Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 204-814-9 | CAS number: 126-96-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Basic toxicokinetics
Administrative data
- Endpoint:
- basic toxicokinetics in vivo
- Type of information:
- experimental study
- Adequacy of study:
- supporting study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: Although the study was not conducted according to the recommended guidelines, it provides scientific valid information to assess the elimination pattern of the substance.
Data source
Reference
- Reference Type:
- publication
- Title:
- Unnamed
- Year:
- 1 967
- Report date:
- 1966
Materials and methods
- Objective of study:
- excretion
- Principles of method if other than guideline:
- Adult white rats (5 to 9 months old) of an inbred Oregon State Wistar strain were used. The aqueous solutions of sodium acetate were administered to the rats by means of a stomach tube. After the acetate-C14 was administered, the rat was placed in a Delmar metabolism cage and the CO2 was trapped by sodium hydroxide solution. The sodium hydroxide solution from the CO2 trap was changed periodically and was analyzed for radioactivity after conversion of CO2 to BaCO3. The BaCO3 was filtered onto a glass fiber disk, washed and dried and the radioactivity counted. The urine samples were colleted and clarified by centrifugation at low speed. The radioactivity in the faeces was obtained by extracting the faeces with a sufficient volume of 50% ethanol. The solid materials were centrifuge out and an aliquot of the supernatant was analysed for radioactivity.
- GLP compliance:
- no
Test material
- Details on test material:
- - Name of test material (as cited in study report): Crystalline sodium acetate-1-C14 and -2-C14.
Constituent 1
- Radiolabelling:
- yes
Test animals
- Species:
- rat
- Strain:
- Wistar
- Sex:
- male/female
Administration / exposure
- Route of administration:
- oral: gavage
- Vehicle:
- water
- Duration and frequency of treatment / exposure:
- Single dose
Doses / concentrations
- Remarks:
- Doses / Concentrations:
No data
- No. of animals per sex per dose / concentration:
- No data
- Control animals:
- not specified
- Positive control reference chemical:
- No data
Results and discussion
Toxicokinetic / pharmacokinetic studies
- Details on excretion:
- From 79 to 95% of orally administered acetate-14C was recovered in the form of 14CO2. Only a small amount of the radioactivity was found in the urine and faeces. The radioactivity recovered from excreta during the first 24-h period was considerably less from the males than from the females. Male rats apparently tend to fix more of the radioactivity in the body tissues, and the acetate carbons were not turned over as rapidly as in the females.
Any other information on results incl. tables
There are two separate rates for the elimination of 14CO2. The initial rate of elimination (1 to 8 hours postmedication) is very rapid and has a biological half-life of 4 to 6 hours, followed by a much slower rate of elimination (half-life of about 25 hours). The appearance of two separate rates of 14CO2 elimination represents two routes of metabolism of the acetate carbons. The initial rate of elimination is probably due to the direct reaction of acetate with CoA-SH to form acetyl-CoA, which subsequently is oxidised to CO2through the TCA cycle. In the intact animal, the CO2would be present in the form of blood bicarbonate and as the blood bicarbonate is turned over, there is a subsequent release of CO2 from the lungs. The slower, secondary rate of elimination is probably derived from acetate carbons which are incorporate into other metabolites, such as fatty acids and amino acids and are subsequently catabolised to CO2.
Applicant's summary and conclusion
- Conclusions:
- From 79 to 95% of orally administered acetate-14C was recovered in the form of 14CO2. Only a small amount of the radioactivity was found in the urine and faeces. The radioactivity recovered from excreta during the first 24-h period was considerably less from the males than from the females. Male rats apparently tend to fix more of the radioactivity in the body tissues, and the acetate carbons were not turned over as rapidly as in the females.
- Executive summary:
Adult white rats (5 to 9 months old) of an inbred Oregon State Wistar strain were used. The aqueous solutions of sodium acetate were administered to the rats by means of a stomach tube. After the acetate-C14 was administered, the rat was placed in a Delmar metabolism cage and the CO2 was trapped by sodium hydroxide solution. The sodium hydroxide solution from the CO2 trap was changed periodically and was analyzed for radioactivity after conversion of CO2 to BaCO3. The BaCO3 was filtered onto a glass fiber disk, washed and dried and the radioactivity counted. The urine samples were colleted and clarified by centrifugation at low speed. The radioactivity in the faeces was obtained by extracting the faeces with a sufficient volume of 50% ethanol. The solid materials were centrifuge out and an aliquot of the supernatant was analysed for radioactivity.
From 79 to 95% of orally administered acetate-14C was recovered in the form of 14CO2. Only a small amount of the radioactivity was found in the urine and faeces. The radioactivity recovered from excreta during the first 24-h period was considerably less from the males than from the females. Male rats apparently tend to fix more of the radioactivity in the body tissues, and the acetate carbons were not turned over as rapidly as in the females.
There are two separate rates for the elimination of 14CO2. The initial rate of elimination (1 to 8 hours postmedication) is very rapid and has a biological half-life of 4 to 6 hours, followed by a much slower rate of elimination (half-life of about 25 hours). The appearance of two separate rates of 14CO2 elimination represents two routes of metabolism of the acetate carbons. The initial rate of elimination is probably due to the direct reaction of acetate with CoA-SH to form acetyl-CoA, which subsequently is oxidised to CO2 through the TCA cycle. In the intact animal, the CO2 would be present in the form of blood bicarbonate and as the blood bicarbonate is turned over, there is a subsequent release of CO2 from the lungs. The slower, secondary rate of elimination is probably derived from acetate carbons which are incorporate into other metabolites, such as fatty acids and amino acids and are subsequently catabolised to CO2.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
Welcome to the ECHA website. This site is not fully supported in Internet Explorer 7 (and earlier versions). Please upgrade your Internet Explorer to a newer version.
This website uses cookies to ensure you get the best experience on our websites.
Find out more on how we use cookies.