Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Genetic toxicity: in vitro

Currently viewing:

Administrative data

Endpoint:
in vitro gene mutation study in mammalian cells
Type of information:
experimental study
Adequacy of study:
key study
Study period:
2014-02-05 to 2014-03-27
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2014
Report date:
2014

Materials and methods

Test guidelineopen allclose all
Qualifier:
according to guideline
Guideline:
OECD Guideline 476 (In Vitro Mammalian Cell Gene Mutation Test)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EU Method B.17 (Mutagenicity - In Vitro Mammalian Cell Gene Mutation Test)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EPA OPPTS 870.5300 - In vitro Mammalian Cell Gene Mutation Test
Deviations:
no
GLP compliance:
yes (incl. QA statement)
Remarks:
(Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Germany)
Type of assay:
mammalian cell gene mutation assay

Test material

Constituent 1
Chemical structure
Reference substance name:
Reaction products of [29H,31H-phthalocyaninato(2-)-k4N29,N30,N31,N32]copper, thionyl dichloride, and sulfurochloridic acid, further condensed with 2,4-diaminobenzenesulfonic acid and ammonia, further converted with sodium hydroxide 2,4,6-trichloro-1,3, -triazine, and ammonium chloride
EC Number:
942-002-2
Molecular formula:
C42.53H20.97Cl1.17N15.41Na3.62O13.95S5.17
IUPAC Name:
Reaction products of [29H,31H-phthalocyaninato(2-)-k4N29,N30,N31,N32]copper, thionyl dichloride, and sulfurochloridic acid, further condensed with 2,4-diaminobenzenesulfonic acid and ammonia, further converted with sodium hydroxide 2,4,6-trichloro-1,3, -triazine, and ammonium chloride
Test material form:
solid: particulate/powder
Remarks:
powder

Method

Target gene:
hypoxanthine-guanine-phosphoribosyl-transferase (HPRT)
Species / strain
Species / strain / cell type:
Chinese hamster lung fibroblasts (V79)
Details on mammalian cell type (if applicable):
-Type and identity of media: MEM
- Properly maintained: yes
- Periodically checked for Mycoplasma contamination: yes
- Periodically "cleansed" against high spontaneous background: yes
Additional strain / cell type characteristics:
not specified
Metabolic activation:
with and without
Metabolic activation system:
Liver S9 of Wistar Phenobarbital and ß-Naphthoflavone-induced rat liver S9 mix
Test concentrations with justification for top dose:
Pre-experiment for experiment I (with and without metabolic activation):
5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000 µg/mL
Pre-experiment for experiment II (only without metabolic activation, 20 h long-term exposure assay):
5, 10, 25, 50, 100, 200, 350, 500, 750, 1000 µg/mL
Experiment I
without metabolic activation: 25, 50, 75, 100, 125, 150, 200, 225 and 250 µg/mL
and with metabolic activation: 5, 10, 25, 50, 100, 250, 500 and 1000 µg/mL

Experiment II
without metabolic activation: 10, 20, 50, 100, 250, 500, 750, 1000, 1250 and 1500 µg/mL
and with metabolic activation: 70, 150, 300, 400, 500, 600, 700, 800 and 900 µg/mL
Vehicle / solvent:
Vehicle (Solvent) used: cell culture medium (MEM + 0% FBS 4 h treatment; MEM + 10% FBS 20 h treatment).
Controlsopen allclose all
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
ethylmethanesulphonate
Remarks:
without metabolic activation; 300 µg/mL
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
7,12-dimethylbenzanthracene
Remarks:
with metabolic activation; 0.8 and 1.0 µg/mL
Details on test system and experimental conditions:
METHOD OF APPLICATION: dissolved in medium
DURATION: 4 h (short-term exposure), 20 h (long-term exposure)
Expression time (cells in growth medium): 5 days
Selection time (if incubation with selection agent): about one week

SELECTION AGENT ( mutation assay) 11 µg/mL 6-thioguanine (TG)
NUMBER OF REPLICATIONS: two separate experiments (I+II) with single exposure; 5 individual flasks were seeded and evaluated
NUMBER OF CELLS EVALUATED: 400000 cells per flask
DETERMINATION OF CYTOTOXICITY: Method: relative growth
Evaluation criteria:
A test is considered to be negative if there is no biologically relevant increase in the number of mutants.
There are several criteria for determining a positive result:
- a reproducible three times higher mutation frequency than the solvent control for at least one of the concentrations;
- a concentration related increase of the mutation frequency; such an evaluation may be considered also in the case that a three-fold increase of
the mutant frequency is not observed;
- if there is by chance a low spontaneous mutation rate in the corresponding negative and solvent controls a concentration related increase of the mutations within their range has to be discussed.

Results and discussion

Test results
Species / strain:
Chinese hamster lung fibroblasts (V79)
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
cytotoxicity
Remarks:
Experiment I without S9: ≥ 50 μg/mL; experiment I with S9: ≥ 500 μg/mL; Experiment II without S9: ≥ 250 μg/mL; Experiment II with S9:≥ 400 μg/mL
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
True negative controls validity:
not examined
Positive controls validity:
valid

Any other information on results incl. tables

Precipitation:


No precipitation of the test item was noted in any of the experiments.


 


Toxicity:


A biologically relevant growth inhibition (reduction of relative growth below 70 %) was observed after the treatment with the test item in experiment I and II with and without metabolic activation.


In experiment I without metabolic activation the relative growth was 11.5 % for the highest concentration (250 μg/mL) evaluated. The highest biologically relevant concentration evaluated with metabolic activation was 1000 μg/mL with a relative growth of 10.6 %.


In experiment II without metabolic activation the relative growth was 12.6 % for the highest concentration (1500 μg/mL) evaluated. The highest concentration evaluated with metabolic activation was 900 μg/mL with a relative growth of 11.5 %.


 


Mutagenicity:


In experiment I without metabolic activation all mutant values of the negative controls and test item concentrations found were within the historical control data of the test facility BSL BIOSERVICE (about 5-43 mutants per 10E6 cells). No dose-response relationship could be observed. The mutation frequencies found in the groups treated with the test item did not show a biologically relevant increase as compared to the negative controls.


Mutation frequencies with the negative control were found to be 18.35 and 20.81 mutants/10E6 cells and in the range of 4.71 to 29.49 mutants/10E6 cells with the test item, respectively. The highest mutation rate (compared to the negative control values) of 1.51 was found at a concentration of 225 μg/mL with a relative growth of 11.1 %.


With metabolic activation all mutant values of the negative controls and test item concentrations found were within the historical control data of the test facility BSL BIOSERVICE (about 5-44 mutants per 10E6 cells). No dose-response relationship could be observed. The mutation frequencies found in the groups treated with the test item did not show a biologically relevant increase as compared to the negative controls.


Mutation frequencies with the negative control were found to be 16.30 and 11.84 mutants/10E6 cells and in the range of 6.29 to 18.71 mutants/10E6 cells with the test item, respectively. The highest mutation rate (compared to the negative control values) of 1.33 was found at a concentration of 10 μg/mL with a relative growth of 113.8 %.


In experiment II without metabolic activation all mutant values of the negative controls and test item concentrations found were within the historical control data of the test facility BSL BIOSERVICE (about 5-43 mutants per 10E6 cells). No dose-response relationship could be observed. The mutation frequencies found in the groups treated with the test item did not show a biologically relevant increase as compared to the negative controls.


Mutation frequencies with the negative control were found to be 26.82 and 29.28 mutants/10E6 cells and in the range of 12.74 to 40.26 mutants/10E6 cells with the test item, respectively. The highest mutation rate (compared to the negative control values) of 1.44 was found at a concentration of 50 μg/mL with a relative growth of 90.4 %.


In experiment II with metabolic activation all mutant values of the negative controls and test item concentrations found were within the historical control data of the test facility BSL BIOSERVICE (about 5-44 mutants per 10E6 cells). No dose-response relationship could be observed. The mutation frequencies found in the groups treated with the test item did not show a biologically relevant increase as compared to the negative controls.


Mutation frequencies with the negative control were found to be 23.10 and 13.15 mutants/10E6 cells and in the range of 13.89 to 42.28 mutants/10E6 cells with the test item, respectively. The highest mutation rate (compared to the negative control values) of 2.33 was found at a concentration of 300 μg/mL with a relative growth of 77.4 %.


 


DMBA (0.8 and 1.0 μg/mL) and EMS (300 μg/mL) were used as positive controls and showed distinct and biologically relevant effects in mutation frequency.

Applicant's summary and conclusion

Conclusions:
FAT 40045/Z is considered to be not mutagenic in the HPRT locus using V79 cells of the Chinese Hamster.
Executive summary:

In this mammalian cell gene mutation assay (HPRT locus), V79 cells cultured in vitro were exposed to FAT 40045/Z at concentrations of


- 25, 50, 75, 100, 125, 150, 200, 225 and 250 µg/mL (without metabolic activation, Experiment I)


- 5, 10, 25, 50, 100, 250, 500 and 1000 µg/mL (with metabolic activation, Experiment I)


- 10, 20, 50, 100, 250, 500, 750, 1000, 1250 and 1500 µg/mL (without metabolic activation, Experiment II)


- 70, 150, 300, 400, 500, 600, 700, 800 and 900 µg/mL (with metabolic activation, Experiment II).


FAT 40045/Z TE was tested up to cytotoxic concentrations.


Biologically relevant growth inhibition was observed in experiment I and II with and without metabolic activation. In experiment I without metabolic activation the relative growth was 11.5 % for the highest concentration (250 µg/mL) evaluated. The highest biologically relevant concentration evaluated with metabolic activation was 1000 µg/mL with a relative growth of 10.6 %. In experiment II without metabolic activation the relative growth was 12.6 % for the highest concentration (1500 µg/mL) evaluated. The highest concentration evaluated with metabolic activation was 900 µg/mL with a relative growth of 11.5 %.


In experiment I without metabolic activation the highest mutation rate (compared to the negative control values) of 1.51 was found at a concentration of 225 µg/mL with a relative growth of 11.1 %.


In experiment I with metabolic activation the highest mutation rate (compared to the negative control values) of 1.33 was found at a concentration of 10 µg/mL with a relative growth of 113.8 %. In experiment II without metabolic activation the highest mutation rate (compared to the negative control values) of 1.44 was found at a concentration of 50 µg/mL with a relative growth of 90.4 %. In experiment II with metabolic activation the highest mutation rate (compared to the negative control values) of 2.33 was found at concentrations of 300 µg/mL with a relative growth of 77.4 %.


The positive controls did induce the appropriate response. 


There was no evidence of a concentration related positive response of induced mutant colonies over background. Hence FAT 40045/Z is considered to be not mutagenic in the HPRT locus using V79 cells of the Chinese Hamster.