Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 209-047-3 | CAS number: 553-72-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Link to relevant study record(s)
Description of key information
Metabolism
Next to a full toxicokinetic assesment (Pelgrom 2010), several studies investigating metabolism and excretion of the test substances are available. The test substance is metabolised to hippuric acid with glycine depletion being the rate limiting factor (Michaelis-Menten saturation kinetcs). When this primary pathway is staturated, formation of glucuronide conjugates is obeserved. Total excretion is reached within ca 24-48 hours after administration. The same metabolic pathway is described in rabbits (Bray 1950, rats (Kazuki 1992, Jones 1992) and man (Shigeo 1994) when the testsubstance was administerd via the oral, iv or ip route. Glycine pre-treatment (Bray 1950) showed increases of the amounts of hippuric acid excreted in rabbits, while proteine (thus glycine) low diets in rats gave a decreased amount of hippuric acid in urine (Thabrew 1980).
Oral absorption: From the outcome of the studies it can be concluded that the test substance is absorbed rapidly via the oral route. The oral absorption is set at 100%
Inhalation absorption: Pelgrom (2010) also indicates that rapid absorption via the inhalation route should be possible, but this is unlikely in view of the particle size of the test substance that does not allow the test substance to penetrate into the deeper layers of the respiratory tract and the lungs.
Dermal absorption: Based on the available in vivo results the dermal absorption of the test substance is set at 50% in a worst case approach. It has to be noted that a clear species difference becomes apparent. The mass balance was not properly maintained in most of the available studies, which renders the results less reliable. In vitro data support this percentage, but it should be noted that many of the in vivo studies had a relatively long exposure period (24 h standard according to the guideline for reasons of loss of viability) and thus may over estimate absorption rates.
In a weight of eveidence approach the 50% seems to be justified.
Key value for chemical safety assessment
- Bioaccumulation potential:
- no bioaccumulation potential
- Absorption rate - dermal (%):
- 50
Additional information
Next to a full toxicokinetic assesment (Pelgrom 2010), several studies investigating metabolism and excretion of the test substances are available. The test substance is metabolised to hippuric acid with glycine depletion being the rate limiting factor (Michaelis-Menten saturation kinetcs). When this primary pathway is staturated, formation of glucuronide conjugates is obeserved. Total excretion is reached within ca 24-48 hours after administration. The same metabolic pathway is described in rabbits (Bray 1950, rats (Kazuki 1992, Jones 1992) and man (Shigeo 1994) when the testsubstance was administerd via the oral, iv or ip route. Glycine pre-treatment (Bray 1950) showed increases of the amounts of hippuric acid excreted in rabbits, while proteine (thus glycine) low diets in rats gave a decreased amount of hippuric acid in urine (Thabrew 1980).
Based on the available in vivo results the dermal absorption of the test substance is set at 50% in a worst case approach. In vitro data support this percentage, but it should be noted that many of the in vitro studies had a relatively long exposure period (24 h standard according to the guideline for reasons of loss of viability) and thus may over estimate absorption rates.
From the outcome of the studies it can be concluded that the test substance is absorbed rapidly via the oral route. Pelgrom (2010) also indicates that rapid absorption via the inhalation route should be possible, but is unlikely in view of the particle size of the test substance.
In vitro and ex-vivo experiments (Mose 2007, Utoguchi 1999, Poulsen 2009) have shown that the test substance is easily transfered across the placenta or taken up by specific (BoWe) cell-lines. The suitability of the models used to assess placental transfer in vivo needs to be further investigated.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.