Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 213-935-6 | CAS number: 1067-55-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to aquatic algae and cyanobacteria
Administrative data
Link to relevant study record(s)
Description of key information
The following study has been submitted to address the toxicity to algae and cyanobacteria endpoint:
Steger-Hartmann T (1999). Growth inhibition test of di-n-butyltin oxide (ZK 26385) on the green algae Scenedesmus subspicatus. Testing laboratory: Schering AG, Experimentelle Toxikologie, D-13342 Berlin, Germany. Report no.: IC28. Owner company: Schering AG, Experimentelle Toxikologie, Berlin, Germany. Study number: TXST19980234. Report date: 1999-02-17.
The Steger-Hartmann and Wendt study, as a stand alone study it is a relaibility 1, however as it is used for read-across purposes, the study has been assigned a reliability 2 (reliable with restrictions). The data presented is on the substance dibutyltin oxide.
Key value for chemical safety assessment
- EC50 for freshwater algae:
- 1.6 mg/L
Additional information
The EC50 (72 h) for biomass and growth rate was determined to be = 1.6 mg/l. DBTO had an inhibitory effect on the growth of algae at all concentrations, observable after 24 hours. However, there was no concentration dependence and it did not exceed 40% and 20% for biomass and growth rate respectively, even after 72 hours. Therefore the observed effects were regarded as not substance-related.
Read-across from dibutyltin oxide to dibutyl dimethoxystannane concerning aquatic toxicity endpoints was considered appropriate as dibutyltin and octyltins are known to hydrolyse rapidly in water (as presented by Yoder 2003, under the data requirement hydrolysis), and form, in the case of dibutyltins, dibutyltin oxide.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.