Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 263-372-5 | CAS number: 62010-10-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Toxicity to aquatic algae and cyanobacteria
Administrative data
Link to relevant study record(s)
Description of key information
Following the read across strategy, it is considered appropriate to cover this endpoint by a weight of evidence approach including two read across studies performed with zirconium basic carbonate and a reaction mass of cerium dioxide and zirconium dioxide. Both read across substances are insoluble in water (as is the case for zirconium basic sulfate) and both tests (Vryenhoef and Mullee, 2010; Peither, 2009) yielded a 72h ErC50 and 72-h NOErC value of > 100 mg/L and 32 mg/L (nominal), respectively, in Desmodesmus subspicatus. Phosphate monitoring during the tests indicated that the observed effects on growth observed in the test solution with the highest nominal concentration of test substance were due to early phosphate depletion instead of inherent toxicity of the test items. Strong complexation with phosphates is a well known behaviour of both rare earths and zirconium and is not considered environmentally relevant.
Key value for chemical safety assessment
Additional information
For toxicity to aquatic algae and cyanobacteria, two read across studies were included in this dossier and used in a weight of evidence approach to cover this endpoint.
The first study (Vryenhoef and Mullee, 2010) investigated the effect of zirconium basic carbonate on the growth of Desmodesmus subspicatus over a 72 h period. As zirconium could not be detected (<LOQ) in the test solution, the results were based on nominal concentrations. The ErC50 was >100 mg/L and the NOErC was 32 mg/L (based on zirconium basic carbonate). Phosphate monitoring during the test indicated that reduced growth rate was concurrent with phosphate depletion due to phosphate complexing with zirconium and precipitation of the formed complexes. The observed effect is clearly a secondary effect which is not considered environmentally relevant.
In the second study (Peither, 2009) cultures of green algal species Scenedesmus subspicatus were exposed to a reaction mass of cerium dioxide and zirconium dioxide (containing approximately 60% CeO2 and 30% ZrO2). The NOEC and EC50 values based on growth rate were 32 mg/L and > 100 mg/L respectively (based on nominal concentrations of reaction mass). Almost no test substance (monitored based on dissolved cerium measurements) was present in the test solutions. The concentration of phosphate was statistically significantly reduced compared to the control in the test solutions. Here also the loss of phosphate can be explained by the formation of insoluble complexes of phosphate with cerium and zirconium (which is a well-known behavior of rare earth elements as well as zirconium in the environment). The observed algal growth inhibition was concurrent with the depletion of phosphate in the test medium and therefore the observed effect was considered a secondary effect and not environmentally relevant.
As zirconium basic sulfate is also a zirconium compound with extremely low water solubility, the above studies were used in a read across approach to indicate that zirconium basic sulfate is not expected to cause environmentally relevant adverse effects in algae either.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
