Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Hydrolysis

Currently viewing:

Administrative data

Link to relevant study record(s)

Reference
Endpoint:
hydrolysis
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
data from handbook or collection of data
Remarks:
experimental data of read across substances
Justification for type of information:
Data for the target chemical is summarized based on the structurally similar read across chemicals.
Reason / purpose for cross-reference:
read-across source
Reason / purpose for cross-reference:
read-across source
Qualifier:
according to guideline
Guideline:
other: as mentioned below
Principles of method if other than guideline:
WoE report is based on two hydrolysis studies as-
2. and 3.
GLP compliance:
not specified
Radiolabelling:
not specified
Analytical monitoring:
not specified
Remarks:
2. Details not known
Duration:
5 d
Temp.:
50 °C
Remarks:
3. The study was performed at pH 4, 7 and 9, respectively
Positive controls:
not specified
Negative controls:
not specified
Transformation products:
not specified
Remarks on result:
other: 2. Although the half-life value of test chemical was not known, but chemical was reported to be stable in aqueous environments.
Temp.:
50 °C
DT50:
> 5 d
Remarks on result:
other: Hydrolysis of test chemical did not reach > 10% in any of the pH systems (i.e., at pH 4, 7 and 9, respectively) and thus the preliminary study was terminated.
Details on results:
2. Details not known
3. Test chemical was reported to be hydrolytically stable at pH 4, 7 and 9, respectively at a temperature of 50⁰C for 5 days.
Validity criteria fulfilled:
not specified
Conclusions:
On the basis of the experimental studies of the structurally and functionally similar read across chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be > 5 days, respectively. Thus, based on this half-life value, it can be concluded that the test chemical is not hydrolysable in water.
Executive summary:

Data available for the structurally and functionally similar read across chemicals has been reviewed to determine the half-life of the test chemical.The studies are as mentioned below:

The half-life of the test chemical was determined. Although the half-life value of test chemical was not known, but test chemical was reported to be stable in aqueous environments. Based on this, it is concluded that the test chemical is not hydrolysable.

In an another study, the half-life of the test chemical was determined at different pH range. The study was performed according to OECD Guideline 111 (Hydrolysis as a Function of pH) at a temperature of 50°C. As the hydrolysis of test chemical did not reach > 10% in any of the pH systems, the preliminary study was terminated. Test chemical was reported to be hydrolytically stable at pH 4, 7 and 9, respectively at a temperature of 50⁰C for 5 days. Thus, half-life value can be considered to be > 5 days, indicating that the test chemical is not hydrolysable.

On the basis of the experimental studies of the structurally and functionally similar read across chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be > 5 days, respectively. Thus, based on this half-life value, it can be concluded that the test chemical is not hydrolysable in water.

Description of key information

On the basis of the experimental studies of the structurally and functionally similar read across chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be > 5 days, respectively. Thus, based on this half-life value, it can be concluded that the test chemical is not hydrolysable in water.

Key value for chemical safety assessment

Additional information

Data available for the structurally and functionally similar read across chemicals has been reviewed to determine the half-life of the test chemical. The studies are as mentioned below:

 

The half-life of the test chemical was determined. Although the half-life value of test chemical was not known, but test chemical was reported to be stable in aqueous environments. Based on this, it is concluded that the test chemical is not hydrolysable.

 

In an another study, the half-life of the test chemical was determined at different pH range. The study was performed according to OECD Guideline 111 (Hydrolysis as a Function of pH) at a temperature of 50°C. As the hydrolysis of test chemical did not reach > 10% in any of the pH systems, the preliminary study was terminated. Test chemical was reported to be hydrolytically stable at pH 4, 7 and 9, respectively at a temperature of 50⁰C for 5 days. Thus, half-life value can be considered to be > 5 days, indicating that the test chemical is not hydrolysable.

 

On the basis of the experimental studies of the structurally and functionally similar read across chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be > 5 days, respectively. Thus, based on this half-life value, it can be concluded that the test chemical is not hydrolysable in water.