Registration Dossier

Diss Factsheets

Environmental fate & pathways

Endpoint summary

Administrative data

Description of key information

Biodegradation in water

42-days Closed Bottle test following the OECD guideline 301 D to determine the ready biodegradability of the test chemical (Experimental study report, 2018). The study was performed at a temperature of 20°C. The test system included control, test item and reference item. Polyseed were used for this study. The concentration of test and reference item (Sodium Benzoate) chosen for both the study was 4 mg/L, while that of inoculum was 32 ml/l. OECD mineral medium was used for the study. ThOD (Theoretical oxygen demand) of test and reference item was determined by calculation. % degradation was calculated using the values of BOD and ThOD for test item and reference item. The % degradation of procedure control (reference item) was also calculated using BOD & ThOD and was determined to be 78.31%. Degradation of Sodium Benzoate exceeds 42.16% on 7 days & 63.25% on 14th day. The activity of the inoculum was thus verified and the test can be considered as valid. The BOD42 value of test chemical was observed to be 1.22 mgO2/mg. ThOD was calculated as 2.70 mgO2/mg. Accordingly, the % degradation of the test item after 42 days of incubation at 20 ± 1°C according to Closed Bottle test was determined to be 45.98%. Based on the results, the test item, under the test conditions, was considered to be ultimate inherently biodegradable in nature.

Biodegradation in water and sediment

Estimation of biodegradation of test chemical in water and sediment done by EPI suite. Estimated half life of test chemical in water was 15 days (360 h) and in sediment estimated to be 135 days (3240 h).

Biodegradation in surface water

Estimation of biodegradation of test chemical in water and sediment done by EPI suite. Estimated half life of test chemical in water was 15 days (360 h)

Biodegradation in soil

Biodegradation in soil was predicted by EPI suite. Biodegradation half-life of test chemical in soil was estimated to be 30 days (720 hrs).

Additional information

Biodegradation in water

1: 42-days Closed Bottle test following the OECD guideline 301 D to determine the ready biodegradability of the test chemical (Experimental study report, 2018). The study was performed at a temperature of 20°C. The test system included control, test item and reference item. Polyseed were used for this study. The concentration of test and reference item (Sodium Benzoate) chosen for both the study was 4 mg/L, while that of inoculum was 32 ml/l. OECD mineral medium was used for the study. ThOD (Theoretical oxygen demand) of test and reference item was determined by calculation. % degradation was calculated using the values of BOD and ThOD for test item and reference item. The % degradation of procedure control (reference item) was also calculated using BOD & ThOD and was determined to be 78.31%. Degradation of Sodium Benzoate exceeds 42.16% on 7 days & 63.25% on 14th day. The activity of the inoculum was thus verified and the test can be considered as valid. The BOD42 value of test chemical was observed to be 1.22 mgO2/mg. ThOD was calculated as 2.70 mgO2/mg. Accordingly, the % degradation of the test item after 42 days of incubation at 20 ± 1°C according to Closed Bottle test was determined to be 45.98%. Based on the results, the test item, under the test conditions, was considered to be ultimate inherently biodegradable in nature.

WoE 2: Biodegradation study was conducted for 14 days to calculate the BOD, TOC and % degradation of test material during exposure period. Activated sludge of 30 mg/L conc was taken as inoculum and initial concentration of the test material was 100 mg/L. Test material analysis was done by GC. % degardation based on BOD was found to be 54.6. hence it can be concluded that the test item is not readily biodegradable.

WoE 3: Biodegradation study was conducted for 14 days to calculate the BOD, TOC and % degradation of test material during exposure period. Activated sludge of 30 mg/L conc was taken as inoculum and initial concentration of the test material was 100 mg/L. Test material analysis was done by GC. % degardation based on BOD was found to be 56. hence it can be concluded that the test item is not readily biodegradable.

Biodegradation in water and sediment

Estimation Programs Interface (2018) prediction model was run to predict the half-life in water and sediment for the test chemical. If released in to the environment, 25.8% of the chemical will partition into water according to the Mackay fugacity model level III and the half-life period of test chemical in water is estimated to be 15 days (360 hrs). The half-life (15 days estimated by EPI suite) indicates that the chemical is not persistent in water and the exposure risk to aquatic animals is moderate to low whereas the half-life period of test chemical in sediment is estimated to be 135 days (3240 hrs). However, as the percentage release of test chemical into the sediment is less than 1% (i.e, reported as 0.245%), indicates that test chemical is not persistent in sediment.

Biodegradation in surface water

Estimation Programs Interface prediction model was run to predict the half-life in water for the test chemical. If released in to the environment, 25.8% of the chemical will partition into water according to the Mackay fugacity model level III and the half-life period of test chemical in water is estimated to be 15 days (360 hrs). The half-life (15 days estimated by EPI suite) indicates that the chemical is not persistent in water and the exposure risk to aquatic animals is moderate to low. 

Biodegradation in soil

The half-life period of test chemical in soil was estimated using Level III Fugacity Model by EPI Suite version 4.1 estimation database (2018). If released into the environment, 72.5% of the chemical will partition into soil according to the Mackay fugacity model level III. The half-life period of test chemical in soil is estimated to be 30 days (720 hrs). Based on this half-life value of test chemical, it is concluded that the chemical is not persistent in the soil environment and the exposure risk to soil dwelling animals is moderate to low.

On the basis of available information, the test chemical can be considered to be ultimate inherently biodegradable in nature.

Categories Display