Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 931-297-3 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in mammalian cells
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- migrated information: read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: Klimisch reliability of study is 1 (GLP guideline study); according to ECHA Practical Guide 6 rel. 2 is selected from the pick-list as this should be the maximum score for read-across.
Data source
Referenceopen allclose all
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 006
- Report date:
- 2007
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 007
- Report date:
- 2007
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 476 (In Vitro Mammalian Cell Gene Mutation Test)
- Version / remarks:
- (1997)
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- mammalian cell gene mutation assay
Test material
- Reference substance name:
- HDI oligomers, isocyanurate
- IUPAC Name:
- HDI oligomers, isocyanurate
- Details on test material:
- - Stability under test conditions: The stability of the test substance in the vehicle over a period of 4 hours was analytically verified.
Constituent 1
Method
- Target gene:
- HGPRT locus
Species / strain
- Species / strain / cell type:
- Chinese hamster Ovary (CHO)
- Details on mammalian cell type (if applicable):
- - Type and identity of media: Ham's F12 medium with supplements; for the selection of mutant cells the medium was supplemented with 10 µg/mL 6-thioguanine.
- Properly maintained: yes
- Periodically "cleansed" against high spontaneous background: yes
- Periodically checked for karyotype stability: yes
- Periodically checked for Mycoplasma contamination: yes - Additional strain / cell type characteristics:
- other: substrain K1
- Metabolic activation:
- with and without
- Metabolic activation system:
- S9-Mix from the liver of male Aroclor 1254 induced Sprague-Dawley rats.
- Test concentrations with justification for top dose:
- Experiment I: without S9 mix 1.5, 3.0, 6.0, 12.0, 18.0, and 24.0 μg/mL; with S9 mix 0.2, 0.4, 0.8, 1.6, 3.2, and 6.4 μg/mL
Experiment II: without S9 mix: 2.5, 5.0, 7.5, 10.0, 15.0, and 20.0 μg/mL; with S9 mix: 0.25, 0.50, 1.00, 2.00, 4.00, and 6.00 μg/mL - Vehicle / solvent:
- Dimethylsulfoxide (DMSO; dried over molecular sieve)
Controls
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- other: ethyl methanesulfonate (EMS; 300 µg/mL), methylcholanthrene (MCA; 10 µg/mL)
- Remarks:
- EMS was used without and MCA with metabolic activation
- Details on test system and experimental conditions:
- PRE-TEST: A pre-test with concentrations up to 1000 µg/mL was performed in order to determine the concentration range for the mutagenicity experiments.
METHOD OF APPLICATION: in medium
For each test group, about 1x10exp6 logarithmically growing cells per flask (175 cm²; after the 2nd passage in the 1st and 2nd Experiment, respectively) were seeded into about 20 mL medium supplemented with 10% (v/v) FCS and incubated for about 20 - 24 hours with 5% (v/v) CO2 at 37°C and > 90% humidity. Two flasks were used for each test group. After the attachment period, the medium was removed from the flasks and the treatment medium was added. The exposure period in both main experiments was 4 hours with and without S9 mix in an incubator (5% [v/v] CO2, 37°C and ≥ 90% humidity). After the exposure period, the cultures were rinsed several times with Hanks' balanced salt solution (HBSS). Then the flasks were topped up with at least 20 mL medium with 10% (v/v) FCS. After an incubation period of 65 – 72 hours (5% [v/v] CO2, 37°C and ≥ 90% humidity) the 1st passage was carried out. After an entire expression period of 6 - 8 days the cells were transferred into selection medium (2nd passage). For the selection of the mutants, six 75 cm² flasks with 3x10exp5 cells each from every treatment group, if possible, were seeded in 10 mL selection medium ("TG" medium) at the end of the expression period. The flasks were returned to the incubator for about 6 - 8 days (5% [v/v] CO2, 37°C and ≥ 90% humidity). At the end of the selection period, the medium was removed and the remaining colonies were fixed with methanol, stained with Giemsa and counted.
time schedule:
Day 1 - Seeding of the cells pretreated with "HAT" medium: in 175 cm² flasks (1x10exp6 cells in 20 mL) and in 25 cm² flasks (200 cells in 5 mL)
Day 2 - Test substance incubation (20-24 hours after seeding), exposure period 4 hours, then washing of the cultures and 1st cytotoxicity determination (cloning efficiency 1 = survival)
Day 5 - 1st passage of the treated cells
Day 9 - 2nd passage of the treated cells with seeding in the selection medium, 2nd cytotoxicity determination (cloning efficiency 2 = viability)
From Day 16 - drying, fixation, stainig and counting of the selected colonies.
DURATION
- Exposure duration: 4 hours
- Expression time (cells in growth medium): 6-8 days
- Selection time: 6-8 days
DETERMINATION OF CYTOTOXICITY
- Method: absolute and relative cloning efficiencies (%); This was initially assessed in the pre-test, secondly the survival was determined after the exposure period and thirdly the viability was assessed after the expression period. - Evaluation criteria:
- A finding is assessed as positive if the following criteria are met:
- Increase of the corrected mutation frequencies (MFcorr.) both above the concurrent negative/vehicle control values and the historical negative control data range
- Evidence of reproducibility of any increase in mutant frequencies.
- A statistically significant increase in mutant frequencies and the evidence of a dose response relationship.
The test substance is considered non-mutagenic according to the following criteria:
- The corrected mutation frequency in the dose groups is not statistically significant increased above the concurrent vehicle control and is within the historical negative control data range. - Statistics:
- The number of mutant colonies of the dose groups and the positive controls were compared with that of the solvent control groups using the Fisher-Pitman Test for the hypothesis of equal means. The test was performed one-sided.
Results and discussion
Test results
- Species / strain:
- Chinese hamster Ovary (CHO)
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not applicable
- Positive controls validity:
- valid
- Additional information on results:
- In this study, no increase in the number of mutant colonies was observed either without or with a metabolizing system. In both experiments after 4 hours treatment with the test substance the values for the corrected mutation frequencies were within the range of the respective vehicle control values and of the historical negative control data. No statistical significance was observed. The positive control substances EMS and MCA induced clearly increased mutant frequencies as expected.
TEST-SPECIFIC CONFOUNDING FACTORS
- Osmolarity and pH values were not influenced by test substance treatment.
- Precipitation: In the absence and the presence of S9 mix no precipitation in culture medium was observed up to the highest applied test substance concentration.
ADDITIONAL INFORMATION ON CYTOTOXICITY:
- Cytotoxic effects indicated by clearly reduced cloning efficiencies of below 20% of control were observed in both experiments in the absence and in the presence of S9 mix at least in the highest applied concentrations. - Remarks on result:
- other: strain/cell type: Chinese hamster Ovary/HPRT cells, substrain K1
- Remarks:
- Migrated from field 'Test system'.
Any other information on results incl. tables
For genetic toxicity/mammalian cell mutagenicity a read across to HDI oligomers, isocyanurate type (EC 931 -274 -8) is applied. This substance is a close structural analogue to HDI oligomers, iminooxadiazindione type, also derived from catalytic oligomerisation of 1,6 -hexamethylene diisocyanate (HDI; CAS 822 -06 -0) and also belonging to the CAS number 28182-81-2 (Hexane, 1,6 - diisocyanato-, homopolymer).The read across is based on physicochemical and toxicological similarity. In fact, comparison of the toxicological endpoints, that are available for both of the two substances (Acute oral toxicity, Acute inhalation toxicity, Skin and Eye Irritation/Corrosion, Skin Sensitisation, Bacterial mutagenicity (Ames)) reveal good correlation. With respect to Inhalation Toxicity an expert statement is available justifying the read across (Pauluhn, Comparison of pulmonary irritation potency..., Bayer HealthCare AG, 2008).
Therefore, test results obtained for HDI oligomers, isocyanurate type can be transferred to HDI oligomers, iminooxadiazindione type and the results on mammalian cell mutagenicity of HDI oligomers, isocyanurate type are also valid for HDI oligomers, iminooxadiazindione type. This approach is in accordance with Annex XI, section 1.5 of the REACH Regulation (Regulation (EC) No 1907/2006).
Applicant's summary and conclusion
- Executive summary:
An in vitro Mammalian Cell Gene Mutation Test (HPRT assay) according to OECD TG 476 was conducted in order to assess the potential of the substance to induce gene mutations in mammalian cells. Based on a pre-test doses up to 24.0 μg/mL without S9 mix and up to 6.4 μg/mL with S9 mix were selected for the initial experiment. An independent repeat was conducted with doses up to 20 µg/mL without S9 mix and up to 6.0 µg/mL with S9 mix.
In this study, no increase in the number of mutant colonies was observed either without or with a metabolizing system. In both experiments after 4 hours treatment with the test substance the values for the corrected mutation frequencies were within the range of the respective vehicle control values and of the historical negative control data. No statistical significance was observed. The positive control substances EMS and MCA induced clearly increased mutant frequencies as expected. Thus, under the experimental conditions of the assay the substance was considered not to be mutagenic.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.