Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 266-340-9 | CAS number: 66402-68-4 This category encompasses the various chemical substances manufactured in the production of ceramics. For purposes of this category, a ceramic is defined as a crystalline or partially crystalline, inorganic, non-metallic, usually opaque substance consisting principally of combinations of inorganic oxides of aluminum, calcium, chromium, iron, magnesium, silicon, titanium, or zirconium which conventionally is formed first by fusion or sintering at very high temperatures, then by cooling, generally resulting in a rigid, brittle monophase or multiphase structure. (Those ceramics which are produced by heating inorganic glass, thereby changing its physical structure from amorphous to crystalline but not its chemical identity are not included in this definition.) This category consists of chemical substances other than by-products or impurities which are formed during the production of various ceramics and concurrently incorporated into a ceramic mixture. Its composition may contain any one or a combination of these substances. Trace amounts of oxides and other substances may be present. The following representative elements are principally present as oxides but may also be present as borides, carbides, chlorides, fluorides, nitrides, silicides, or sulfides in multiple oxidation states, or in more complex compounds.@Aluminum@Lithium@Barium@Magnesium@Beryllium@Manganese@Boron@Phosphorus@Cadmium@Potassium@Calcium@Silicon@Carbon@Sodium@Cerium@Thorium@Cesium@Tin@Chromium@Titanium@Cobalt@Uranium@Copper@Yttrium@Hafnium@Zinc@Iron@Zirconium
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
There are no studies available for “Reaction product of thermal process between 1000°C and 2000°C of mainly aluminium oxide and calcium oxide based raw materials with at least CaO+Al2O3+MgO >80% , in which aluminium oxide, magnesium oxide and calcium oxide in varying amounts are combined in various proportions into a multiphase crystalline matrix”. As this substance is an UVCB substance with aluminium oxide (AL2O3), calcium oxide (CaO) and magnesium oxide (MgO) as main constituents, data and justification based on these main components were taken into account by read across following a structural analogue approach.
Aluminium-compounds:
To place a proper perspective on the assessment of aluminium in soils we quote the Executive Summary of the USEPA EcoSSL (see attachment, Ecological Soil Screening Level) assessment for aluminium.
"Aluminum (Al) is the most commonly occurring metallic element, comprising eight percent of the earth's crust (Press and Siever, 1974). It is a major component of almost all common inorganic soil particles, with the exceptions of quartz sand, chert fragments, and
ferromanganiferous concretions. The typical range of aluminum in soils is from 1 percent to 30 percent (10,000 to 300,000 mg Al kg-1) (Lindsay, 1979 and Dragun, 1988), with naturally occurring concentrations varying over several orders of magnitude.
EPA recognizes that due to the ubiquitous nature of aluminum, the natural variability of aluminum soil concentrations and the availability of conservative soil screening benchmarks (Efroymson, 1997a; 1997b), aluminum is often identified as a COPC for ecological risk assessments. The commonly used soil screening benchmarks (Efroymson, 1997a; 1997b) are based on laboratory toxicity testing using an aluminum solution that is added to test soils.
Comparisons of total aluminum concentrations in soil samples to soluble aluminum-based screening values are deemed by EPA to be inappropriate. The standard analytical measurement of aluminum in soils under CERCLA contract laboratory procedures (CLP) is total recoverable metal. The available data on the environmental chemistry and toxicity of aluminum in soil to plants, soil invertebrates, mammals and birds as summarized in this document support the following conclusions:
• Total aluminum in soil is not correlated with toxicity to the tested plants and soil invertebrates.
• Aluminum toxicity is associated with soluble aluminum.
• Soluble aluminum and not total aluminum is associated with the uptake and bioaccumulation of aluminum from soils into plants.
• The oral toxicity of aluminum compounds in soil is dependent upon the chemical form (Storer and Nelson, 1968). Insoluble aluminum compounds such as aluminum oxides are considerably less toxic compared to the soluble forms (aluminum chloride, nitrate, acetate, and sulfate). For example, Storer and Nelson (1968) observed no toxicity to the chick at up to 1.6% of the diet as aluminum oxide compared to 80 to 100% mortality in chicks fed soluble forms at 0.5% of the diet.
Because the measurement of total aluminum in soils is not considered suitable or reliable for the prediction of potential toxicity and bioaccumulation, an alternative procedure is recommended for screening aluminum in soils. The procedure is intended as a practical approach for determining if aluminum in site soils could pose a potential risk to ecological receptors. This alternative procedure replaces the derivation of numeric Eco-SSL values for aluminum."
Calcium compounds:
Studies for terrestrial toxicity of calcium compounds are available for the following endpoints:
- Toxicity to soil macroorganisms – 2 studies
- Toxicity to terrestrial plants – 1 study
- Toxicity to soil microorganisms – 2 studies
The short-term toxicity of calcium dihydroxide on mortality and biomass of the earthworm Eisenia fetida (Friedrich, 2007b) was carried out according to OECD test guideline 207. The study is well documented, all validity criteria are fulfilled. As such a Klimisch 1 score was assigned to the study. After 14 days, no significant effect on both mortality and biomass was observed up to the highest tested dose (5000 mg Ca(OH)2 /kg dw)
The chronic study on the effect of calcium dihydroxide on the reproduction of the earthworm Eisenia fetida (Friedrich, 2007a), was carried out according to OECD test guideline 222. The study is well documented, all validity criteria are fulfilled. As such a Klimisch 1 score was assigned to the study. The study resulted in a 4w-EC50 of 4180 mg Ca(OH)2 /kg soil dw and a 4w-NOEC of 2000 mg Ca(OH)2 /kg soil dw.
One long-term study for toxicity to terrestrial plants is available for the read across substance calcium dihydroxide. This substance is structurally and compositionally related to calcium oxide, one main substance of the test material. The study (Friedrich 2007) was conducted according to OECD 208 with different plant species and resulted in LC 50 (21d) > 10 g/kg soil dw test mat. And NOEC (21d) of 1.08 – 2.27 g/kg soil dw test mat.
The chronic study on the effect of calcium dihydroxide on the nitrogen transformation in an agricultural loamy sand soil (Schulz, 2007a) was carried out according to OECD 216. The study is well documented, all validity criteria are fulfilled. As such a Klimisch 1 score was assigned to the study. Reported 96d-EC50 and 96d-NOEC values for nitrogen transformation equalled >12 g Ca(OH)2 /kg soil dw and ≥12 g Ca(OH)2 /kg soil dw, respectively.
The chronic study on the effect of calcium dihydroxide on the dehydrogenase activity in an agricultural loamy sand soil (Schulz, 2007b) was conducted according to German guidelines for testing of plant protection products (BBA VI, 1-1, 1990). The methods and results are well documented. As such a Klimisch 1 score was assigned to the study. Reported 96d-EC50 and 96d-NOEC values for dehydrogenase activity equalled 8.7 g Ca(OH)2 /kg soil dw and 4 g Ca(OH)2 /kg soil dw, respectively.
In the environment, lime substances rapidly dissociate or react with water. These reactions, together with the equivalent amount of hydroxyl ions set free when considering 100mg of the lime compound (hypothetic example), are illustrated below:
Ca(OH)2 <-> Ca2+ + 2OH-
100 mg Ca(OH)2 or 1.35 mmol sets free 2.70 mmol
CaO + H2O <-> Ca2+ + 2OH-
100 mg CaO or 1.78 mmol sets free 3.56 mmol
From these reactions it is clear that the effect of calcium oxide will be caused either by calcium or hydroxyl ions. Since calcium is abundantly present in the environment and since the effect concentrations are within the same order of magnitude of its natural concentration, it can be assumed that the adverse effects are mainly caused by the pH increase caused by the hydroxyl ions. Furthermore, the above mentioned calculations show that the base equivalents are within a factor 2 for calcium oxide and calcium hydroxide. As such, it can be reasonably expected that the effect on pH of calcium oxide is comparable to calcium hydroxide for a same application on a weight basis. Consequently, read-across from calcium hydroxide to calcium oxide is justified.
Magnesium oxide:
Magnesium oxide (MgO) is exempted from registration according to EC 1907/2006 Annex V Section 10.
References:
Efroymson, R.A., M.E. Will, and G.W. Suter II, 1997a,Toxicological Benchmarks for Potential Contaminants of Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process,ES/ER/TM-126/R2, Oak Ridge National Laboratory, Oak Ridge, TN.
Efroymson, R.A., M.E. Will, G.W. Suter II, and A.C. Wooten, 1997b,Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision, ES/ER/TM-85/R3,National Laboratory,,
Dragun, 1988.The Soil Chemistry of Hazardous Materials.Hazardous Materials Control Research Institute.,.
Lindsay, W.L. 1979.Chemical Equilibria in Soils.John Wiley & Sons,.
Press, F. and R. Siever. 1974.Earth. W. H. Freeman and Co.,.
Storer N.L.,Nelson T.S. 1968 The effect of various aluminum compounds on chick performance.Poult Sci.Jan; 47(1):244-7.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.