Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 201-067-0 | CAS number: 77-90-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Basic toxicokinetics
Administrative data
- Endpoint:
- basic toxicokinetics in vivo
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Comparable to guideline study
Data source
Referenceopen allclose all
- Reference Type:
- publication
- Title:
- Unnamed
- Year:
- 1 992
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 1 992
Materials and methods
- Objective of study:
- other: ADME
Test guideline
- Guideline:
- other: not further specified
- GLP compliance:
- not specified
Test material
- Test material form:
- not specified
- Details on test material:
- Name of test material (as cited in study report): Acetyl tributyl citrate (CAS RN 77-90-7)
Analytical purity: 99.02 %
Radiochemical purity (if radiolabelling): 100 %
Constituent 1
- Radiolabelling:
- yes
- Remarks:
- 14C
Test animals
- Species:
- rat
- Strain:
- Sprague-Dawley
- Sex:
- male
- Details on test animals or test system and environmental conditions:
- Absorption and elimination study: 4 m
Rate of absorption study: 5 m
Administration / exposure
- Route of administration:
- oral: gavage
- Vehicle:
- corn oil
- Duration and frequency of treatment / exposure:
- single oral dosing
Doses / concentrations
- Remarks:
- Doses / Concentrations:
70 mg [14C]ATBC/kg bw
- No. of animals per sex per dose / concentration:
- 4 - 5
- Control animals:
- not specified
- Details on dosing and sampling:
- Urine, faeces, cage wash, expired organics and [14C]CO2, blood, tissues (including GI tract and contents) and carcass were analysed for [14C] and/or unchanged ATBC
- Statistics:
- no data
Results and discussion
Toxicokinetic / pharmacokinetic studies
- Details on absorption:
- see below
- Details on distribution in tissues:
- see below
- Details on excretion:
- see below
Metabolite characterisation studies
- Metabolites identified:
- yes
- Details on metabolites:
- At least 9 radiolabeled metabolites were found in urine and 3 in faeces. Urinary metabolites positively identified were acetyl citrate, mono-butyl citrate (tentatively the major metabolite), acetyl mono-butyl citrate, dibutyl citrate, and acetyl dibutyl citrate.
Any other information on results incl. tables
Absorption of dosed [14C] was rapid (t1/2 = 1.0 h) and extensive (>= 67 %). Absorbed [14C]ATBC was rapidly and completely metabolized and eliminated. More than 87 % of the administered radioactivity was excreted during the initial 24 hrs after dosing. For [14C] in blood an elimination half-life of 3.4 hrs was calculated during this interval. Less than 1 % of the dosed radioactivity remained in tissues and carcass 48 hrs post-dosing.
The principle route of [14C] excretion was via urine (59 – 70 % of the [14C] dose), while 25 – 36 % were excreted via faeces and 2 % as [14C]CO2.
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results (migrated information): no bioaccumulation potential based on study results
After oral gavage, ATBC is rapidly absorbed, metabolized and excreted by rats. - Executive summary:
In this study groups of 4 – 5 male Sprague-Dawley rats were dosed once via gavage with 70 mg [14C]ATBC/kg bw and urine, faeces, cage wash, expired organics and [14C]CO2, blood, tissues (including GI tract and contents) and carcass were analysed for [14C] and/or unchanged ATBC.
Absorption of dosed [14C] was rapid (t1/2 = 1.0 h) and extensive (>= 67 %). Absorbed [14C]ATBC was rapidly and completely metabolized and eliminated. More than 87 % of the administered radioactivity was excreted during the initial 24 hrs after dosing. For [14C] in blood an elimination half-life of 3.4 hrs was calculated during this interval. Less than 1 % of the dosed radioactivity remained in tissues and carcass 48 hrs post-dosing.
The principleroute of [14C] excretion was via urine (59 – 70 % of the [14C] dose), while 25 – 36 % were excreted via faeces and 2 % as [14C]CO2. At least 9 radiolabeled metabolites were found in urine and 3 in faeces. Urinary metabolites positively identified were acetyl citrate, mono-butyl citrate (tentatively the major metabolite), acetyl mono-butyl citrate, dibutyl citrate, and acetyl dibutyl citrate.
It was concluded that the low oral toxicity of ATBC is not due to poor absorption but is caused by an intrinsic property of ATBC and/or its metabolites or is due to rapid clearance in the rat.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
Although ECHA is providing a lot of online material in your language, part of this page is only in English. More about ECHA’s multilingual practice.
Welcome to the ECHA website. This site is not fully supported in Internet Explorer 7 (and earlier versions). Please upgrade your Internet Explorer to a newer version.
the-echa-website-uses-cookies
find-out-more-on how-we-use-cookies