Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Effects on fertility

Description of key information

There is no reproductive toxicity data available for Hydrocarbons, C7-C9, isoalkanes.However, data is available for a structural analogue, commercial hexane and presented in the dossier. This data is read across toHydrocarbons C7-C9, isoalkanesbased on analogue read across and a discussion and report on the read across strategy is provided as an attachment in IUCLID Section 13.

 

Additionally, an OECD 443 test is proposed for Hydrocarbons, C7-C9, isoalkanes. This endpoint will be updated subsequent to ECHA's approval of the testing proposal and availability of data upon completion of the study.

Commercial Hexane

Reproductive toxicity NOAEC (Rat) = 31680 mg/m3

Link to relevant study records

Referenceopen allclose all

Endpoint:
two-generation reproductive toxicity
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
key study
Study period:
18 Sept 1989 - 16 June 1990
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: Comparable to guideline study.
Justification for type of information:
The justification for read across is provided as an attachment in IUCLID Section 13.
Reason / purpose for cross-reference:
read-across: supporting information
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 416 (Two-Generation Reproduction Toxicity Study)
GLP compliance:
yes (incl. QA statement)
Limit test:
no
Species:
rat
Strain:
Sprague-Dawley
Sex:
male/female
Details on test animals or test system and environmental conditions:
TEST ANIMALS
- Source: Charles River Breeding Laboratories, Portage, MI
- Age at study initiation: (P) 28 days; (F1) 29-31 days
- Weight at study initiation: (P) Males: 75-100 g; Females: 65-80 g
- Housing: individually except during mating and lactation in stainless steel wire mesh cages, females were housed in plastic cages from gestational day (GD 20) through weaning; animals were identified by ear notches or toe clips
- Diet (e.g. ad libitum): Certified Ground Rodent Diet RMH 3200, ad libitum
- Water (e.g. ad libitum): tap water, ad libitum
- Acclimation period: two weeks


ENVIRONMENTAL CONDITIONS
- Temperature (°C): 68-73 degree F
- Humidity (%): 40-63
- Photoperiod (hrs dark / hrs light): 12 hrs light/12 hrs dark


IN-LIFE DATES: From: Sept. 18, 1989 To: June 16, 1990
Route of administration:
inhalation: vapour
Type of inhalation exposure (if applicable):
whole body
Details on exposure:
GENERATION OF TEST ATMOSPHERE / CHAMBER DESCRIPTION
- Exposure apparatus: 900 l glass and stainless steel chambers.
- Method of holding animals in test chamber: cages
- Source and rate of air: 200 l/min
- Method of conditioning air: Test substance was metered from a piston pump into a heated glass evaporator with a temperature of 36-61 degree C. Conditioned air was passed through the evaporator, where it carried the vapor into the exposure chamber.
- Temperature, humidity: monitored every 30 minutes
- Air flow rate: 200 l/min
- Air change rate: 20 min
- Treatment of exhaust air: filtration


TEST ATMOSPHERE
- Brief description of analytical method used: GC with flame ionization detection
- Samples taken from breathing zone: yes, six times per exposure
Details on mating procedure:
- M/F ratio per cage: 1/1 - If mating failed, females were switched to the male of an unmated pair in the same dose group after 7 days. If mating failed again, they were switched after another 7 days.
- Length of cohabitation: 3 weeks, including during exposure
- Proof of pregnancy: vaginal plug, day 0
Analytical verification of doses or concentrations:
yes
Details on analytical verification of doses or concentrations:
Samples were taken six times per exposure period and analyzed with GC-FID. Distribution of test substance was evaluated by sampling nine different areas of the exposure chamber.
Duration of treatment / exposure:
10 weeks pre-breeding, 3 weeks during breeding
Females continued to be exposed through GD 19. Exposure was resumed on postnatal day 5, and continued through weaning.
The F1 generation was treated similarly, but pre-breeding exposure was 8 weeks.
Frequency of treatment:
6 hrs/day, 5 days/week
Details on study schedule:
- F1 parental animals not mated until 9 weeks after selected from the F1 litters.
- Selection of parents from F1 generation when pups were 28 days of age.
- Age at mating of the mated animals in the study: 13-16 weeks
Remarks:
Doses / Concentrations:
0, 900, 3000, 9000 ppm
Basis:
nominal conc.
Remarks:
Doses / Concentrations:
892, 2995, 9019 ppm
Basis:
analytical conc.
No. of animals per sex per dose:
25 per sex per dose
Control animals:
yes, sham-exposed
Parental animals: Observations and examinations:
CAGE SIDE OBSERVATIONS: Yes
- Time schedule: twice daily
- Cage side observations: mortality, toxicity, littering, mating

DETAILED CLINICAL OBSERVATIONS: Yes
- Time schedule: once daily

BODY WEIGHT: Yes
- Time schedule for examinations: weekly

FOOD CONSUMPTION:
- Food consumption: Yes, food consumption of pregnant females was measured in 3-4 day intervals, and through postnatal day 28.

Litter observations:
STANDARDISATION OF LITTERS
Parents of the F2 generation were selected on day 28 postpartum, at least one pup per litter was selected, with a second pup selected only if all litters were already represented. The F2 generation was standardized on day 4 postpartum.


PARAMETERS EXAMINED
The following parameters were examined in F1 and F2 offspring:
number and sex of pups, stillbirths, live births, postnatal mortality, presence of gross anomalies, weight gain, physical abnormalities


GROSS EXAMINATION OF DEAD PUPS:
yes, for external abnormalities
Postmortem examinations (parental animals):
SACRIFICE
- Male animals: All surviving animals after parturition of the first litter
- Maternal animals: All surviving animals day after weaning.


GROSS NECROPSY
- Gross necropsy consisted of external surfaces, orifices, cranial cavity, carcass, brain, spinal cord, thoracic cavity, abdominal cavity, pelvic cavity, cervical tissues and organs

HISTOPATHOLOGY / ORGAN WEIGHTS
Tissues from 25 male and females from the high dose and control groups were examined including testes of males failing to mate.
Postmortem examinations (offspring):
SACRIFICE
- The F1 offspring not selected as parental animals and all F2 offspring were sacrificed at 28 days of age.
- These animals were subjected to postmortem examinations as follows: stillborn and pups dying during lactation, culled pups


GROSS NECROPSY
- Gross necropsy consisted of external examinations.

Statistics:
Quantitative continuous variables were compared by use of Levene's test for equal variance, analysis of variance, and t-tests. Significance for t-tests were corrected by the Bonferroni method. Nonparametric data was evaluated using the Kruskal-Wallis test, followed by the Mann-Whitney test. Indices were compared using Fisher's exact test. 0.05 was used as the criteria for statistical significance.
Reproductive indices:
mating index, fertility index, gestational index, live birth index,
Offspring viability indices:
4-day survival index, 7-day survival index, 14-day survival index, 21-day survival index, lactation index
F0 GENERATION

CLINICAL SIGNS AND MORTALITY (PARENTAL ANIMALS)
No treatment related effects observed.

BODY WEIGHT AND FOOD CONSUMPTION (PARENTAL ANIMALS)
There were no treatment related effects on food consumption. Males in the 9000 ppm group had reduced body weight during week 13. Body weight gains in this group were reduced during weeks 7, 11-12, and 12-13. Males in the 3000 ppm group had reduced body weight gain in weeks 4-5, and reduced weight in weeks 9-10. Females weight gains were reduced in the 9000 ppm group in weeks 5-6.

REPRODUCTIVE PERFORMANCE (PARENTAL ANIMALS)
Lactational food consumption was significantly reduced during days 7-11, and days 19-21 in the 9000 ppm group. No other reproductive parameters differed significantly from controls.

GROSS PATHOLOGY (PARENTAL ANIMALS)
No treatment related abnormalities were seen.

HISTOPATHOLOGY (PARENTAL ANIMALS)
Hyaline droplet nephropathy and tubular basophilia were seen in the 9000 ppm males.

F1 GENERATION
CLINICAL SIGNS AND MORTALITY (PARENTAL ANIMALS)
No treatment related effects were observed. One female in the 900 ppm group died on day 83 due to prolonged delivery.

BODY WEIGHT AND FOOD CONSUMPTION (PARENTAL ANIMALS)
Body weights of 9000 ppm males were significantly reduced throughout the exposure period. Weight gain was reduced in this group during the weeks 9-10, and 10-11. Females in the 9000 ppm group had reduced body weight during the first 3 weeks of pre-breeding exposure.

REPRODUCTIVE PERFORMANCE (PARENTAL ANIMALS)
In the 9000 ppm group, food consumption was reduced on gestational days 0-4, and 4-7, and gestational intervals 0-7, and 7-14. This group also had reduced food consumption during lactational days 21-24, 26-27, 21, and 28. In the 3000 ppm group, food consumption was reduced during lactational days 22-23, and in the 900 ppm group during days lactational days 21-22.

GROSS PATHOLOGY (PARENTAL ANIMALS)
No treatment related abnormalities were seen.

HISTOPATHOLOGY (PARENTAL ANIMALS)
Hyaline droplet nephropathy and tubular basophilia were seen in the 9000 ppm males.

Key result
Dose descriptor:
NOAEC
Effect level:
31 680 mg/m³ air (nominal)
Sex:
male/female
Basis for effect level:
other: The value was re-calculated from the nominal dose of 9000 ppm.
Remarks on result:
other: Generation: reproductive toxicity (migrated information)
Key result
Dose descriptor:
NOAEC
Effect level:
10 560 mg/m³ air (nominal)
Sex:
male/female
Basis for effect level:
other: reduced body weight The value was re-calculated from the nominal dose of 3000 ppm.
Remarks on result:
other: Generation: F1, F2 (migrated information)
Key result
Dose descriptor:
LOAEC
Effect level:
31 680 mg/m³ air (nominal)
Sex:
male/female
Basis for effect level:
other: reduced body weight The value was re-calculated from the nominal dose of 9000 ppm.
Remarks on result:
other: Generation: F1, F2 (migrated information)
F1 GENERATION
VIABILITY (OFFSPRING)
The number of dead pups was increased in the 900 ppm exposure group, however, as this was not seen at higher doses, it was not considered treatment related.

BODY WEIGHT (OFFSPRING)
The body weight of pups in the 9000 ppm group were reduced beginning on lactational day 14. Body weight gains in this group were reduced during lactational days 14-21 for females, and lactational days 7-14 for all pups.


GROSS PATHOLOGY (OFFSPRING)
No treatment related effects were noted.

F2 GENERATION
VIABILITY (OFFSPRING)
Viability was unaffected by exposure.

BODY WEIGHT (OFFSPRING)
The body weight of pups in the 9000 ppm group were reduced from lactational day 7-28. Body weight gains in this group were reduced during lactational days 14-21 for females, and lactational days 7-14 for all pups. There were significantly reduced body weight gains in pups in the 9000 ppm group during lactational days 4-7, and 7-14, and slightly reduced weight gains on lactational days 14-21.

GROSS PATHOLOGY (OFFSPRING)
No treatment related effects were noted.
Key result
Dose descriptor:
NOAEC
Generation:
F1
Effect level:
10 560 mg/m³ air (nominal)
Based on:
test mat.
Sex:
male/female
Basis for effect level:
other: reduced body weight
Key result
Dose descriptor:
NOAEC
Generation:
F2
Effect level:
10 560 mg/m³ air (nominal)
Based on:
test mat.
Sex:
male/female
Basis for effect level:
other: reduced body weight
Key result
Reproductive effects observed:
no

Significant Results of Reproductive Toxicity Study on Rats

Concentration (ppm)

0

900

3000

9000

Body weight of F0 adult males – week 13 (g)

463.7 (48.93)

455.2 (34.22)

455.2 (40.25)

436.1 (24.83)

Body weight gain of F0 adult males – week 4-5 (g)

32.6  (8.98)

28.9 (8.56)

24.2 (7.89)

28.9 (3.78)

Body weight gain of F0 adult males – week 6-7 (g)

25.4 (6.17)

25.4 (6.28)

23.7 (4.94)

21.2 (4.31)

Body weight gain of F0 adult males – week 9-10 (g)

24.2 (6.00)

21.6 (6.07)

18.6 (6.82)

19.9 (6.17)

Body weight gain of F0 adult males – week 11-12 (g)

11.9 (5.40)

10.7 (6.51)

12.7 (4.83)

3.3 (5.70)

Body weight gain of F0 adult males – week 12-13 (g)

11.8 (6.26)

7.4 (6.34)

8.7 (7.28)

6.4 (6.09)

Body weight gain of F0 adult females – week 0-1 (g)

0.3 (3.08)

3.4 (3.25)

1.9 (2.74)

0.8 (3.67)

Body weight gain of F0 adult females – week 5-6 (g)

11.8 (4.01)

11.0 (4.40)

12.3 (3.57)

9.0 (3.20)

Lactational food consumption F0 – day 7-11 (g/animal/day)

44.63 (3.859)

42.93 ()

43.54 (3.796)

41.45 (3.244)

Lactational food consumption F0 – day 19-21 (g/animal/day)

64.41 (5.833)

64.87 (5.439)

62.32 (6.595)

59.81 (8.212)

No. dead F1 pups - lactational day 4

5

26

12

7

F1 pup body weight – lactational day 21 (g) 

41.93 (3.950)

42.50 (4.125)

39.97 (3.292)

38.92 (3.996)

F1 female pup body weight – lactational day 21 (g) 

41.48 (4.151)

41.75 (4.168)

39.52 (3.430)

38.10 (4.063)

Body weight changes in F1 pups – lactational day 7-14 (g)

11.91 (1.617)

12.11 (1.328)

11.48 (1.381)

10.56 (1.780)

Body weight changes in F1 male  pups – lactational day 7-14 (g)

12.00 (1.628)

12.24 (1.306)

11.41 (1.708)

10.71 (1.847)

Body weight changes in F1 female pups – lactational day 7-14 (g)

11.81 (1.677)

12.00 (1.420)

11.51 (1.536)

10.35 (1.789)

Body weight changes in F1 female pups – lactational day 14-21 (g)

15.86 (1.933)

15.47 (2.162)

14.39 (1.744)

14.24 (2.343)

Food consumption in F1 females – week 0-1 (g/animal/day)

20.9 (1.87)

20.9 (2.00)

20.7 (2.68)

19.0 (1.62)

Food consumption in F1 females – week 1-2 (g/animal/day)

21.5 (1.45)

21.2 (2.29)

21.2 (2.80)

19.1 (1.90)

Food consumption in F1 females – week 3-4 (g/animal/day)

22.0 (2.40)

21.8 (2.74)

21.5 (2.98)

19.6 (1.99)

Food consumption in F1 females – week 5-6 (g/animal/day)

20.8 (2.02)

21.2 (2.60)

20.6 (2.87)

19.1 (2.00)

Food consumption in F1 females – week 7-8 (g/animal/day)

20.3 (1.84)

20.3 (2.24)

20.0 (2.37)

18.4 (1.99)

F1 Gestational food consumption – day 0-4 (g/animal/day)

22.87 (3.172)

21.93 (2.407)

21.93 (3.237)

19.67 (1.703)

F1 Gestational food consumption – day 4-7 (g/animal/day)

24.31 (3.047)

23.63 (3.228)

23.42 (3.077)

21.81 (2.072)

F1 Gestational food consumption – day 0-7 (g/animal/day)

23.48 (2.972)

22.44 (2.503)

22.57 (2.905)

20.56 (1.760)

F1 Gestational food consumption – day 7-14 (g/animal/day)

26.28 (3.268)

25.25 (3.108)

24.52 (3.055)

23.70 (2.565)

F1 lactational food consumption – day 21-22 (g/animal/day)

87.77 (15.326)

79.55 (8.381)

80.31 (8.272)

74.01 (9.711)

F1 lactational food consumption – day 22-23 (g/animal/day)

91.26 (10.218)

87.42 (9.649)

83.36 (8.764)

81.23 (10.532)

F1 lactational food consumption – day 23-24 (g/animal/day)

97.23 (11.339)

94.59 (9.185)

90.30 (6.703)

85.17 (13.188)

F1 lactational food consumption – day 26-27 (g/animal/day)

115.86 (11.445)

114.19 (16.261)

109.85 (11.689)

105.38 (15.023)

F1 lactational food consumption – day 21-28 (g/animal/day)

102.87 (7.787)

100.49 (8.471)

97.47 (6.852)

94.04 (10.541)

Conclusions:
The NOAEC for both male and female rats (adults and offspring) was 3000 ppm. The LOAEC for these groups was 9000 ppm based on reduced body weight. There were no adverse effects on reproduction, therefore the NOAEC for reproduction is 9000 ppm.
Executive summary:

The purpose of this study was to determine the effect of commercial hexane on reproduction in rats. Groups of 25 male and 25 female rats were exposed to nominal concentrations of 0, 900, 3000, or 9000 ppm of test substance for 10 weeks pre-breeding, 3 weeks during breeding, and postnatal days 4 -28. After weaning, pups were selected to be parents for the F2 generations, and treated similarly to their parents, except their pre-breeding exposure was 8 weeks. During exposure, animals were monitored for mortality, clinical signs, food consumption, and body weight. Offspring were examined for body weight, survival, and viability. Both parents and offspring were sacrificed and examined for gross abnormalities, and in the case of adults histopathology. Reproductive parameters were similar in exposure groups and control groups. There was reduced body weight in the F1 and F2 generation in both sexes in the 9000 ppm exposure group in both adults and offspring. The NOAEC is therefore 3000 ppm, and the LOAEC is 9000 ppm. Since there were no adverse effects in offspring without adverse maternal effects, the NOAEC for reproduction is 9000 ppm.

Endpoint:
extended one-generation reproductive toxicity - with developmental neurotoxicity (Cohorts 1A, 1B without extension, 2A and 2B)
Type of information:
experimental study planned
Study period:
Will be completed in the timescale as indicated in the ECHA decision letter.
Justification for type of information:
This testing proposal has been presented in the lead registrant dossier for this substance submitted to ECHA in 2019. This is a source dossier where the overall approach should be seen in the context of a category of 108 different substances, where the substances are hydrocarbon solvents covering a carbon number range of C5-C20, based on alkane constituents and a range from approximately C8-C18 for aromatic constituents. The basis for this test proposal is set out in detail in the document ‘Hydrocarbon Solvents Test Proposals, Test Plans and Read-Across Strategy for Human Health Endpoints’, which is attached to this endpoint study record and in Section 13.2 of the IUCLID dossier.

TESTING PROPOSAL ON VERTEBRATE ANIMALS

NON-CONFIDENTIAL NAME OF SUBSTANCE:
- Name of the substance on which testing is proposed to be carried out : Hydrocarbons, C7-C9, isoalkanes (EC# 921-728-3)
- Name of the substance for which the testing proposal will be used [if different from tested substance] : Not different

CONSIDERATIONS THAT THE GENERAL ADAPTATION POSSIBILITIES OF ANNEX XI OF THE REACH REGULATION ARE NOT ADEQUATE TO GENERATE THE NECESSARY INFORMATION [please address all points below]:
- Available GLP studies : There are no OECD Guideline 443 studies available on this substance to evaluate the reproductive toxicity endpoint.
- Available non-GLP studies : There are no ‘non-GLP’ studies available for this substance to evaluate the reproductive toxicity endpoint.
- Historical human data: No human data exist for this substance to evaluate reproductive toxicity hazard.
- (Q)SAR : There are no recognised (Q)SAR methods available for reliable prediction of reproductive toxicity.
- In vitro methods : There are no in vitro methods currently accepted by Regulatory Authorities for the reliable prediction of reproductive toxicity.
- Weight of evidence : Currently there are insufficient data available to develop a robust weight of evidence approach for reproductive toxicity.
- Grouping and read-across : This test proposal maybe used to help develop a category approach for a wider range of hydrocarbons.
- Substance-tailored exposure driven testing [if applicable] : Insufficient data available
- Approaches in addition to above [if applicable]: None applicable
- Other reasons [if applicable] : None identified

CONSIDERATIONS THAT THE SPECIFIC ADAPTATION POSSIBILITIES OF ANNEXES VI TO X (AND COLUMN 2 THEREOF) OF THE REACH REGULATION ARE NOT ADEQUATE TO GENERATE THE NECESSARY INFORMATION:
- There are no specific adaptions for this endpoint

FURTHER INFORMATION ON TESTING PROPOSAL IN ADDITION TO INFORMATION PROVIDED IN THE MATERIALS AND METHODS SECTION:
- Details on study design / methodology proposed: See 'any other information on materials and methods incl. tables' for further information.
Qualifier:
according to guideline
Guideline:
OECD Guideline 443 (Extended One-Generation Reproductive Toxicity Study)
GLP compliance:
yes (incl. QA statement)
Justification for study design:
SPECIFICATION OF STUDY DESIGN FOR EXTENDED ONE-GENERATION REPRODUCTION TOXICITY STUDY WITH JUSTIFICATIONS:

See 'any other information on materials and methods incl. tables' for further information.
Species:
rat
Sex:
male/female
Route of administration:
oral: feed
Effect on fertility: via oral route
Endpoint conclusion:
no study available
Effect on fertility: via inhalation route
Endpoint conclusion:
no adverse effect observed
Dose descriptor:
NOAEC
31 680 mg/m³
Study duration:
subacute
Species:
rat
Quality of whole database:
One key read across study from a structural analogue available for assessment.
Effect on fertility: via dermal route
Endpoint conclusion:
no study available
Additional information

There is no reproductive toxicity data available for Hydrocarbons, C7-C9, isoalkanes.However, data is available for a structural analogue, commercial hexaneand presented in the dossier. This data is read across toHydrocarbons C7-C9, isoalkanesbased on analogue read across and a discussion and report on the read across strategy is provided as an attachment in IUCLID Section 13.

Commercial Hexane

In a reliable two generation reproduction study performed according to OECD 416, CD (Sprague Dawley) rats were whole body exposed to vapour of commercial hexane (Neeper-Bradley, 1991). Exposure to commercial hexane (approx. 52% n-hexane) was at 0, 900, 3000 or 9000 ppm for 6 h/day, 5 days/week during a 70 day (10 weeks) pre-mating period and the 21 day (3 weeks) mating period. Females were further exposed during gestation (GD 1-19) and lactation (LD 5 to weaning). The F1 generation was treated similarly but the pre-mating exposure was 8 weeks (56 days). Animal observations included mortality, clinical signs, food consumption, and body weight. Offspring were examined for body weight, survival, and viability. Both parental animals and offspring were sacrificed and examined for gross abnormalities. Histopathological examinations were conducted on adult animals.

Exposure to commercial hexane did not induce adverse effects on fertility. Reproductive indices were similar in exposed and control groups. No macroscopic or microscopic alterations in male and female reproductive organs were observed. The only significant effect was reduced body weight in the F1 and F2 generations in both sexes in the 9000 ppm exposure group both in adults and offspring.

The NOAEC for both male and female rats (adults and offspring) was 3000 ppm (corresponding to 10560 mg/m3). The LOAEC for these groups was 9000 ppm based on reduced body weight. There were no adverse effects on reproduction; therefore the NOAEC for reproduction is 9000 ppm which corresponds to 31680 mg/m3.

Additionally, an OECD 443 test is proposed for Hydrocarbons, C7-C9, isoalkanes. This endpoint will be updated subsequent to ECHA's approval of the testing proposal and availability of data upon completion of the study.


Effects on developmental toxicity

Description of key information

Data in rodents is available for Hydrocarbons, C7-C9, isoalkanes. Additionally, data is also available for structural analogues commercial hexane and cyclohexane and presented in the dossier. This data is read across to Hydrocarbons, C7-C9, isoalkanes based on analogue read across and a discussion and report on the read across strategy is provided as an attachment in IUCLID Section 13.

 

Additionally, OECD Guideline 414 (Prenatal Developmental Toxicity) rodent and non-rodent species tests are proposed for Hydrocarbons, C7-C9, isoalkanes. This endpoint will be updated subsequent to ECHA's approval of the testing proposals and availability of data upon completion of the studies.

 

Hydrocarbons, C7-C9, isoalkanes

 

Prenatal Developmental Toxicity Study (OECD TG 414): Rat - Inhalation Administration - The developmental NOAEC was determined to be 1200 ppm.

 

Cyclohexane

 

Prenatal Developmental Toxicity Study (OECD TG 414): Rat - Inhalation Administration - The developmental NOAEC was determined to be 7000 ppm (21000 mg/m3).

 

Prenatal Developmental Toxicity Study (OECD TG 414): Rabbit - Inhalation Administration - The developmental NOAEC was determined to be >7000 ppm.

 

Commerical Hexane

 

Prenatal Developmental Toxicity Study (OECD TG 414): Rat - Inhalation Administration - The maternal and developmental NOAECs were greater than 9000 ppm (31680 mg/m3).

 

Prenatal Developmental Toxicity Study (OECD TG 414): Mouse - Inhalation Administration - The maternal and developmental NOAECs were greater than 3000 ppm (10560 mg/m3).

Link to relevant study records

Referenceopen allclose all

Endpoint:
developmental toxicity
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
key study
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: This study is classified as reliable without restrictions because it is well documented and follows OECD Guideline 414.
Justification for type of information:
The justification for read across is provided as an attachment in IUCLID Section 13.
Reason / purpose for cross-reference:
read-across: supporting information
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 414 (Prenatal Developmental Toxicity Study)
GLP compliance:
yes
Species:
rat
Strain:
Crj: CD(SD)
Details on test animals or test system and environmental conditions:
TEST ANIMALS
- Age at study initiation: 8 weeks (males) and 11 weeks (females)
- Housing: individually in stainless steel wire mesh cages
- Diet (e.g. ad libitum): Purina Certified Rodent Checkers, ad libitum
- Water (e.g. ad libitum): tap water, ad libitum

ENVIRONMENTAL CONDITIONS
- Temperature (°C): 23 +/- 2 deg C
- Humidity (%): 50% +/- 10%
- Photoperiod (hrs dark / hrs light): 12 hrs light/12 hrs dark
Route of administration:
inhalation: vapour
Type of inhalation exposure (if applicable):
whole body
Details on exposure:
Atmospheres of cyclohexane were generated by metering the liquid test substance into a heated glass Instatherm flask with a Fluid Metering Inc. pump. Nitrogen, introduced into the flask, swept the cyclohexane vapor into the inhalation chamber air supply. The chamber concentration of cyclohexane was controlled by varying the amount of the metered liquid evaporated in the chamber air stream. Nitrogen and air were passed through the control chamber at approximately the same flow rates as those used in the exposure chambers.
Analytical verification of doses or concentrations:
yes
Details on analytical verification of doses or concentrations:
The atmospheric concentration of cyclohexane was determined by gas chromatography at approximately 15-minute intervals during each 6-hour exposure. Chamber-atmosphere samples were drawn by vacuum pump from representative areas of the chamber where animals were exposed and were directly injected into a Hewlett Packard model 5880 Gas Chromatograph equipped with a flame ionization. All samples were chromatographed isothermally at 70-::C on an HP-20M Carbowax column. The chamber distribution of cyclohexane vapor was determined prior to animal exposures in the high-concentration exposure chamber and while the study was underway with animals in the low- and high-concentration chambers. The results of these determinations indicated the distribution of cyclohexane vapor was sufficiently homogeneous (less than 2% difference in chamber concentration from position to position) for inhalation toxicology testing.
Details on mating procedure:
- Impregnation procedure: cohoused in breeding pairs (M/F ratio per cage - 1/1)
- Proof of pregnancy: vaginal plug referred to as day 0
Duration of treatment / exposure:
Assumed pregnant rats were exposed on gestation days (GD) 6-15
Frequency of treatment:
6 hrs/day
Duration of test:
GD 21
No. of animals per sex per dose:
25 pregnant females per exposure group
Control animals:
yes
Maternal examinations:
During the exposure period, animals were weighed daily and clinical signs were recorded before and after exposure. During the pre- and post-exposure periods, rats were weighed weekly and clinical signs recorded once per day. On GD 21, dams were euthanized and organs of the thoracic and abdominal cavities examined grossly.
Ovaries and uterine content:
The uterus of each animal was removed and opened. The types of implants (live and dead fetuses, and resorptions) were counted and their relative positions were recorded.
Fetal examinations:
Live fetuses were weighed, sexed, and examined for external, visceral, and skeletal alterations.
Statistics:
In general, sequential trend testing was applied to the data of each parameter. If a significant dose-response was detected, data from the top dose group was excluded and the test repeated until no significant trend was detected. Due to limitations of the data collection and reporting system, in the reproductive toxicity study, adult body weight and food consumption data were analyzed by pair-wise comparisons. The level of significance selected for all analyses was p <= 0.05. Parametric analyses were used to compare continuous data such as adult body weight and food consumption data among study groups. Linear contrast of means from One-way Analysis of Variance (ANOVA) was the method of analysis in the developmental toxicity studies; in the reproductive toxicity study, Dunnett's test followed the ANOVA. Litterrelated continuous data were analyzed by a nonparametric method, Jonckheere's trend test. For litter parameters, the proportion of affected fetuses per litter or the litter mean was used as the experimental unit for statistical evaluation. Where the data were tied, exact p values were calculated using permutation methodology. Fetal and pup weight data were analyzed by an Analysis of Covariance (co variates: litter size, sex ratio) followed with a linear contrast of the least square means. Discrete data, such as the incidences of clinical observations and reproductive indices, were evaluated by the Cochran-Armitage test for trend. Since tissues or
organs were not microscopically evaluated in all groups, the incidences of microscopic observations were analyzed by the Fisher's exact test.
Details on maternal toxic effects:
Maternal toxic effects:yes

Details on maternal toxic effects:
Overall mean body weight gain for the exposure period (GD 6-16) was statistically significantly reduced for female rats exposed to 7000 ppm cyclohexane (approximately 69% of control). Mean body weight gain for the exposure and post-exposure period (GD 6-21) calculated using the adjusted final body weight (GD 21 body weight minus Gravid Uterine Weight), was also statistically significantly decreased (approximately 75% of control) for female rats in the 7000 ppm group.
Key result
Dose descriptor:
NOAEC
Effect level:
ca. 2 000 ppm
Based on:
test mat.
Basis for effect level:
other: maternal toxicity
Key result
Dose descriptor:
NOAEC
Effect level:
> 7 000 ppm
Based on:
test mat.
Basis for effect level:
other: developmental toxicity
Details on embryotoxic / teratogenic effects:
Embryotoxic / teratogenic effects:no effects

Details on embryotoxic / teratogenic effects:
There were no dead rat fetuses. There were no statistically significant differences between control and treatment groups in early, late, or total resorptions. There were no statistically significant differences between control and treatment groups in mean fetal weight. No compound-related effect on the incidence of fetal malformations or variations was observed.
Key result
Dose descriptor:
NOAEC
Effect level:
> 7 000 ppm
Based on:
test mat.
Sex:
male/female
Basis for effect level:
other: Developmental Toxicity
Key result
Abnormalities:
no effects observed
Key result
Developmental effects observed:
no
Conclusions:
In rats, the maternal NOAEC was 2000 ppm (6000 mg/m3), and the maternal LOAEC was 7000 ppm (21000 mg/m3) based on reduced body weight gain. The developmental NOAEC 7000 ppm (21000 mg/m3) in rats.
Executive summary:

The purpose of this study was to examine the developmental toxicity of cyclohexane in rats. Groups of 25 pregnant female rats were exposed to concentrations of 0, 500, 2000, or 7000 ppm for 6 hrs/day during gestational days 6 -15. The animals were then sacrificed on GD 21. During the study, the animals were examined for clinical signs, mortality, food and water consumption, and body weights taken. After sacrifice, the internal organs were examined, and the uterus was examined for viable fetuses, number of resorptions, and number of corpora lutea. Fetuses were examined for malformations. Maternal effects were restricted to changes in maternal body weight gain and associated with decreased food consumption. No fetal effects were reported. Maternal NOAEC was determined to be 2000 ppm (6000 mg/m3) while the fetal NOAEC was greater than the highest concentration tested.

Endpoint:
developmental toxicity
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
key study
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: This study is classified as reliable without restrictions because it is well documented and follows OECD Guideline 414.
Justification for type of information:
The justification for read across is provided as an attachment in IUCLID Section 13.
Reason / purpose for cross-reference:
read-across: supporting information
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 414 (Prenatal Developmental Toxicity Study)
GLP compliance:
yes
Species:
rabbit
Strain:
New Zealand White
Details on test animals or test system and environmental conditions:
TEST ANIMALS
- Age at study initiation: Approximately 6 months
- Housing: individually in stainless steel wire mesh cages
- Diet (e.g. ad libitum): Purina Certified Rabbit Diet HF #5325, ad libitum
- Water (e.g. ad libitum): tap water, ad libitum

ENVIRONMENTAL CONDITIONS
- Temperature (°C): 20 +/- 1 deg C
- Humidity (%): 50% +/- 10%
- Photoperiod (hrs dark / hrs light): 12 hrs light/12 hrs dark
Route of administration:
inhalation: vapour
Type of inhalation exposure (if applicable):
whole body
Details on exposure:
Atmospheres of cyclohexane were generated by metering the liquid test substance into a heated glass Instatherm flask with a Fluid Metering Inc. pump. Nitrogen, introduced into the flask, swept the cyclohexane vapor into the inhalation chamber air supply. The chamber concentration of cyclohexane was controlled by varying the amount of the metered liquid evaporated in the chamber air stream. Nitrogen and air were passed through the control chamber at approximately the same flow rates as those used in the exposure chambers.
Analytical verification of doses or concentrations:
yes
Details on analytical verification of doses or concentrations:
The atmospheric concentration of cyclohexane was determined by gas chromatography at approximately 15-minute intervals during each 6-hour exposure. Chamber-atmosphere samples were drawn by vacuum pump from representative areas of the chamber where animals were exposed and were directly injected into a Hewlett Packard model 5880 Gas Chromatograph equipped with a flame ionization. All samples were chromatographed isothermally at 70-::C on an HP-20M Carbowax column. The chamber distribution of cyclohexane vapor was determined prior to animal exposures in the high-concentration exposure chamber and while the study was underway with animals in the low- and high-concentration chambers. The results of these determinations indicated the distribution of cyclohexane vapor was sufficiently homogeneous (less than 2% difference in chamber concentration from position to position) for inhalation toxicology testing.
Details on mating procedure:
- Impregnation procedure: cohoused in breeding pairs (M/F ratio per cage - 1/1)
- Proof of pregnancy: vaginal plug referred to as day 0
Duration of treatment / exposure:
Assumed pregnant rats were exposed on gestation days (GD) 6-18
Frequency of treatment:
6 hrs/day
Duration of test:
GD 29
No. of animals per sex per dose:
20 pregnant females per exposure group
Control animals:
yes
Maternal examinations:
During the exposure period, animals were weighed daily and clinical signs were recorded before and after exposure. During the pre- and post-exposure periods, rabbits were weighed twice weekly and clinical signs recorded once per day. On GD 29, dams were euthanized and organs of the thoracic and abdominal cavities examined grossly.
Ovaries and uterine content:
The uterus of each animal was removed and opened. The types of implants (live and dead fetuses, and resorptions) were counted and their relative positions were recorded.
Fetal examinations:
Live fetuses were weighed, sexed, and examined for external, visceral, and skeletal alterations.
Statistics:
In general, sequential trend testing was applied to the data of each parameter. If a significant dose-response was detected, data from the top dose group was excluded and the test repeated until no significant trend was detected. Due to limitations of the data collection and reporting system, in the reproductive toxicity study, adult body weight and food consumption data were analyzed by pair-wise comparisons. The level of significance selected for all analyses was p <= 0.05. Parametric analyses were used to compare continuous data such as adult body weight and food consumption data among study groups. Linear contrast of means from One-way Analysis of Variance (ANOVA) was the method of analysis in the developmental toxicity studies; in the reproductive toxicity study, Dunnett's test followed the ANOVA. Litterrelated continuous data were analyzed by a nonparametric method, Jonckheere's trend test. For litter parameters, the proportion of affected fetuses per litter or the litter mean was used as the experimental unit for statistical evaluation. Where the data were tied, exact p values were calculated using permutation methodology. Fetal and pup weight data were analyzed by an Analysis of Covariance (co variates: litter size, sex ratio) followed with a linear contrast of the least square means. Discrete data, such as the incidences of clinical observations and reproductive indices, were evaluated by the Cochran-Armitage test for trend. Since tissues or
organs were not microscopically evaluated in all groups, the incidences of microscopic observations were analyzed by the Fisher's exact test.
Details on maternal toxic effects:
Maternal toxic effects:no effects

Details on maternal toxic effects:
No treatment-related effects on maternal body weight or maternal body weight gain were observed at any interval during the study. There were no statistically significant differences in the incidence of any clinical sign observed in the does exposed to cyclohexane, compared to the control group. No compound-related effects were observed on the alerting response determined during exposure. There was a statistically significant decrease in the mean number of corpora lutea for female rabbits in the 2000 and 7000 ppm groups (8.9 and 8.8, respectively). Since ovulation and implantation occurred prior to exposure to the test substance, the decrease in the mean number of corpora lutea for females in the 2000 and 7000 ppm groups was attributed to normal biological variation. Both values were within the range of the historical controls for this facility (mean 8.9; range of 7.0- 10.9).
Key result
Dose descriptor:
NOAEC
Effect level:
> 7 000 ppm
Based on:
test mat.
Basis for effect level:
other: maternal toxicity
Details on embryotoxic / teratogenic effects:
Embryotoxic / teratogenic effects:no effects

Details on embryotoxic / teratogenic effects:
There were no dead rabbit fetuses. There were no statistically significant differences between control and treatment groups in early, late, or total resorptions. There were no statistically significant differences between control and treatment groups in mean fetal weight. No compound-related effect on the incidence of fetal malformations or variations was observed.
Key result
Dose descriptor:
NOAEC
Effect level:
> 7 000 ppm
Based on:
test mat.
Sex:
male/female
Basis for effect level:
other: Developmental Toxicity
Key result
Abnormalities:
no effects observed
Key result
Developmental effects observed:
no
Conclusions:
In rabbits, no maternal or fetal effects were reported and the NOAEC for both maternal toxicity and developmental effects were determined to be greater than the highest concentration tested.
Executive summary:

The purpose of this study was to examine the developmental toxicity of cyclohexane in rabbits. Groups of 20 pregnant female rabbits were exposed to concentrations of 0, 500, 2000, or 7000 ppm for 6 hrs/day during gestational days 6 -18. The animals were then sacrificed on GD 29. During the study, the animals were examined for clinical signs, mortality, food and water consumption, and body weights taken. After sacrifice, the internal organs were examined, and the uterus was examined for viable fetuses, number of resorptions, and number of corpora lutea. Fetuses were examined for malformations. No maternal or fetal effects related to exposure were reported.

Endpoint:
developmental toxicity
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
key study
Study period:
24 Mar - 27 Apr 1989
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: Comparable to guideline study.
Justification for type of information:
The justification for read across is provided as an attachment in IUCLID Section 13.
Reason / purpose for cross-reference:
read-across: supporting information
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 414 (Prenatal Developmental Toxicity Study)
GLP compliance:
yes (incl. QA statement)
Limit test:
no
Species:
rat
Strain:
Sprague-Dawley
Details on test animals or test system and environmental conditions:
TEST ANIMALS
- Source: Charles River Breeding Laboratories, Kingston, NY
- Age at study initiation: 63 days males, 56 days females at arrival
- Weight at study initiation: 250-300 g male, 175-200 g females
- Housing: individually in stainless steel wire mesh cages, identified with ear tags
- Diet (e.g. ad libitum): Prolab Certified Rodent Food, ad libitum
- Water (e.g. ad libitum): tap water, ad libitum
- Acclimation period: 2 weeks


ENVIRONMENTAL CONDITIONS
- Temperature (°C): 63-74 degree F
- Humidity (%): 40-71
- Photoperiod (hrs dark / hrs light): 12 hrs light/12 hrs dark


IN-LIFE DATES: From: April 9, 1989 To: April 21, 1989
Route of administration:
inhalation: vapour
Type of inhalation exposure (if applicable):
whole body
Details on exposure:
GENERATION OF TEST ATMOSPHERE / CHAMBER DESCRIPTION
- Exposure apparatus: 4320 l glass and stainless steel chambers.
- Method of holding animals in test chamber: cages
- Source and rate of air: 1000 l/min
- Method of conditioning air: Test substance was metered from a piston pump into one or two heated glass evaporators with a temperature of 27-70 degree C. Conditioned air was passed through the evaporators, where it carried the vapor into the exposure chamber.
- Temperature, humidity: monitored every 30 minutes
- Air flow rate: 1000 l/min
- Air change rate: 20 min, 14 air changes per hour
- Treatment of exhaust air: filtration


TEST ATMOSPHERE
- Brief description of analytical method used: GC with flame ionization detection
- Samples taken from breathing zone: yes, 7 times per exposure
Analytical verification of doses or concentrations:
yes
Details on analytical verification of doses or concentrations:
Samples were taken seven times per exposure period and analyzed with GC-FID. Distribution of test substance was evaluated by sampling five different areas of the exposure chamber.
Details on mating procedure:
- Impregnation procedure: cohoused
- If cohoused:
- M/F ratio per cage: 1/1
- Length of cohabitation: April 2, 1989-April 6, 1989
- Proof of pregnancy: vaginal plug referred to as day 0
Duration of treatment / exposure:
gestation day (GD) 6-15
Frequency of treatment:
6 hrs/day
Duration of test:
GD 21
No. of animals per sex per dose:
25 pregnant females per exposure group
Control animals:
yes
Maternal examinations:
CAGE SIDE OBSERVATIONS: Yes
- Time schedule: daily
- Cage side observations: mortality, clinical signs

BODY WEIGHT: Yes
- Time schedule for examinations: GD 0, 6, 9, 12, 15, 18, 21

FOOD CONSUMPTION: Yes

WATER CONSUMPTION: Yes

POST-MORTEM EXAMINATIONS: Yes
- Sacrifice on gestation day # 21
- Organs examined: gravid uterus, ovaries, cervix, vagina, abdominal cavities, thoracic cavities, liver, kidneys


Ovaries and uterine content:
The ovaries and uterine content was examined after termination: Yes
Examinations included:
- Number of corpora lutea: Yes
- Number of early resorptions: Yes
- Number of late resorptions: Yes
- Other: live and dead fetuses
Fetal examinations:
- External examinations: Yes: all per litter
- Soft tissue examinations: Yes: half per litter were examined for thoracic and abdominal visceral abnormalities
- Skeletal examinations: Yes: half per litter
Statistics:
Quantitative continuous variables were compared by use of Levene's test for equal variance, analysis of variance, and t-tests with Bonferroni probabilities. Nonparametric data was evaluated using the Kruskal-Wallis test, followed by the Mann-Whitney U test. Indices were compared using Fisher's exact test. 0.05 was used as the criteria for statistical significance.
Details on maternal toxic effects:
Maternal toxic effects:yes

Details on maternal toxic effects:
There were no treatment related effects to mortality or pregnancy rates. In the 9000 ppm exposure group, there was a significant reduction in weight gain on GD 6-9, and GD 6-15, and slightly reduced on GD 9-12. In the 3000 ppm group, there was a significant reduction in weight gain on GD 9-12, but significantly increased on GD 18-21. Food consumption was significantly reduced in the 9000 ppm group on days 6-9, 9-12, 12-15, and 6-15. There were color changes in the lungs of females in the 9000 ppm group. These changes were also seen in one female each in the 0, 900 and 3000 ppm groups. The color changes in the 900 and 3000 ppm groups were not considered treatment related. There were no treatment related effects to gestational parameters.
Key result
Dose descriptor:
NOAEC
Effect level:
10 560 mg/m³ air (nominal)
Basis for effect level:
other: maternal toxicity
Key result
Dose descriptor:
LOAEC
Effect level:
31 680 mg/m³ air (nominal)
Basis for effect level:
other: maternal toxicity
Details on embryotoxic / teratogenic effects:
Embryotoxic / teratogenic effects:no effects

Details on embryotoxic / teratogenic effects:
There were no treatment related effects to the development of fetuses.
Key result
Dose descriptor:
NOAEC
Effect level:
31 680 mg/m³ air (nominal)
Based on:
test mat.
Sex:
male/female
Basis for effect level:
other: Developmental Toxicity
Key result
Abnormalities:
no effects observed
Key result
Developmental effects observed:
no

Gestational Body Weight Changes (g)

0.0 ppm

900.0 ppm

3000.0 ppm

9000.0 ppm

Day 0-6

 28.21 (11.819)

31.55 (6.463)

31.19 (9.344)

29.36 (8.245)

Day 6-9

11.55 (8.103)

9.12 (6.009)

11.18 (4.539)

4.34 (6.029)

Day 9-12

16.02 (5.296)

16.31 (5.531)

11.33 (8.446)

12.65 (4.974)

Day 12-15

17.03 (6.807)

19.04 (4.473)

21.84 (9.577)

19.03 (6.453)

Day 15-18

43.52 (9.483)

41.27 (5.755)

37.83 (16.192)

44.11 (9.902)

Day 18-21

51.61 (15.190)

57.79 (8.681)

63.34 (11.295)

57.30 (12.247)

Day 6-15

44.59 (12.727)

44.47 (9.565)

44.35 (9.870)

36.02 (7.850)

Conclusions:
In rats, the maternal NOAEC was 3000 ppm, and the maternal LOAEC was 9000 ppm based on color changes in the lungs, reduced body weight gain, and reduced food consumption. The developmental NOAEC 9000 ppm in rats.
Executive summary:

The purpose of this study was to examine the developmental toxicity of commercial hexane in rats. Groups of 25 pregnant female rats were exposed to concentrations of 0, 900, 3000, or 9000 ppm for 6 hrs/day during gestational days 6 -15. The animals were then sacrificed on GD 21. During the study, the animals were examined for clinical signs, mortality, food and water consumption, and body weights taken. After sacrifice, the internal organs were examined, and the uterus was examined for viable fetuses, number of resorptions, and number of corpora lutea. Fetuses were examined for malformations. Necropsy revealed color changes in the lungs of females in the 9000 ppm groups along with reduced body weight gain, and reduced food consumption. No treatment related abnormalities was seen in the fetuses. The maternal NOAEC in rats was 3000 ppm, and the LOAEC 9000 ppm based on lung color changes, reduced body weight gain, and reduced food consumption. The developmental NOAEC in rats was 9000 ppm.

Endpoint:
developmental toxicity
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
key study
Study period:
27 Mar - 20 Apr 1989
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: Comparable to guideline study.
Justification for type of information:
The justification for read across is provided as an attachment in IUCLID Section 13.
Reason / purpose for cross-reference:
read-across: supporting information
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 414 (Prenatal Developmental Toxicity Study)
GLP compliance:
yes (incl. QA statement)
Limit test:
no
Species:
mouse
Strain:
CD-1
Details on test animals or test system and environmental conditions:
TEST ANIMALS
- Source: Charles River Breeding Laboratories, Kingston, NY
- Age at study initiation: 42 days at arrival
- Weight at study initiation: 30 g male, 24 g females
- Housing: individually in stainless steel wire mesh cages, identified with toe clips and ear notches
- Diet (e.g. ad libitum): Prolab Certified Rodent Food, ad libitum
- Water (e.g. ad libitum): tap water, ad libitum
- Acclimation period: 2 weeks


ENVIRONMENTAL CONDITIONS
- Temperature (°C): 66-72 degree F
- Humidity (%): 50-71
- Photoperiod (hrs dark / hrs light): 12 hrs light/12 hrs dark


IN-LIFE DATES: From: April 5, 1989 To: April 18, 1989
Route of administration:
inhalation: vapour
Type of inhalation exposure (if applicable):
whole body
Details on exposure:
GENERATION OF TEST ATMOSPHERE / CHAMBER DESCRIPTION
- Exposure apparatus: 4320 l glass and stainless steel chambers.
- Method of holding animals in test chamber: cages
- Source and rate of air: 1000 l/min
- Method of conditioning air: Test substance was metered from a piston pump into one or two heated glass evaporator with a temperature of 27-70 degree C. Conditioned air was passed through the evaporator, where it carried the vapor into the exposure chamber.
- Temperature, humidity: monitored every 30 minutes
- Air flow rate: 1000 l/min
- Air change rate: 20 min, 14 air changes per hour
- Treatment of exhaust air: filtration


TEST ATMOSPHERE
- Brief description of analytical method used: GC with flame ionization detection
- Samples taken from breathing zone: yes, 7 times per exposure
Analytical verification of doses or concentrations:
yes
Details on analytical verification of doses or concentrations:
Samples were taken seven times per exposure period and analyzed with GC-FID. Distribution of test substance was evaluated by sampling five different areas of the exposure chamber.
Details on mating procedure:
- Impregnation procedure: cohoused
- If cohoused:
- M/F ratio per cage: 1/1
- Length of cohabitation: March 27, 1989-April 2, 1989
- Proof of pregnancy: vaginal plug referred to as day 0
Duration of treatment / exposure:
gestation day (GD) 6-15
Frequency of treatment:
6 hrs/day
Duration of test:
GD 18
No. of animals per sex per dose:
30 pregnant females per exposure group
Control animals:
yes
Maternal examinations:
CAGE SIDE OBSERVATIONS: Yes
- Time schedule: daily
- Cage side observations: mortality, clinical signs



BODY WEIGHT: Yes
- Time schedule for examinations: GD 0, 6, 9, 12, 15


FOOD CONSUMPTION: Yes

WATER CONSUMPTION: Yes


POST-MORTEM EXAMINATIONS: Yes
- Sacrifice on gestation day # 18
- Organs examined: gravid uterus, ovaries, cervix, vagina, abdominal cavities, thoracic cavities, liver, kidneys


Ovaries and uterine content:
The ovaries and uterine content was examined after termination: Yes
Examinations included:
- Number of corpora lutea: Yes
- Number of early resorptions: Yes
- Number of late resorptions: Yes
- Other: live and dead fetuses
Fetal examinations:
- External examinations: Yes: all per litter
- Soft tissue examinations: Yes: half per litter were examined for thoracic and abdominal visceral abnormalities
- Skeletal examinations: Yes: half per litter
- Head examinations: Yes: [all per litter / half per litter / #? per litter ] / No / No data
Statistics:
Quantitative continuous variables were compared by use of Levene's test for equal variance, analysis of variance, and t-tests with Bonferroni probabilities. Nonparametric data was evaluated using the Kruskal-Wallis test, followed by the Mann-Whitney U test. Indices were compared using Fisher's exact test. 0.05 was used as the criteria for statistical significance.
Details on maternal toxic effects:
Maternal toxic effects:yes

Details on maternal toxic effects:
There were no significant treatment related effects to body weight, clinical signs, food consumption, weight changes, or organ weights. There was increased water consumption on GD 6-9, 9-12, 6-15, and 15-18 in the 3000 ppm group. There was also increased water consumption in the 900 ppm group on GD 3-6 and 6-9. There was a statistically significant increase in lung color changes in the 9000 ppm group. Four dams also had brown foci. Two dams in the 3000 ppm group had lung color changes as well, and three had dark brown foci.
Key result
Dose descriptor:
NOAEC
Effect level:
3 168 mg/m³ air (nominal)
Basis for effect level:
other: maternal toxicity
Key result
Dose descriptor:
LOAEC
Effect level:
10 560 mg/m³ air (nominal)
Basis for effect level:
other: maternal toxicity
Key result
Dose descriptor:
NOAEC
Effect level:
10 560 mg/m³ air (nominal)
Basis for effect level:
other: developmental toxicity
Key result
Dose descriptor:
LOAEC
Effect level:
31 680 mg/m³ air (nominal)
Basis for effect level:
other: developmental toxicity
Details on embryotoxic / teratogenic effects:
Embryotoxic / teratogenic effects:yes

Details on embryotoxic / teratogenic effects:
Gestational parameters were similar between exposure and control groups. There was a statistically significant increase in two skeletal malformations in the 9000 ppm group, bilateral bone island at the first lumbar arch, all intermediate phalanges of the hindlimb unossified. No other dose related abnormalities were noted.
Dose descriptor:
NOAEC
Effect level:
10 560 mg/m³ air (nominal)
Based on:
test mat.
Sex:
male/female
Basis for effect level:
other: Developmental Toxicity
Dose descriptor:
LOAEC
Effect level:
31 680 mg/m³ air (nominal)
Based on:
test mat.
Sex:
male/female
Basis for effect level:
other: Developmental Toxicity
Key result
Abnormalities:
not specified
Localisation:
other: Fetuses in from dams in the 9000 ppm group had a statistically significant increase in some skeletal abnormalities
Key result
Developmental effects observed:
yes
Lowest effective dose / conc.:
9 000 ppm
Treatment related:
yes
Relation to maternal toxicity:
not specified
Dose response relationship:
not specified
Relevant for humans:
not specified

Results of Developmental Toxicity Study on Mice

0.0 ppm

900.0 ppm

3000.0 ppm

9000.0 ppm

No. of dams with lung color change

0

0

2

12

All inter. Phalanges (hindlimb) unossified (litters, %)

76.9

72.0

84.0

100.0

Bone island – first lumbar arch – bilateral  (litters, %)

0.0

0.0

8.0

23.1

Conclusions:
In mice, the maternal NOAEC was 900 ppm, and the maternal LOAEC was 3000 ppm based on color changes in the lungs. The developmental NOAEC was 3000 ppm and the LOAEC was 9000 ppm in mice.
Executive summary:

The purpose of this study was to examine the developmental toxicity of commercial hexane in mice. Groups of 30 pregnant female mice were exposed to concentrations of 0, 900, 3000, or 9000 ppm for 6 hrs/day during gestational days 6 -15. The animals were then sacrificed on GD 18. During the study, the animals were examined for clinical signs, mortality, food and water consumption, and body weights taken. After sacrifice, the internal organs were examined, and the uterus was examined for viable fetuses, number of resorptions, and number of corpora lutea. Fetuses were examined for malformations. Necropsy revealed color changes in the lungs of females in the 3000 and 9000 ppm groups. Fetuses in from dams in the 9000 ppm group had a statistically significant increase in some skeletal abnormalities. The maternal NOAEC in mice was 900 ppm, and the LOAEC 3000 ppm based on lung color changes. The developmental NOAEC in mice was 3000 ppm and the LOAEC 9000 ppm based on skeletal abnormalities.

Endpoint:
developmental toxicity
Type of information:
experimental study
Adequacy of study:
key study
Study period:
September 1978 - Dezember 1979
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: Study meets generally accepted scientific principles, acceptable for assessment, limited documentation.
Justification for type of information:
The justification for read across is provided as an attachment in IUCLID Section 13.
Qualifier:
according to guideline
Guideline:
other: Food and Drug Administration 1966 "Guidelines for Reproduction Studies for Safety Evaluation of Drugs for Human Use", Segment II (Teratology Study).
Deviations:
yes
Remarks:
Administration via inhalation route
GLP compliance:
no
Limit test:
no
Species:
rat
Strain:
other: CD (SD)
Details on test animals or test system and environmental conditions:
TEST ANIMALS
- Source: Charles River Breeding Labs, Inc., Wilmington, Mass. 01887
- Age at study initiation: 9 wks
- Fasting period before study: no
- Housing: individually (except during mating)
- Diet (e.g. ad libitum): Standard Laboratory diet (Purina Lab Chow), fresh food presented as needed, except during each 6-hour exposure.
- Water (e.g. ad libitum): Automated water system (Elizabethtown Water Company), except during each 6-hour exposure.
- Acclimation period: 18 days


ENVIRONMENTAL CONDITIONS
- Photoperiod (hrs dark / hrs light): 12/12
Route of administration:
inhalation: vapour
Type of inhalation exposure (if applicable):
not specified
Vehicle:
unchanged (no vehicle)
Details on exposure:
GENERATION OF TEST ATMOSPHERE / CHAMBER DESCRIPTION
- Exposure apparatus: 1 cubic meter exposure chamber
- Method of holding animals in test chamber: no data
- Method of conditioning air:
- Temperature, humidity, pressure in air chamber: room temprature, dried air
- Method of particle size determination: not applicable
Analytical verification of doses or concentrations:
yes
Details on analytical verification of doses or concentrations:
No details given.
Details on mating procedure:
- Impregnation procedure: cohoused
- If cohoused:
- M/F ratio per cage: 1/1
- Length of cohabitation: overnight
- Verification of same strain and source of both sexes: no, males from in-house colony
- Proof of pregnancy: vaginal plug and/or sperm in vaginal smear referred to as day 0 of pregnancy
Duration of treatment / exposure:
GD6 - 15
Frequency of treatment:
6 hours/day
Duration of test:
until GD21 (all surviving dams), until day 21 postmating (all surviving non-pregnant females)
No. of animals per sex per dose:
20 females
Control animals:
yes, sham-exposed
Maternal examinations:
CAGE SIDE OBSERVATIONS: Yes
- Time schedule: twice daily
- Cage side observations included: mortality, gross signs of toxicologic or pharmacologic effects


DETAILED CLINICAL OBSERVATIONS: Yes
- Time schedule: GD 0, 6-15, and 21


BODY WEIGHT: Yes (including calculation of Body Weight Change)
- Time schedule for examinations: GD 0, 6-15, and 21


POST-MORTEM EXAMINATIONS: Yes, all females
- Sacrifice on gestation day # 21
- Organs examined: appendix containing the data was missing

OTHER:
Dams showing signs of abortion or premature delivery were sacrificed and fetuses obtained 19 days or later were processed and examined for skeletal anomalies. Only grossly abnormal fetuses obtained earlier than GD19 weresaved for possible future examination.
Ovaries and uterine content:
The ovaries and uterine content was examined after termination: Yes
Examinations included:
- Gravid uterus weight: No
- Number of corpora lutea: Yes
- Number of implantations: Yes
- Number of early resorptions: Yes (evidence of implantation, but no recognizable fetus)
- Number of late resorptions: Yes (recognizable dead fetus undergoing degeneration)
- Dead fetuses: Yes (dead fetus with no visible degeneration)
- Live fetuses
Fetal examinations:
- External examinations: Yes: all fetuses (weight, crown-rump distance from the parietal-interparietal suture to the base of the tail, malformations, sex based upon anogenital distance)
- Soft tissue examinations: Yes: two-thirds of fetuses (gross dissection and examination of viscera including internal sex determination)
- Skeletal examinations: Yes: two-thirds of fetuses (malformations and ossification variations)
- Head examinations: No data
Statistics:
Comparisons between negative and positive control and between negative control and each test substance-treated group were made where applicable (incidence data) by the chi-square method or by the F-test and Student's t-test (absolute data). When variances differed significantly, Student's t-test was appropriately modified using Cochran's approximation (t'). Mean number of live fetuses, resorptions, implantations and corpora lutea were compared to control by the one-tailed t-test.
Details on maternal toxic effects:
Maternal toxic effects:no effects
Key result
Dose descriptor:
NOAEC
Effect level:
1 200 ppm (nominal)
Basis for effect level:
other: maternal toxicity
Details on embryotoxic / teratogenic effects:
Embryotoxic / teratogenic effects:no effects
Key result
Dose descriptor:
NOAEC
Effect level:
1 200 ppm (nominal)
Based on:
test mat.
Sex:
male/female
Basis for effect level:
other: teratogenicity
Key result
Abnormalities:
no effects observed
Key result
Developmental effects observed:
no

A) Maternal data:

Pregnancy rates were comparable between the negative control and the treated groups. No mortality occurred in the negative control and the treated groups. Mean body weight gain during the pre-dosing and the dosing intervals were comparable between negative control and treated groups, during the post-dosing interval mean weight gain was statistical significant higher in the treated groups.

Physical observations:

No indication of a treatment effect. Likewise, the data were generally comparable between the negative and the positive control groups.

Reproduction data:

Mean number of corpora lutea, implantation sites, live fetuses, resorption sites, and the incidence of dams with one or more resorption sites were comparable between the negative control and the treated groups.

Implantation efficiency values were slightly higher in the treated groups than in the negative control, in some instances differences were statistically significant, however, this was not considered indicative of an adverse effect.

In contrast, in the positive control group the mean number of live fetuses was significantly decreased and the mean number of resorption sites significantly increased compared to the negative control. Likewise, the incidence of dams with two or more resorptions was also significantly higher than in the negative control group. The mean number of corpora lutea, implantations, and the implantation efficiency value were comparable between the positive and negative control groups.

Gross postmortem examinations:

Few gross lesions were observed at necropsy of treated females (not further specified), no treatment-related effect was indicated.

B) Fetal data:

Mean fetal weights and mean crown-rump distances of both sexes were comparable for negative control and treated groups, while in the positive control group they were significantly lower. Mean numbers of male and female fetuses were comparable between negative control and treated groups. Likewise, sex ratio data was comparable for these groups. In contrast, the mean numbers of male and female fetuses in the positive control group were significantly lower compared to the negative control, due to lower numbers of fetuses in this group.

Variations in degree of ossification:

These variations may represent delays in the ossification process or slight ossification irregularities. The incidences of fetuses with ossification variations was comparable between negative control and the 400 ppm-treated group. In the 1200 ppm-treated group the incidence of fetuses with at least one ossification variation was significantly higher compared to the negative control. The incidence of litters containing fetuses with ossification variations was comparable between negative and treated groups. Likewise, the types and incidences of ossification variations were generally similar between the negative control and the treated groups.

In contrast, in the positive control group the incidence of fetuses with at least one variation was significantly higher, ossification was retarded.

Teratology data:

No treatment-related external, gross evisceration, soft tissue and skeletal malformations were observed in the fetuses of the treated and the negative control group. One late resorption from one female of the 400 ppm group showed extreme edema, however, no other unusual observations were noted in the other late resorptions of treated and negative control groups. In contrast, in the positive control group, external malformations were noted in 14.4 % of the fetuses, the most common symptom was craniorachischisis with protruding tongue and clubbed forelimbs. The incidences of soft tissue malformations were comparable between the negative control and the treated groups, no treatment-related effect was indicated. In the positive control group, these incidences were significantly higher than in the negative control.

Conclusions:
Under the design of the study the test substance, hydrocarbons, C7-C9, isoalkanes, produced no negative effects.
Executive summary:

Under the design of the study the test substance, hydrocarbons, C7-C9, isoalkanes, produced no negative effects.

Endpoint:
developmental toxicity
Type of information:
experimental study planned
Study period:
Will be completed in the timescale as indicated in the ECHA decision letter.
Justification for type of information:
This testing proposal has been presented in the lead registrant dossier for this substance submitted to ECHA in 2019. This is a source dossier where the overall approach should be seen in the context of a category of 108 different substances, where the substances are hydrocarbon solvents covering a carbon number range of C5-C20, based on alkane constituents and a range from approximately C8-C18 for aromatic constituents. The basis for this test proposal is set out in detail in the document ‘Hydrocarbon Solvents Test Proposals, Test Plans and Read-Across Strategy for Human Health Endpoints’, which is attached to this endpoint study record and in Section 13.2 of the IUCLID dossier.

TESTING PROPOSAL ON VERTEBRATE ANIMALS

NON-CONFIDENTIAL NAME OF SUBSTANCE:
- Name of the substance on which testing is proposed to be carried out : Hydrocarbons, C7-C9, isoalkanes (EC# 921-728-3)
- Name of the substance for which the testing proposal will be used [if different from tested substance] : Not different

CONSIDERATIONS THAT THE GENERAL ADAPTATION POSSIBILITIES OF ANNEX XI OF THE REACH REGULATION ARE NOT ADEQUATE TO GENERATE THE NECESSARY INFORMATION [please address all points below]:
- Available GLP studies : There are no OECD Guideline 414 studies available on this substance to evaluate the developmental toxicity endpoint in both rodents and non-rodents.
- Available non-GLP studies : There are no ‘non-GLP’ studies available for this substance to evaluate the developmental toxicity endpoint in both rodent and non-rodent species.
- Historical human data : - No human data exist for this substance to evaluate developmental toxicity hazard.
- (Q)SAR : There are no recognised (Q)SAR methods available for reliable prediction of developmental toxicity.
- In vitro methods : There are no in vitro methods currently accepted by Regulatory Authorities for the reliable prediction of developmental toxicity.
- Weight of evidence : Currently there are insufficient data available to develop a robust weight of evidence approach for developmental toxicity.
- Grouping and read-across : This test proposal maybe used to help develop a category approach for a wider range of hydrocarbons.
- Substance-tailored exposure driven testing [if applicable] : Insufficient data available
- Approaches in addition to above [if applicable]: None applicable
- Other reasons [if applicable] : None identified

CONSIDERATIONS THAT THE SPECIFIC ADAPTATION POSSIBILITIES OF ANNEXES VI TO X (AND COLUMN 2 THEREOF) OF THE REACH REGULATION ARE NOT ADEQUATE TO GENERATE THE NECESSARY INFORMATION:
- As the registration dossier is submitted above 1000 tonnes, studies in both species will be conducted.

FURTHER INFORMATION ON TESTING PROPOSAL IN ADDITION TO INFORMATION PROVIDED IN THE MATERIALS AND METHODS SECTION:
- Details on study design / methodology proposed [if relevant]: See 'Materials and Methods' Section for further information.
Qualifier:
according to guideline
Guideline:
OECD Guideline 414 (Prenatal Developmental Toxicity Study)
GLP compliance:
yes (incl. QA statement)
Species:
rat
Route of administration:
oral: unspecified
Endpoint:
developmental toxicity
Type of information:
experimental study planned
Study period:
Will be completed in the timescale as indicated in the ECHA decision letter.
Justification for type of information:
This testing proposal has been presented in the lead registrant dossier for this substance submitted to ECHA in 2019. This is a source dossier where the overall approach should be seen in the context of a category of 108 different substances, where the substances are hydrocarbon solvents covering a carbon number range of C5-C20, based on alkane constituents and a range from approximately C8-C18 for aromatic constituents. The basis for this test proposal is set out in detail in the document ‘Hydrocarbon Solvents Test Proposals, Test Plans and Read-Across Strategy for Human Health Endpoints’, which is attached to this endpoint study record and in Section 13.2 of the IUCLID dossier.

TESTING PROPOSAL ON VERTEBRATE ANIMALS

NON-CONFIDENTIAL NAME OF SUBSTANCE:
- Name of the substance on which testing is proposed to be carried out : Hydrocarbons, C7-C9, isoalkanes (EC# 921-728-3)
- Name of the substance for which the testing proposal will be used [if different from tested substance] : Not different

CONSIDERATIONS THAT THE GENERAL ADAPTATION POSSIBILITIES OF ANNEX XI OF THE REACH REGULATION ARE NOT ADEQUATE TO GENERATE THE NECESSARY INFORMATION [please address all points below]:
- Available GLP studies : There are no OECD Guideline 414 studies available on this substance to evaluate the developmental toxicity endpoint in both rodents and non-rodents.
- Available non-GLP studies : There are no ‘non-GLP’ studies available for this substance to evaluate the developmental toxicity endpoint in both rodent and non-rodent species.
- Historical human data : - No human data exist for this substance to evaluate developmental toxicity hazard.
- (Q)SAR : There are no recognised (Q)SAR methods available for reliable prediction of developmental toxicity.
- In vitro methods : There are no in vitro methods currently accepted by Regulatory Authorities for the reliable prediction of developmental toxicity.
- Weight of evidence : Currently there are insufficient data available to develop a robust weight of evidence approach for developmental toxicity.
- Grouping and read-across : This test proposal maybe used to help develop a category approach for a wider range of hydrocarbons.
- Substance-tailored exposure driven testing [if applicable] : Insufficient data available
- Approaches in addition to above [if applicable]: None applicable
- Other reasons [if applicable] : None identified

CONSIDERATIONS THAT THE SPECIFIC ADAPTATION POSSIBILITIES OF ANNEXES VI TO X (AND COLUMN 2 THEREOF) OF THE REACH REGULATION ARE NOT ADEQUATE TO GENERATE THE NECESSARY INFORMATION:
- As the registration dossier is submitted above 1000 tonnes, studies in both species will be conducted.

FURTHER INFORMATION ON TESTING PROPOSAL IN ADDITION TO INFORMATION PROVIDED IN THE MATERIALS AND METHODS SECTION:
- Details on study design / methodology proposed [if relevant]: See 'Materials and Methods' Section for further information.
Qualifier:
according to guideline
Guideline:
OECD Guideline 414 (Prenatal Developmental Toxicity Study)
GLP compliance:
yes (incl. QA statement)
Species:
rabbit
Route of administration:
oral: unspecified
Effect on developmental toxicity: via oral route
Endpoint conclusion:
no study available
Effect on developmental toxicity: via inhalation route
Endpoint conclusion:
adverse effect observed
Dose descriptor:
NOAEC
10 560 mg/m³
Study duration:
subacute
Species:
mouse
Quality of whole database:
Four key read across studies (Rodent and non-rodent) and one substance specific (rodent) study available for assessment.
Effect on developmental toxicity: via dermal route
Endpoint conclusion:
no study available
Additional information

Developmental toxicity data in rodents is available for Hydrocarbons, C7-C9, isoalkanes. Additionally, data is also available for structural analogues commercial hexane and cyclohexane and presented in the dossier. This data is read across to Hydrocarbons, C7-C9, isoalkanes based on analogue read across and a discussion and report on the read across strategy is provided as an attachment in IUCLID Section 13.

Hydrocarbons, C7-C9, isoalkanes

A Segment II teratology study on hydrocarbons, C7-C9, isoalkanes, showed no evidence of embryonic or teratogenic effects in rats (ExxonMobil Chemical,1979). In this study, pregnant rats were exposed to 0, 400, or 1200 ppm for 6 h/day during gestational days 6 to 15. There was no mortality and no treatment-related effects to the dams. No treatment-related effects were observed in the number of live foetuses, foetal size, sex distribution, and external soft-tissue or skeletal examinations. Under the conditions of the study, there was no evidence of embryotoxicity or teratogenicity. The NOAEC for developmental toxicity was 1200 ppm, the highest dose tested.

Commercial Hexane

The potential developmental toxicity of commercial hexane was examined in two reliable studies performed according to OECD 414 with mice and rats, respectively (Neeper-Bradly, 1989). Groups of pregnant female animals (30 CD-1 mice, 25 Sprague-Dawley rats) were whole body exposed to vapour of commercial hexane (approx. 52% n-hexane) at 0, 900, 3000, or 9000 ppm for 6 h/day during gestational days (GD) 6-15. Following exposure, animals were sacrificed on GD 18 (mice) or 21 (rats). During the study, animals were examined for clinical signs, mortality, food and water consumption, and body weight gain. After sacrifice, the internal organs were examined, and the uterus was examined for viable foetuses, number of resorptions, and number of corpora lutea. Foetuses were examined for malformations. Necropsy of mice revealed colour changes in the lungs of females in the 3000 and 9000 ppm groups. Foetuses from dams in the 9000 ppm group had a statistically significant increase in the incidence of some skeletal abnormalities. Rats showed colour changes in the lungs of females in the 9000 ppm groups along with reduced body weight gain, and reduced food consumption. No treatment-related abnormalities were seen in the foetuses.

The maternal NOAEC in mice was 900 ppm (3168 mg/m3), and the LOAEC 3000 ppm (10560 mg/m3) based on lung colour changes. The developmental NOAEC in mice was 3000 ppm (10560 mg/m3) and the LOAEC 9000 ppm (31680 mg/m3) based on skeletal abnormalities.

In rats, the maternal NOAEC was 3000 ppm (10560 mg/m3), and the LOAEC 9000 ppm (31680 mg/m3) based on lung colour changes, reduced body weight gain, and reduced food consumption. The developmental NOAEC in rats was 9000 ppm, corresponding to 31680 mg/m3.

Cyclohexane

A read-across study was identified on the developmental toxicity of rats and rabbits for cyclohexane. Whole body exposures were used for both rats and rabbits at concentrations of 0, 500, 2000, or 7000 ppm. For rats in the 7000 ppm group, statistically significant reductions were observed in overall and adjusted maternal body weight gain while a transient diminished or absent response to a sound stimulus was apparent at 2000 ppm. Therefore the maternal no-observed-adverse-effect concentration (NOAEC) was 500 ppm (1720 mg/m3) (based upon transient sedation) or 2000 ppm (6880 mg/m3) (based upon significant reductions in overall and adjusted body weight gain).  No compound-related evidence of developmental toxicity was observed at any test concentration, equivalent to a NOAEC of 7000 ppm (24,080 mg/m3). For rabbits, no compound-related maternal effects were observed at concentration levels of 7000 ppm and below. Therefore the maternal NOAEC for rabbits was 7000 ppm. No compound-related evidence of developmental toxicity was observed at any test concentration. The developmental NOAEC for rabbits was 7000 ppm (24,080 mg/m3), the highest concentration tested and the highest concentration permissible under national fire protection association standards.

Additionally, OECD Guideline 414 (Prenatal Developmental Toxicity) rodent and non-rodent species tests are proposed for Hydrocarbons, C7-C9, isoalkanes. This endpoint will be updated subsequent to ECHA's approval of the testing proposals and availability of data upon completion of the studies.

Justification for classification or non-classification

Based on the available substance specific and read across data from structural analogues, Hydrocarbons, C7-C9, isoalkanes do not warrant classification as a reproductive or developmental toxicant under the new Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP).

 

Additional tests (OECD 443 and OECD 414 (rodent and 2nd species)) are proposed for Hydrocarbons, C7-C9, isoalkanes and will be conducted subsequent to ECHA's approval of the same. This endpoint will be updated upon completion of the above studies subject to ECHA's approval.

Additional information