Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 800-309-8 | CAS number: 231297-75-9
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Henry's Law constant
Administrative data
Link to relevant study record(s)
- Endpoint:
- Henry's law constant
- Type of information:
- (Q)SAR
- Adequacy of study:
- key study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: Scientifically accepted calculation method.
- Principles of method if other than guideline:
- The Henry´s Law Constant of the substance was calculated based on QSAR methods using the computer program from US-EPA (EPIWIN software: HENRYWIN Program v3.20).
- GLP compliance:
- no
- Remarks:
- Not applicable.
- H:
- 0.061 Pa m³/mol
- Temp.:
- 25 °C
- Remarks on result:
- other: Bond Method estimation.
- Conclusions:
- The study report describes a scientifically accepted calculation method to determine the Henry´s Law Constant using the US-EPA software HENRYWIN v3.20.No GLP criteria are applicable for the usage of this tool and the QSAR estimation is easily repeatable.
- Executive summary:
The Henry´s Law constant of the test substance was determined by the computer program HENRYWIN v3.20 (EPIWIN software) by US-EPA (Chemservice S.A., 2012). Henry´s law states that the solubility of a gas in a liquid solution at a constant temperature will be proportional to the partial pressure of the gas which is above the solution (Henry, 1803). Sometimes, the term “air/water partition coefficient” refers to the dimensionless Henry´s law constant (HLC) and therefore describes the ratio of the equilibrium concentration of a dissolved substance in air and water. HENRYWIN estimates two separate HLC values (one using the group method and one using the bond method). The bond contribution methodology splits a compound into smaller units (one atom to another atom only). The bond method includes individual hydrogen bond values; the group method does not.Using the Bond Method of the computer program HENRYWIN from US-EPA a Henry´s Law Constant of 6.13 E-002 Pa*m³/molwas calculated for the test substance at 25 °C. The Group Method showed an “incomplete Result”.
Reference
Description of key information
Calculation with HENRYWIN v3.20 (EPIWIN software by US-EPA): 6.13E-2 Pa*m³/mol
Key value for chemical safety assessment
- Henry's law constant (H) (in Pa m³/mol):
- 0.061
- at the temperature of:
- 25 °C
Additional information
The Henry´s Law constant of the test substance was determined by the computer program HENRYWIN v3.20 (EPIWIN software) by US-EPA (Chemservice S.A., 2012). Henry´s law states that the solubility of a gas in a liquid solution at a constant temperature will be proportional to the partial pressure of the gas which is above the solution (Henry, 1803). Sometimes, the term “air/water partition coefficient” refers to the dimensionless Henry´s law constant (HLC) and therefore describes the ration of the equilibrium concentration of a dissolved substance in air and water.HENRYWIN estimates two separate HLC values (one using the group method and one using the bond method). The bond contribution methodology splits a compound into smaller units (one atom to another atom only). The bond method includes individual hydrogen bond values; the group method does not.Using the Bond Method of the computer program HENRYWIN from US-EPA a Henry´s Law Constant of 6.13 E-2 Pa*m³/mol was calculated for the test substance at 25 °C. The Group Method showed an “incomplete result”. No GLP criteria are applicable for the usage of this tool, but due to the fact that it is a scientifically accepted calculation method the estimations performed are reliable with restrictions and can be used for the chemical safety assessment.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.