Registration Dossier

Environmental fate & pathways

Biodegradation in water: screening tests

Currently viewing:

Administrative data

Link to relevant study record(s)

Reference
Endpoint:
biodegradation in water: ready biodegradability
Type of information:
calculation (if not (Q)SAR)
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
accepted calculation method
Justification for type of information:
Data is from computational model developed by USEPA
Qualifier:
according to
Guideline:
other: Modeling database
Principles of method if other than guideline:
The Biodegradation Probability Program (BIOWIN) estimates the probability for the rapid aerobic biodegradation of an organic chemical in the presence of mixed populations of environmental microorganisms .The model is part of the EpiSuite program of the US-EPA. Estimations are made with BIOWIN version 4.10. Estimates are based upon fragment constants that were developed using multiple linear and non-linear regression analyses. Experimental biodegradation data for the multiple linear and non-linear regressions were obtained from Syracuse Research Corporation's (SRC) data base of evaluated biodegradation data (Howard et. al., 1987). This version (v4.10) designates the models as follows (see also Boethling et al. 2003):
Biowin1 = linear probability model
Biowin2 = nonlinear probability model
Biowin3 = expert survey ultimate biodegradation model
Biowin4 = expert survey primary biodegradation model
Biowin5 = MITI linear model
Biowin6 = MITI nonlinear model
Biowin7 = anaerobic biodegradation model
GLP compliance:
no
Oxygen conditions:
other: aerobic (Biowin 1-6) and anaerobic (Biowin 7)
Inoculum or test system:
other: mixed populations of environmental microorganisms
Details on study design:
Using the computer tool BIOWIN v4.10 by US-EPA (EPIWIN) the aerobic as well as the anaerobic biodegradability of the test material can be estimated. The follwoing seven different models are used by the tool: Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI LInear Model, MITI Non-Linear Model and Anaerobic Model (calles Biowin 1-7, respectively). Due to this results the overall prediction of readily biodegradability is done for the desired chemical.

Biowin 1 and 2, are intended to convey a general indication of biodegradability under aerobic conditions, and not for any particular medium.
Biowin 1 (Linear model)
The fast biodegradation probability for any compound is calculated by summing, for all the fragments present in that compound, the fragment coefficient multiplied by the number of instances of the fragment in the compound (for MW, the value of that parameter is multiplied by its coefficient), and then adding this summation to the equation constant which is 0.7475. The summed values for each fragment coefficient multiplied by the number of instances appear in the "VALUE" column of the linear results screen.

Biowin 2 (Non-linear model)
Calculation of the fast biodegradation probability for any compound begins by summing, for all the fragments present in that compound, the fragment coefficient multiplied by the number of instances of the fragment in the compound (for MW, the value of that parameter is multiplied by its coefficient), then adding this summation to the equation constant which is 3.0087. The summed values for each fragment coefficient multiplied by the number of instances appear in the "VALUE" column of the non-linear results screen. The non-linear fast biodegradation probability is then calculated from the logistic equation as follows, where total = 3.0087 + the summation as described above:

Biowin 3 and 4 yield estimates for the time required to achieve complete ultimate and primary biodegradation in a typical or "evaluative" aquatic environment.

Biowin 5 and 6 are predictive models for assessing a compound’s biodegradability in the Japanese MITI (Ministry of International Trade and Industry) ready biodegradation test; i.e. OECD 301C. These models use an approach similar to that used to develop Biowin1 and 2. This protocol for determining ready biodegradability is among six officially approved as ready biodegradability test guidelines of the OECD (Organization for Economic Cooperation and Development). A total dataset of 884 chemicals was compiled to derive the fragment probability values that are applied in this MITI Biodegradability method. The dataset consists of 385 chemical that were critically evaluated as "readily degradable" and 499 chemicals that were critically evaluated as "not readily biodegradable".

Biowin 7, the anaerobic biodegradation model, is the most recent. As for the other Biowin models, multiple (linear) regression against molecular fragments was used to develop the model, which predicts probability of rapid degradation in the "serum bottle" anaerobic biodegradation screening test. This endpoint is assumed to be predictive of degradation in a typical anaerobic digester. Biowin7 estimates the probability of fast biodegradation under methanogenic anaerobic conditions; specifically, under the conditions of the "serum bottle" anaerobic biodegradation screening test (Meylan et al. 2007). A total of 169 compounds with serum bottle test data were identified for use in model development.

Out of seven different Biowin models, Biowin model 3 and 4 will help in estimating biodgeradability of the test chemical which was described as below-

Ultimate Biodegradation Timeframe and Primary Biodegradation Timeframe (Biowin 3 and 4)
These two models estimate the time required for "complete" ultimate and primary biodegradation.  Primary biodegradation is the transformation of a parent compound to an initial metabolite.  Ultimate biodegradation is the transformation of a parent compound to carbon dioxide and water, mineral oxides of any other elements present in the test compound, and new cell material. Then the rating was given to each model, which indicates the time required to achieve ultimate and primary biodegradation in a typical or "evaluative" aquatic environment. The ratings for each compound were averaged to obtain a single value for modeling.  The ultimate or primary rating of a compound is calculated by summing, for all the fragments present in that compound.
Key result
Parameter:
probability of ready biodegradability (QSAR/QSPR)
Remarks on result:
other: not readily biodegradable as estimated by BIOWIN model
Validity criteria fulfilled:
not specified
Interpretation of results:
not readily biodegradable
Conclusions:
The biodegradability of the substance was calculated using seven different Biowin 1-7 models of the BIOWIN v4.10 software. The results indicate that the test chemical is expected to be not readily biodegradable.
Executive summary:

Estimation Programs Interface Suite (EPI suite, 2019) was run to predict the biodegradation potential of the test chemical in the presence of mixed populations of environmental microorganisms. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI Linear Model, MITI Non-Linear Model and Anaerobic Model (called as Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that the test chemical is expected to be not readily biodegradable.

Description of key information

Estimation Programs Interface Suite (EPI suite, 2019) was run to predict the biodegradation potential of the test chemical in the presence of mixed populations of environmental microorganisms. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI Linear Model, MITI Non-Linear Model and Anaerobic Model (called as Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that the test chemical is expected to be not readily biodegradable.

Key value for chemical safety assessment

Biodegradation in water:
under test conditions no biodegradation observed
Type of water:
freshwater

Additional information

Predicted data study for target chemical and experimental studies for its structurally similar read across chemical have been reviewed for biodegradation in water endpoint and their results are summarized below.

 

In first study the Estimation Programs Interface Suite (EPI suite, 2019) was run to predict the biodegradation potential of the test chemical in the presence of mixed populations of environmental microorganisms. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI Linear Model, MITI Non-Linear Model and Anaerobic Model (called as Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that the test chemical is expected to be not readily biodegradable.

 

Next study was experimental study reviewed from the authoritative databases and a secondary source in this study biodegradation experiment was conducted for 28 days to determine the percentage biodegradability of test substance. The study was performed according to OECD Guideline 301 C (Ready Biodegradability: Modified MITI Test (I) under aerobic conditions. Activated sludge (non-adapted) was used as a test inoculums for the study. Concentration of inoculum i.e, sludge used was 30 mg/l and initial test substance conc. used in the study was 100 mg/l. The percentage degradation of test chemical was determined to be 10% and 0% by O2 consumption (BOD) and test material analysis by HPLC parameter respectively in 28 days. Thus, based on percentage degradation, test substance was considered to be not readily biodegradable in water.

 

In another experimental study the Manometric respirometry test following the OECD guideline 301F was performed to determine the ready biodegradability of the test chemical. The test system included control, test chemical and reference chemical. The concentration of test and reference chemical ( Sodium Benzoate) chosen for both the study was 30 mg/L, while that of inoculum was 10 ml/l. ThOD (Theoretical oxygen demand) of test chemical and reference chemical was determined by calculation. % Degradation was calculated using the values of BOD and ThOD for test chemical. The BOD28 value of test chemical was observed to be 0.188 mgO2/mg. ThOD was calculated as 1.464 mgO2/mg. accordingly, the % degradation of the test chemical after 28 days of incubation at 20 ± 1°C according to manometric respirometry test was determined to be 12.807 %. Based on the results, the test chemical, under the test conditions, was considered to be not readily biodegradable at 20± 1°C over a period of 28 days.

 

Last study was also reviewed from authoritative database in this study the test chemical was subjected to biodegradation test by taking activated sludge as inoculums at 30 mg/L concentration. Biodegradation was analysed by using O2 consumption (BOD) parameter. The initial concentration of test chemical was 100 mg/L. After 2 weeks (14 days) on incubation test chemical showed 0 % biodegradability by O2 consumption (BOD) parameter. On the basis of percent degradation value it is concluded that test chemical is not readily biodegradable.

 

On the basis of results of all the studies mentioned above it can be concluded that test chemical is not readily biodegradable in nature.