Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Adsorption / desorption

Currently viewing:

Administrative data

Endpoint:
adsorption / desorption, other
Remarks:
monitoring data in water and sediment
Type of information:
other: Calculation of Kp values based on environmental field data
Adequacy of study:
key study
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: see "Remark"
Remarks:
Kp-values are based on reliable field data of concentration levels in water and sediment; no standard guideline test was conducted to generate Kp-values. Kp-values are calculated based on the hypothesis that equilibrium exists between the baseline levels in water and in sediment.
Cross-reference
Reason / purpose for cross-reference:
reference to same study
Reference
Endpoint:
monitoring data
Type of information:
other: report
Adequacy of study:
key study
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
data from handbook or collection of data
Qualifier:
no guideline required
Principles of method if other than guideline:
Evaluation and summary of high quality environmental geochemical data for Europe, which is provided by the Forum of European Geological Surveys (FOREGS) and the European Geochemical Mapping of Agricultural and Grazing Land Soil (GEMAS), with respect to aluminium concentrations in stream water, stream sediment and topsoil, as well as in agricultural soil and grazing land.
GLP compliance:
no
Type of measurement:
other: Geochemical background and ambient aluminium concentrations in different environmental compartments across Europe
Media:
other: Natural stream water, stream sediment and topsoil, as well as agricultural and grazing land soils
Details on sampling:
FOREGS and GEMAS data for EU-27 countries plus UK and Norway were considered, i.e. data from non-EEA countries such as Albania, Bosnia and Switzerland were excluded from further analysis.

FOREGS:
- The FOREGS sampling grid was based on GTN grid cells developed for Global Geochemical Baseline mapping. This grid divides the entire land surface into 160 km x 160 km cells covering an area of 4,500,000 km2.
- Sampling methodology, preparation and analysis are described by Salminen et al. (2005).
- FOREGS data for EU-27 countries plus UK and Norway were considered, i.e. data from non-EEA countries such as Albania and Switzerland were excluded from further analysis.
- A total of 795 stream water samples of aluminium and 839 sediment samples of aluminium oxide were processed in the FOREGS-program, including 742 paired samples, i.e. samples with the same coordinates for the sampling location of stream water and sediment.
- The FOREGS dataset reports aluminium/aluminium oxide concentrations for 833 topsoil samples sampled on a grid across Europe. A topsoil sample was taken at each site from 0-25 cm (excluding material from the organic layer where present).
- Reported aluminium oxide concentrations were converted into aluminium concentrations.
- High quality and consistency of the obtained data were ensured by using standardised sampling methods and by treating and analysing all samples in the same laboratory of each country.

GEMAS:
- Samples from 33 out of 38 European countries were analysed to develop a suitable harmonised geochemical data base for soils. The sampling started in the spring 2008 and the first four months of 2009.
- The whole GEMAS project area of 5,600,000 km2 was divided into a grid with 50 km x 50 km cells.
- To generate harmonised data sets, all project samples were processed by a central sample preparation facility in Slovakia.
- GEMAS data for EU-27 countries plus UK and Norway were considered, i.e. data from non-EEA countries such as Bosnia and Switzerland were excluded from further analysis.
- The GEMAS dataset reports aluminium concentrations for 1,867 samples from the regularly ploughed layer (Ap-horizon) of agricultural land (arable land; 0 - 20 cm) and for 1,781 samples from the top layer of grazing land (soil under permanent grass cover; 0 – 10 cm) sampled on a grid across Europe.

FOREGS DATABASE STREAM WATER/SEDIMENT:

- Sampled stream water and sediments cover a wide range of environmental conditions. Water parameters such as pH, hardness and organic carbon concentrations extend over several magnitudes. Aluminium water levels range from 0.7 to 3,370.0 µg/L with 5th, 50th and 95th percentiles of 2.0, 17.1 and 313.9 µg/L, respectively.

- In the sediment, aluminium concentrations range from 1,058.5 to 137,075.9 mg/kg with 5th, 50th and 95th percentiles of 12,225.7, 55,042.1 and 94,735.9 mg/kg, respectively (Table 1).

- Taking into account the high quality and representativeness of the data set, the 95th percentile of 313.9 µg/L can be regarded as representative background concentration for dissolved aluminium in European surface waters and the 95th percentile of 94,735.9 mg/kg as representative background concentration of aluminium in European stream sediments.

- Regarding the partitioning of aluminium in the water column, stream water/sediment partition coefficients range from 15,747 to 94,090,878 L/kg. Since FOREGS sampled on a grid aiming to equally represent geochemical baseline concentrations across Europe, a European median log Kp value of 6.39 is derived.

Table 1: Water parameters and aluminium/aluminium oxide concentrations of stream sediment and stream water and respective partitioning.

 

Parameter

#

Unit

Min.

Max.

5th P

50th P

95th P

water

pH 1

734 2

-

9.80

4.50

8.50

7.70

6.10

water

Ca

742

mg/L

0.23

592.00

1.63

42.63

146.97

water

Cl

742

mg/L

0.14

4,560.00

0.49

9.19

67.33

water

HCO3

740 3

mg/L

0.69

1,804.42

5.36

131.52

374.14

water

K

742

mg/L

< 0.01

182.00

0.15

1.63

9.80

water

Mg

742

mg/L

0.05

230.00

0.46

6.20

37.85

water

Na

742

mg/L

0.23

4,030.00

1.00

6.73

48.26

water

NO3

742

mg/L

< 0.04

107.00

< 0.04

3.10

39.89

water

DOC

735 4

mg/L

< 0.50

57.94

0.60

4.79

23.07

water

SO42-

742

mg/L

< 0.30

2,420.00

1.18

17.03

166.75

water

Al

742

µg/L

0.70

3,370.00

2.00

17.10

313.90

sediment

Al2O3

742

%

0.20

25.90

2.31

10.40

17.90

sediment

Al 5

742

mg/kg

1,058.50

137,075.93

12,225.69

55,042.07

94,735.87

Partitioning (Kp)

Al (sed/water)

742

L/kg

15,746

94,089,011

152,295

2,452,151

23,238,707

Log Kp

Al (sed/water)

742

-

4.20

7.97

5.18

6.39

7.37

Statistics are based on H+ concentrations rather than pH.

Removal of 2 outliers < pH 4.3 and 6 negative values.

Removal of 2 outliers < 0.01.

Removal of 1 outlier > 70 mg/L and 1 negative values.

Values converted from Al2O3.

FOREGS DATABASE Background soil concentrations

- Sampled soils cover a wide range of environmental conditions. Soil parameters, including pH and TOC, cover several magnitudes.

- Baseline aluminium levels in topsoil range from 1,958.2 to 141,151.2 mg/kg with 5th, 50th and 95th percentiles of 16,322.1, 58,376.4 and 92,121.4 mg/kg, respectively (see Table 2).

- Taking into account the high quality and representativeness of the data set, the 95th percentile of 92,121.4 mg/kg can be regarded as representative background concentration of aluminium in topsoil of EU countries.

Table 2: Concentrations of aluminium/aluminium oxide in topsoil samples.

Parameter

Unit

#

Min.

Max.

5th P

50th P

95th P

pH 1

-

802

7.55

3.38

7.31

5.49

4.28

TOC

%

799

0.07

46.61

0.56

1.72

5.86

Al2O3

%

833

0.37

26.67

3.08

11.03

17.41

Al 2

mg/kg

833

1,958.2

141,151.2

16,322.1

58,376.4

92,121.4

Statistics are based on H+ concentrations rather than pH.

Values converted from Al2O3.

GEMAS DATABASE AGRICULTURAL AND GRAZING LAND SOIL CONCENTRATIONS:

- Aluminium levels of agricultural soil range from 351.6 to 64,527.0 mg/kg with 5th, 50th and 95th percentiles of 2,508.0, 10,769.4 and 23,999.1 mg/kg, respectively (see Table 3). In grazing land, soil concentrations of aluminium range from 627.3 to 62,541.8 mg/kg with 5th, 50th and 95th percentiles of 2,335.6, 10,506.8 and 25,326.4 mg/kg, respectively (see Table 4).

Table 3: Agricultural soil concentrations.

Parameter

Unit

Method

#

Min.

Max.

5th P

50th P

95th P

CEC

meq/100g

AAS

1,867

1.80

48.30

6.10

15.80

33.30

pH (CaCl2)

pH

pH-meter

1,867

3.32

7.98

4.14

5.71

7.45

TOC

%

IR

1,854

0.40

46.00

0.70

1.70

5.67

Aluminium

mg/kg

AR

1,867

351.60

64,526.98

2,508.03

10,769.43

23,999.05

Aluminium

mg/kg

XRF

1,867

1,958.00

143,850.00

16,120.80

55,730.00

83,606.10

Aluminium

mg/kg

MMI

1,867

< 1.00

450.00

10.00

69.00

450.00

Table 4: Grazing land soil concentrations.

Parameter

Unit

Method

#

Min.

Max.

5th P

50th P

95th P

CEC

meq/100g

AAS

1,781

2.54

49.88

8.27

17.96

37.74

pH (CaCl2)

pH

pH-meter

1,780

3.26

8.06

4.03

5.38

7.45

TOC

%

IR

1,780

0.41

49.00

0.94

2.80

11.05

Aluminium

mg/kg

AR

1,781

627.25

62,541.83

2,335.60

10,506.82

25,326.43

Aluminium

mg/kg

XRF

1,781

1,535.00

141,429.00

14,397.00

52,348.00

84,106.00

Conclusions:
Representative background or ambient concentrations of aluminium/aluminium oxide in environmental compartments are tabulated below.

compartment, unit, concentration (50th P), concentration (95th P)
background stream water, µg/L Al, 17.1, 313.9
background stream water sediment, % Al2O3, 10.4, 17.9
, mg/kg Al, 55,042.1*, 94,735.9*
background topsoil, % Al2O3, 11.0, 17.4
, mg/kg Al, 58,376.4*, 92,121.4*
agricultural soil, mg/kg Al, 10,769.4, 23,999.1
grazing land soil, mg/kg Al, 10,506.8, 25,326.4
* based on measured Al2O3.

Based on the FOREGS dataset, the 95th percentile of 313.9 µg/L can be regarded as representative background concentration for dissolved aluminium in European surface waters and the 95th percentile of 94,735.9 mg/kg as representative background concentration of European stream sediments. Regarding the respective partitioning between sediment and water, a European median log Kp value of 6.39 is derived.

Based on the FOREGS dataset, the 95th percentile of 92,121.4 mg/kg can be regarded as representative background concentration of aluminium in topsoil of EU countries. Representative aluminium concentrations (95th percentile) of agricultural and grazing land soil (i.e. ambient levels) amount to 23,999.1 and 25,326.4 mg/kg, respectively, according to the GEMAS dataset.

Data source

Referenceopen allclose all

Reference Type:
publication
Title:
Unnamed
Year:
2005
Report date:
2005
Reference Type:
study report
Title:
Unnamed
Year:
2021
Report date:
2021

Materials and methods

Test guideline
Qualifier:
no guideline followed
Principles of method if other than guideline:
Evaluation of high quality environmental geochemical data for Europe, which is provided by the Forum of European Geological Surveys (FOREGS), with respect to aluminium (Al) concentrations in stream water and stream sediment. Baseline levels of aluminium in water and sediment were determined in 742 paired sample locations. Assuming equilibrium between both environmental compartments, site-specific partitioning coefficients (Kp) were derived.
GLP compliance:
no
Type of method:
other: field data of baseline levels in water and sediment
Media:
sediment

Test material

Constituent 1
Reference substance name:
not applicable
IUPAC Name:
not applicable
Test material form:
other: elemental concentrations
Details on test material:
natural occuring aluminium
Radiolabelling:
no

Study design

Test temperature:
environmental relevant temperatures

Batch equilibrium or other method

Analytical monitoring:
yes
Details on sampling:
FOREGS:
- The FOREGS sampling grid was based on GTN grid cells developed for Global Geochemical Baseline mapping. This grid divides the entire land surface into 160 km x 160 km cells covering an area of 4,500,000 km2.
- Sampling methodology, preparation and analysis are described by Salminen et al. (2005).
- FOREGS data for EU-27 countries plus UK and Norway were considered, i.e. data from non-EEA countries such as Albania and Switzerland were excluded from further analysis.
- A total of 795 stream water samples of aluminium and 839 sediment samples of aluminium oxide were processed in the FOREGS-program, including 742 paired samples, i.e. samples with the same coordinates for the sampling location of stream water and sediment.
- Reported aluminium oxide concentrations were converted into aluminium concentrations.
- High quality and consistency of the obtained data were ensured by using standardised sampling methods and by treating and analysing all samples in the same laboratory of each country.

Results and discussion

Partition coefficientsopen allclose all
Key result
Phase system:
sediment-water
Type:
log Kp
Value:
6.39 dimensionless
Remarks on result:
other: European median (50th percentile) log Kp
Key result
Phase system:
sediment-water
Type:
Kp
Value:
2 452 151 L/kg
Remarks on result:
other: European median (50th percentile) partition coefficient (Kp)

Results: Batch equilibrium or other method

Adsorption and desorption constants:
The monitoring stream water and sediment data show that aluminium (Al) concentrations of sediments range from 1,058.5 to 137,075.9 mg/kg, while dissolved Al concentrations in the water column of European stream waters range from 0.7 to 3.370.0 µg/L. Regarding the partitioning of Al in the water column, stream water/sediment partition coefficients range from 15,746 to 94,089,011 L/kg. Since FOREGS sampled on a grid aiming to equally represent geochemical baseline concentrations across Europe, the 50th percentile log Kp for Al across Europe was determined to be 6.39 (2,452,151 L/kg; Table below).

Any other information on results incl. tables

Table: Water parameters and aluminium/aluminium oxide concentrations of stream sediment and stream water and respective partitioning.

 

Parameter

#

Unit

Min.

Max.

5th P

50th P

95th P

water

pH 1

734 2

-

9.80

4.50

8.50

7.70

6.10

water

Ca

742

mg/L

0.23

592.00

1.63

42.63

146.97

water

Cl

742

mg/L

0.14

4,560.00

0.49

9.19

67.33

water

HCO3

740 3

mg/L

0.69

1,804.42

5.36

131.52

374.14

water

K

742

mg/L

< 0.01

182.00

0.15

1.63

9.80

water

Mg

742

mg/L

0.05

230.00

0.46

6.20

37.85

water

Na

742

mg/L

0.23

4,030.00

1.00

6.73

48.26

water

NO3

742

mg/L

< 0.04

107.00

< 0.04

3.10

39.89

water

DOC

735 4

mg/L

< 0.50

57.94

0.60

4.79

23.07

water

SO42-

742

mg/L

< 0.30

2,420.00

1.18

17.03

166.75

water

Al

742

µg/L

0.70

3,370.00

2.00

17.10

313.90

sediment

Al2O3

742

%

0.20

25.90

2.31

10.40

17.90

sediment

Al 5

742

mg/kg

1,058.50

137,075.93

12,225.69

55,042.07

94,735.87

Partitioning (Kp)

Al (sed/water)

742

L/kg

15,746

94,089,011

152,295

2,452,151

23,238,707

Log Kp

Al (sed/water)

742

-

4.20

7.97

5.18

6.39

7.37

Statistics are based on H+ concentrations rather than pH.

Removal of 2 outliers < pH 4.3 and 6 negative values.

Removal of 2 outliers < 0.01.

Removal of 1 outlier > 70 mg/L and 1 negative values.

Values converted from Al2O3.

Applicant's summary and conclusion

Conclusions:
Reliable baseline levels of aluminium in 742 pristine water/sediment samples collected across Europe were determined. Sampling and analytical procedures are considered adequate and resulted in reliable data. Assuming equilibrium between the typical concentration in water and sediment, relevant log Kp-values were generated. Data are therefore considered useful for the determination of a relevant partition coefficient for the sediment compartment. FOREGS sampled on a grid aiming to equally represent geochemical baseline concentrations across Europe. The 50th percentile of aluminium concentrations were considered representative and amount to 55,042.1 mg/kg sediment and 17.1 µg/L stream water, respectively, resulting in a log Kp for partitioning of aluminium in European sediment/freshwater of 6.39.