Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Endpoint:
biodegradation in soil: simulation testing
Type of information:
(Q)SAR
Adequacy of study:
key study
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
Justification for type of information:
This endpoint is adapted in accordance with REACH Annex XI, Section 1.3 (QSAR). The constituents in the category have a low potential for adsorption to soil. This indicates that the surface water biodegradation rates measured or predicted using QSARs would be applicable to soil. An evaluation extrapolation factor of 1 was implemented to the water half-lives to calculate sediment half-lives for screening purposes, acording to Boethling et. al (1995). Measured freshwater biodegradation rates were obtained from the Concawe Report (2019), which provides water experimental primary biodegradation half-lives for petroleum substances from reliable sources, including peer-reviewed studies. BioHCWin model biodegradation rates were used for constituents for which no experimental data was available. The BioHCwin model is a well documented and commonly used QSARs for predicting the biodegradation potential of chemicals. Constituents within LOA streams with no heteroatoms (those atoms other than carbon or hydrogen) fall within the applicability domain of these models and they have been recommended by ECHA in the Information Requirement Guidelines.
Cross-referenceopen allclose all
Reason / purpose for cross-reference:
assessment report
Reason / purpose for cross-reference:
assessment report
Reference
Assessed composition(s):
Boundary Composition & SIP
PBT status:
the substance is not PBT / vPvB
Justification:

As part of the REACH Regulation (EC 1907/2006) an assessment of a substance’s persistent, bioaccumulative, and toxic (PBT) and very persistent and very bioaccumulative (vPvB) properties needs to be considered within the context of Annex XIII of REACH. This type of evaluation is required for each registered substance for which a Chemical Safety Assessment (CSA) is done.

The PBT assessment of mono-constituents is well defined in ECHA's guidance. However, for complex substances such as UVCBs this is a more difficult task due to the complex nature of the substances. This problem is further compounded by the fact that there are no guidelines for whole UVCB substance biodegradation and bioaccumulation tests. The PBT assessment for the categories was conducted by evaluating the individual constituents reported by the registrants (co and lead) at a concentration of ≥0.1%, as indicated in the ECHA guidance following the “known constituents” approach.

The tables presented in the PBT report (attached in Section 13 - Assessment reports) show the screening criteria that were used to assess Persistence and Bioaccumulation, prioritising experimental data over QSAR estimates (EPIWEB 4.1). They also list all the constituents reported by the registrants together with the data used for screening of their Persistence and Bioaccumulation potentials.

Based on the results of this screening assessment, we can conclude that the Resin Oils & Cyclic Dienes Category does not contain constituents that meet the screening criteria for PBT or vPvB.

Likely routes of exposure:

This section of the report is not required for non PBT/vPvB substances.

Reason / purpose for cross-reference:
(Q)SAR model reporting (QMRF)

Data source

Referenceopen allclose all

Reference Type:
publication
Title:
A New Biodegradation Prediction Model Specific to Petroleum Hydrocarbons.
Author:
Howard, P.H., Meylan, W.M., Aronson, D., Stiteler,W.M., Tunkel, J., Comber, M. and Parkerton, F.
Year:
2005
Bibliographic source:
Environ. Toxicol. Chem. 24(8): 1847-1860.
Reference Type:
other: Computer QSAR model
Title:
Unnamed
Year:
2021
Report date:
2021
Reference Type:
publication
Title:
Factors for intermedia extrapolation in biodegradability assessment
Author:
Boethling, R.S., Howard, P.H., Beauman, J.A., Larosch, M.E.
Year:
1995
Bibliographic source:
Chemosphere, 30 (4); 741-752.
Reference Type:
publication
Title:
An Evaluation of the Persistence, Bioaccumulation and Toxicity of Petroleum Hydrocarbons
Author:
Concawe
Year:
2019
Bibliographic source:
Concawe
Report date:
2019
Reference Type:
publication
Title:
Simulation of chemical metabolism for fate and hazard assessment. I. Approach for simulating metabolism
Author:
Dimitrov, S., Pavlov, T., Veith, G., Mekenyan, O.
Year:
2011
Bibliographic source:
SAR QSAR Environ Res; 22 (7-8): 699-718.
Reference Type:
publication
Title:
Simulation of chemical metabolism for fate and hazard assessment. II CATALOGIC simulation of abiotic and microbial degradation
Author:
Dimitrov, S., Pavlov, T., Dimitrova, N., Georgieva, D., Nedelcheva, D., Kesova, A., Vasilev, R., Mekenyan, O.
Year:
2011
Bibliographic source:
SAR QSAR Environ Res; 22 (7-8): 719-55

Materials and methods

Principles of method if other than guideline:
An evaluation extrapolation factor of 1 was implemented to the water half-lives to calculate soil half-lives for screening purposes, according to Boethling et. al (1995). Measured freshwater biodegradation rates were obtained from the Concawe Report (2019), which provides water experimental primary biodegradation half-lives for petroleum substances from reliable sources, including peer-reviewed studies. BioHCWin model v1.01 (EPISuite 4.1, 2017) freshwater biodegradation rates were used for constituents for which no experimental freshwater half-life was available. The BioHCwin program was developed specifically for the biodegradation half-life prediction of petroleum hydrocarbons. Primary biodegradation half-lives for individual petroleum hydrocarbons are estimated using multiple linear regression against distinct molecular fragments, using a similar approach to several other biodegradation models such as those within the Biodegradation Probability Program (BIOWIN). Details on the principles of the method are found in the BioHCwin QMRF/QPRF (see cross-references).

Kinetic 301F model in the OASIS/LMC Catalogic software (v5.11.19) (Dimitrov et al., 2011a, 2011b) simulates aerobic biodegradation under OECD 301F test conditions and was run for all constituents in the category to determine the identity and persistence properties of the degradation products. Since the soil is considered an aerobic system, similar methabolic pathways are considered to occur in water and soil. An evaluation extrapolation factor of 1 was implemented to the metabolite primary water half-lives to calculate metabolite soil primary half-lives for screening purposes, acording to Boethling et. al (1995). Details on the principles of the method are found in the CATALOGIC Kinetic 301F QMRF (see cross-references).

Test material

Constituent 1
Reference substance name:
Resin Oils and cyclic dienes category
EC Number:
701-462-2
IUPAC Name:
Resin Oils and cyclic dienes category
Details on test material:
See "Attached background material" in the "Overall remarks, attachments" section below for the detailed composition used in the modelling for this substance

Results and discussion

Half-life / dissipation time of parent compoundopen allclose all
Key result
DT50:
>= 0.03 - <= 30 d
Remarks on result:
other: Result from 1:1 extrapolation from measured freshwater half-lives. Range based on the measured constituents in the streams (Concawe 2019 report)
Key result
DT50:
>= 1.86 - <= 105 d
Remarks on result:
other: Result from 1:1 extrapolation from BioHCwin QSAR predicted freshwater half-lives. Range based on the measured constituents in the streams.
Transformation products:
not measured
Remarks:
Potential metabolites of aerobic biodegradation and their relative concentrations are predicted using the Kinetic 301F model in the OASIS/LMC Catalogic software (v5.11.19)
Details on transformation products:
Potential metabolites of aerobic biodegradation and their relative concentrations have been predicted using the Kinetic 301F model in the OASIS/LMC Catalogic software (v5.11.19). The primary half-lives indicate that most of the unique metabolites have a range of half-lives from less than one day to 29.88 days and 27 metabolites had half-lives ranging from 1 month to 9 months and 17 days. The remaining 27 metabolites had half-lives of over one year (>365 days). None of the metabolites with half-lives of over one year had log Kow of greater than or equal to 4.5 and are therefore not considered to be bioaccumulative. The one metabolite with a half-life of 57 days had a log Kow of 4.54 which is considered to be borderline.
Details on results:
Details of the constituent half-lives and how these value relate to their persistence assessment are found in the Category PBT Report and the Metabolite Persistence Evaluation Report (see cross-reference).

Applicant's summary and conclusion

Conclusions:
The soil half-lives of measured parent constituents of this category range from 1.86 to105 days. None of the 119 parent constituents, have a half-life of greater equal or greater than 120 days. Finally, most of the parent constituents have a log Koc of < 3 which indicates that they will not adsorb to soil particles and are therefore not considered to be persistent in soils. Th primary half-lives indicate that 1440 of the 1494 unique metabolites have a range of half-lives from less than one day to 29.88 days and 27 metabolites had half-lives ranging from 1 month to 9 months and 17 days. The remaining 27 metabolites had half-lives of over one year (>365 days). None of the metabolites with half-lives of over one year had log Kow of greater than or equal to 4.5 and are therefore not considered to be bioaccumulative. The one metabolite with a half-life of 57 days had a log Kow of 4.54 which is considered to be borderline.
Executive summary:

The soil half-lives of measured constituents (at equal or above 0.1% w/w) of this category have been extrapolated from measured (Concawe report, 2019) and predicted (EPISUITE v4.11 BioHCwin model, 2017) freshwater half-lives using an extrapolation factor of 1:1 (Boethling et al., 1995). The soil half-lives of measured parent constituents of this category range from 1.86 to105 days. None of the 119 parent constituents, have a half-life of greater equal or greater than 120 days. Finally, most of the parent constituents have a log Koc of < 3 which indicates that they will not adsorb to soil particles and are therefore not considered to be persistent in soil.

Potential metabolites of aerobic biodegradation and their relative concentrations have been predicted using the Kinetic 301F model in the OASIS/LMC Catalogic software (v5.11.19). The primary half-lives indicate that most of the unique metabolites have a range of half-lives from less than one day to 29.88 days and 27 metabolites had half-lives ranging from 1 month to 9 months and 17 days. The remaining 27 metabolites had half-lives of over one year (>365 days). None of the metabolites with half-lives of over one year had log Kow of greater than or equal to 4.5 and are therefore not considered to be bioaccumulative. The one metabolite with a half-life of 57 days had a log Kow of 4.54 which is considered to be borderline.