Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 233-466-0 | CAS number: 10191-41-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Additional toxicological data
Administrative data
- Endpoint:
- additional toxicological information
- Adequacy of study:
- supporting study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: scientifically valid review
Data source
Referenceopen allclose all
- Reference Type:
- review article or handbook
- Title:
- TOLERABLE UPPER INTAKE LEVELS FOR VITAMINS AND MINERALS
- Author:
- Scientific Committee on Food Scientific Panel on Dietetic Products, Nutrition and Allergies
- Year:
- 2 006
- Report date:
- 2006
- Reference Type:
- review article or handbook
- Title:
- Scientific opinion on the safety and efficacy of vitamin E as a feed additive for all animal species.
- Author:
- EFSA (FEEDAP)
- Year:
- 2 010
- Bibliographic source:
- EFSA Journal, 2010, 8(6), 1635
Materials and methods
Test material
- Reference substance name:
- Vitamin E
- EC Number:
- 215-798-8
- EC Name:
- Vitamin E
- Cas Number:
- 1406-18-4
- IUPAC Name:
- 2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)chroman-6-ol
Constituent 1
Results and discussion
Applicant's summary and conclusion
- Conclusions:
- Absorption and metabolism
The bioavailability of vitamin E (tocopherols) is related to the efficiency of absorption. Intestinal absorption of lipids and fat-soluble vitamins depends on pancreatic function, biliary secretion to form micelles with the hydrolysed fat, and transfer across intestinal membranes. Nearly all of the vitamin E absorbed across the intestinal mucosa is free tocopherol. In vivo and in vitro studies suggest that the rate of uptake of vitamin E is controlled by passive diffusion. Absorption of tocopherols is incomplete; the extent of absorption is dependent on intake and varies between 20-80%. The proportion absorbed decreases with increasing amount added to experimental diets; the average absorption is about 40-60% while pharmacological doses of 200 mg and more are absorbed to the extent of <10%. Cannulation studies indicate that there is no difference in absorption between α-tocopherol and α-tocopheryl acetate at physiological doses. At high levels of intake, (> 400 IU/day) a higher degree of absorption was obtained with free tocopherol than tocopheryl esters. About 90% of the free α-tocopherol is transported via the lymphatic system into the bloodstream,where it is distributed into lipoproteins on passage into the liver. - Executive summary:
Absorption and metabolism of Vitamin E
The bioavailability of vitamin E is related to the efficiency of absorption. Intestinal absorption of lipids and fat-soluble vitamins depends on pancreatic function, biliary secretion to form micelles with the hydrolysed fat, and transfer across intestinal membranes. Nearly all of the vitamin E absorbed across the intestinal mucosa is free tocopherol. In vivo and in vitro studies suggest that the rate of uptake of vitamin E is controlled by passive diffusion. Absorption of tocopherols is incomplete; the extent of absorption is dependent on intake and varies between 20-80%. The proportion absorbed decreases with increasing amount added to experimental diets; the average absorption is about 40-60% while pharmacological doses of 200 mg and more are absorbed to the extent of <10%. Cannulation studies indicate that there is no difference in absorption between α-tocopherol and α-tocopheryl acetate at physiological doses. At high levels of intake, (> 400 IU/day) a higher degree of absorption was obtained with free tocopherol than tocopheryl esters. About 90% of the free α-tocopherol is transported via the lymphatic system into the bloodstream,where it is distributed into lipoproteins on passage into the liver. The main systemic transport system of tocopherols is the LDL-fraction (55-65%) followed by the HDL (24-27%) and VLDL (8-18%). There is very close correlation (r=0.925) between the total serum α-tocopherol and that portion carried by LDL.
Tocopherol is excreted as a water soluble conjugated compound resulting from different oxidation steps.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.