Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 266-340-9 | CAS number: 66402-68-4 This category encompasses the various chemical substances manufactured in the production of ceramics. For purposes of this category, a ceramic is defined as a crystalline or partially crystalline, inorganic, non-metallic, usually opaque substance consisting principally of combinations of inorganic oxides of aluminum, calcium, chromium, iron, magnesium, silicon, titanium, or zirconium which conventionally is formed first by fusion or sintering at very high temperatures, then by cooling, generally resulting in a rigid, brittle monophase or multiphase structure. (Those ceramics which are produced by heating inorganic glass, thereby changing its physical structure from amorphous to crystalline but not its chemical identity are not included in this definition.) This category consists of chemical substances other than by-products or impurities which are formed during the production of various ceramics and concurrently incorporated into a ceramic mixture. Its composition may contain any one or a combination of these substances. Trace amounts of oxides and other substances may be present. The following representative elements are principally present as oxides but may also be present as borides, carbides, chlorides, fluorides, nitrides, silicides, or sulfides in multiple oxidation states, or in more complex compounds.@Aluminum@Lithium@Barium@Magnesium@Beryllium@Manganese@Boron@Phosphorus@Cadmium@Potassium@Calcium@Silicon@Carbon@Sodium@Cerium@Thorium@Cesium@Tin@Chromium@Titanium@Cobalt@Uranium@Copper@Yttrium@Hafnium@Zinc@Iron@Zirconium
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to terrestrial arthropods
Administrative data
Link to relevant study record(s)
Description of key information
Based on the justification of both main components, it can be concluded:
Aluminium, aluminium powders and aluminium oxide are non hazardous (not classified for the environment). Aluminum (Al) is the most commonly occurring metallic element, comprising eight percent of the earth's crust (Press and Siever, 1974) and is therefore found in great abundance in both the terrestrial and sediment environments.
As the CSA shows that there is no risk of calcium compounds for the soil compartment, there is no indication for this toxicity to terrestrial arthropods test to be conducted.
Key value for chemical safety assessment
Additional information
There are no studies available for “Reaction product of thermal process between 1000°C and 2000°C of mainly aluminium oxide and calcium oxide based raw materials with at least CaO+Al2O3 >80% , in which aluminium oxide and calcium oxide in varying amounts are combined in various proportions into a multiphase crystalline matrix”. As this substance is an UVCB substance with aluminium oxide (AL2O3) and calcium oxide (CaO) as main constituents, justification based on both main components were taken into account.
Aluminium-compounds:
Aluminium, aluminium powders and aluminium oxide are non hazardous (not classified for the environment). Aluminum (Al) is the most commonly occurring metallic element, comprising eight percent of the earth's crust (Press and Siever, 1974) and is therefore found in great abundance in both the terrestrial and sediment environments. Concentrations of 3-8% (30,000-80,000 ppm) are not uncommon. The relative contributions of anthropogenic aluminium to the existing natural pools of aluminium in soils and sediments is very small and therefore not relevant either in terms of added amounts or in terms of toxicity. Based on these exposure considerations additional sediment and/or soil testing is not warranted. More information about exposure based waiving for aluminium in soil and sediments can be found in attached document (White paper on exposure based waiving for Fe and Al in soils and sediments final 15-03-2010. pdf, see attachment).
Calcium-compounds:
For calcium compounds studies on other terrestrial organisms are available and these either do not show effects, or do show effects but at levels which are significantly higher than the PEC values in the chemical safety report. Since the CSA shows that there is no risk for the soil compartment, there is no indication for this toxicity to terrestrial arthropods test to be conducted. This is in accordance with column 2 of REACH Annex VII.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.