in each job using task weighting factors from the 1995-1996 interviews. It was assumed that workers with no interview data after the 1995/1996 survey remained in their last reported jobs until employment termination or until the study termination. - Statistical methods:
- Relative risks for each exposure category compared to the unexposed category were calculated using Poisson regression with categorical covariates for age, calendar year (5-year intervals were used when the number of cases was sufficient) and smoking (see above). Exposure-response relationships were examined for endpoints for which there were at least 6 exposed cases and the risk in ever exposed was elevated compared to never exposed. Exposure categories were disease-specific and were based on distribution of exposure of cases applying cut-offs at the 33.3 and 66.6 percentiles. Tests for trend were performed by setting the ordinal exposure variable (0-3) to a continuous variable.
Results and discussion
- Results:
- EXPOSURE LEVELS
- Arithmetic mean:
Cumulative bauxite exposure for exposed workers (57%): 13.4 mg/m3-years
Cumulative alumina exposure for exposed workers (41%): 14.5 mg/m3-years
- Median: (for those exposed)
Cumulative bauxite exposure for exposed workers (57%): 5.7 mg/m3-years
Cumulative alumina exposure for exposed workers (41%): 2.8 mg/m3-years
- Other:
Maximum cumulative bauxite exposure for exposed workers (57%): 187 mg/m3-years
Maximum cumulative alumina exposure for exposed workers (41%): 210 mg/m3-years
Cumulative exposures to bauxite and alumina were not correlated; 32% had never been exposed to either dust, 16% had been exposed to both dusts.
FOLLOW-UP
A total of 93,420 person-years of follow-up; mean duration of follow-up 16.2 years (SD 4.8 years), maximum – 20 years.
RESULTS
Bauxite
Exposed vs. unexposed: non-significantly increased mortality from cerebrovascular diseases (RR=2.1; 95% CI 0.5-8.1; n=10) and from non-malignant respiratory diseases (RR=5.8; 95% CI 0.7-48; n=7). No increase in mortality from cardiovascular diseases (RR=0.9; 95% CI 0.6-1.4) was observed.
No exposure-response relationship was found for cerebrovascular disease mortality. There was a monotonic increasing trend in mortality from non-malignant respiratory diseases with increasing exposure category (see tables below). The 7 respiratory disease deaths included chronic obstructive pulmonary disease, asbestosis, unspecified bronchopneumonia, other interstitial pulmonary disease with fibrosis.
No significant association with bauxite exposure was observed for incidence of any cancer. A non-significant increase was observed for stomach cancer (RR=1.7; 95% CI 0.3-9.3; n=6) and brain cancer (RR=2.1; 95% CI 0.4-11; n=7). Because of the small number of cases, the exposure-response relationship was not examined for these cancers.
Exposure to alumina
Exposed vs. unexposed: A significantly increased mortality from cerebrovascular diseases (RR=3.8; 95% CI 1.1-13) was observed. No significant increase was observed for mortality from cardiovascular diseases (RR=1.1; 95% CI 0.7-1.8) or from non-malignant respiratory diseases (RR=0.9; 95% CI 0.2-4.5)
A significant (non-monotonic) trend was observed for mortality from cerebrovascular diseases and a suggestive trend (p=0.1) for mortality from all circulatory diseases. - Confounding factors:
- Smoking
The cohort members were categorized as never, former, current smokers, non-smokers (if never or former smokers could not be distinguished), and with unknown smoking status.
Overall, 35% were never smokers, 27% - former smokers, 27% - current smokers, 5% non-smokers and 5% unknown. Workers exposed to bauxite had a slightly greater proportion of current smokers (29% vs. 24%) or former smokers (29% vs. 25%) and a smaller proportion of never smokers (32% vs. 38%) than unexposed workers. Alumina-exposed and unexposed workers did not differ by their smoking status distribution. - Strengths and weaknesses:
- Strengths: rigorous exposure assessment
Limitations:
- The associations are based on very small numbers of deaths.
- Causes of death as determined from an administrative database may be of limited validity.
- Possible residual confounding by smoking
Any other information on results incl. tables
Table 1: Exposure to bauxite and mortality form cerebrovascular diseases
Unexposed |
Low |
Medium |
High |
P value for trend |
Exposure categories |
0.27 |
|||
0 mg/m3-years |
>0-0.71 mg/m3-years |
0.71-16.5 mg/m3-years |
>16.5 mg/m3-years |
|
Number of deaths |
||||
3 |
2 |
3 |
2 |
|
Relative risks (95% CI) adjusted for age, calendar year and smoking |
||||
1 |
2.5 (0.4-15) |
2.2 (0.4-11) |
2.4 (0.4-15) |
Table 2: Exposure to bauxite and mortality from non-malignant respiratory diseases
Unexposed |
Low |
Medium |
High |
P value for trend |
Exposure categories |
0.1 |
|||
0 |
>0-16.0 mg/m3-years |
16.0-48.3 mg/m3-years |
>48.3 mg/m3-years |
|
Number of deaths |
||||
1 |
2 |
2 |
2 |
|
Relative risks (95% CI) adjusted for age, calendar year and smoking |
||||
0.4 (0.0-4.0) |
1 |
2.6 (0.3-20) |
6.4 (0.8-53) |
Table 3: Exposure to alumina and mortality from all circulatory diseases
Unexposed |
Low |
Medium |
High |
P value for trend |
Exposure categories |
0.04 |
|||
0 |
>0-6.05 mg/m3-years |
6.05-11.7 mg/m3-years |
>11.7 mg/m3-years |
|
Number of deaths |
||||
4 |
2 |
2 |
2 |
|
Relative risks (95% CI) adjusted for age, calendar year and smoking |
||||
1 |
2.7 (0.5-15) |
8.7 (1.5-49) |
4.2 (0.7-21) |
Applicant's summary and conclusion
- Conclusions:
- There was statistical evidence for an association between mortality from non-malignant respiratory diseases and exposure to bauxite, and between mortality from cerebrovascular diseases and exposure to alumina. These associations were based on small numbers of cases and may reflect chance findings. Neither bauxite nor alumina exposure was associated with increased cancer risk.
- Executive summary:
Friesen et al. (2009) investigated the associations between alumina and bauxite dust exposure and circulatory disease mortality, respiratory disease mortality and cancer incidence in a cohort of employees from four bauxite mines and three alumina refineries in. These individuals were employed on or after Jan 1, 1983. For employees employed before the survey in 1995 - 1996, work history and smoking status were obtained from company records. Outcomes were determined by linkage with the national mortality database and the national and state cancer incidence registries. Cumulative exposure to inhalable bauxite and alumina were estimated using a task-exposure matrix for those employed in 1995/6. A less detailed job-exposure matrix was required for subjects who left employment before 1996. Before 1998, total dust was measured using a NIOSH cassette subsequently found to underestimate the inhalable fraction. Post-1998, anofdevice was used. The study cohort had a mean age of 32 years (10.5, sd, standard deviation) at entry, a mean duration of employment of 14.1 years, a mean person-year (PY) contribution of 16.2 years (4.8, sd) providing a total of 93, 420 PYs of follow-up. A greater percentage of the bauxite-exposed workers were either current (29% v 24%) or former (29% v 25%) smokers compared to the unexposed group while alumina-exposed workers and unexposed workers did not differ with respect to smoking status. The median, mean and maximum cumulative exposures to bauxite among the bauxite-exposed workers were 5.7, 13.4, and 187 mg/m3-yr, respectively. The median, mean and maximum cumulative exposures to alumina among the alumina-exposed workers were 2.8, 14.5, and 210 mg/m3-yr, respectively. Exposure categories used in the analyses were defined based on the tertiles in the few cases. The relative risk of death from non-malignant respiratory disease showed a significant trend (7 deaths; p < 0.01) with cumulative bauxite exposure with adjustment for age, calendar year and smoking. The deaths were due to chronic obstructive pulmonary disease, asbestosis, unspecified bronchopneumonia and interstitial pulmonary disease with fibrosis. Cumulative alumina exposures showed a marginally significant trend with mortality from cerebrovascular disease (10 deaths; p = 0.04). No notable associations or trends were observed for cancer outcomes. The analyses in this study were based on only a few cases accrued during the relatively short follow-up and adjustment for smoking was done using only a crude categorical variable. Further follow-up and accrual of more cases will be required to determine the validity of the reported trends.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.