Registration Dossier
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 221-374-3 | CAS number: 3081-01-4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Hydrolysis
Administrative data
Link to relevant study record(s)
Description of key information
The hydrolysis of Santoflex 7PPD (N-(1,4-dimethylpentyl)-N'-phenylbenzene-1,4-diamine) was investigated for pH 4, pH 7 and pH 9 at 20 °C and 50 °C based on OECD TG 111. The half-life of 7PPD was determined to be 7 hours at 20 °C (pH 7) and 1 hour at 50 °C (pH 7).
The following hydrolysis products were determined: 4-Hydroxydiphenylamine, Aniline, p-Benzoquinone, p-Hydroquinone. During the study an additional hydrolysis product was detected in the hydrolysis test solutions at pH 7 and pH 9 only. The LC-MS spectrum of the component shows a molecular ion signal at m/z = 200.0712, which can be assigned to the protonated molecular ion [M+H]+ of C12H9NO2, M = 199 g/mol. The component therefore appears to have a molecular weight of 199 Dalton linked to a formula C12H9NO2. This would probably fit to “overoxidised 4-HDPA” (4-(phenylnitroso)benzen-1-olate or 4-(phenylnitroso)cyclohexa-2,5-dien-1-one) (short name: “N-Oxide”).
7PPD was found to be hydrolytically instable at pH 4, pH 7 and pH 9. Recoveries of the test item are near 100 % indicating a satisfying repeatability of the method applied to quantify the test item concentration.
The hydrolysis tests at 20 °C were prolonged up to 30 days monitoring 7PPD and in addition primary and secondary hydrolysis products. Identified primary hydrolysis products of Santoflex 7PPD are 4-Hydroxydiphenylamine (4-HDPA) and “N-Oxide”. 4-HDAP was built by release of 1,4-dimethylpentylamine. Oxidation of 4-HDAP resulted in “N-Oxide”. Due to subsequent hydrolysis of primary degradation products secondary hydrolysis products are Aniline, p-Benzoquinone, and p-Hydroquinone.
At pH 4 the degradation products 4-HDPA and N-Oxide could not be measured, while Aniline, p-Benzoquinone, and p-Hydroquinone were formed. Therefore, it was supposed that 4-HDPA and N-Oxide are highly instable at pH 4 and immediately degrade to Aniline and quinones (p-Benzoquinone, and p-Hydroquinone).
Therefore, it is assumed that the same reported hydrolysis mechanism occurs at hydrolysis of Santoflex 7PPD at all investigated pH values 4, 7, and 9.
Key value for chemical safety assessment
- Half-life for hydrolysis:
- 7 h
- at the temperature of:
- 20 °C
Additional information
Mass balance of Santoflex 7PPD including primary and secondary hydrolysis products was monitored over 30 days of hydrolysis. Comparison of the starting concentration of Santoflex 7PPD to the summarized concentration of measured degradation products after 30 days showed deviations at all investigated pH values:
pH 4:At the beginning of measurement the concentration of Santoflex 7 PPD was determined to be 3.2 µmol/L. After 30 days the sum of all measured degradation products was reported to be 4.38 µmol/L. It is assumed that deviation in mass balancing could be a result of measuring inaccuracy of the analytical method. Real starting concentration of Santoflex 7PPD in hydrolysis test was reported to be 3.58 µmol/L. Due to delayed starting of measurement (caused by preparation of the sample, like dilution, mixing) the concentration of 7PPD at t=0 hrs was measured to be 3.2 µmol /L instead of 3.58 µmol/L. This deviation could result in higher mass balance at the end of measurement. Additional, several reported concentrations of Aniline, p-Benzoquinone, and p-Hydroquinone were measured to be outside calibration range (below the lowest calibration level) but taken into account for the mass balance. This could also result in inaccuracy of reported values.
pH 7 and pH 9:At pH 7 a starting concentration of Santoflex 7PPD 3.0 µmol/L (at pH 9: 2.98 µmol/L) was measured at the beginning of hydrolysis. After 30 days the sum of all measured degradation products was reported to be 2.61 µmol/L (at pH 9: 2.35 µmol/L). It is assumed that deviations in mass balancing are caused by calibration inaccuracy of “N-Oxide”. This degradation product was quantified using the response factor of the parent compound 7PPD at 202 nm assuming similar UV absorption of their chemical structures. This calibration could influence the reported values of concentration and therefore has an influence on correct mass balane. Additionally deviation in mass balancing could be a result of measuring inaccuracy of the analytical method. Several reported concentrations of 7PPD, Aniline, and p-Benzoquinone were measured to be outside calibration range (below the lowest calibration level) but taken into account for the mass balance. This could result in inaccuracy of reported values. Additionally it is assumed that the concentration of p-Hydroquinone at pH 7 (p-Hydroquinone and p-Benzoquinone at pH 9) was below limit of detection and therefore could not be included into the sum of all degradation products (Currenta, 2016).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

Route: .live1