Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Biodegradation in water: screening tests

Currently viewing:

Administrative data

Link to relevant study record(s)

Reference
Endpoint:
biodegradation in water: ready biodegradability
Type of information:
calculation (if not (Q)SAR)
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
accepted calculation method
Justification for type of information:
Data is from computational model developed by USEPA
Qualifier:
according to guideline
Guideline:
other: Modeling database
Principles of method if other than guideline:
The Biodegradation Probability Program (BIOWIN) estimates the probability for the rapid aerobic biodegradation of an organic chemical in the presence of mixed populations of environmental microorganisms .The model is part of the EpiSuite program of the US-EPA. Estimations are made with BIOWIN version 4.10Estimates are based upon fragment constants that were developed using multiple linear and non-linear regression analyses. Experimental biodegradation data for the multiple linear and non-linear regressions were obtained from Syracuse Research Corporation's (SRC) data base of evaluated biodegradation data (Howard et. al., 1987). This version (v4.10) designates the models as follows (see also Boethling et al. 2003):Biowin1 = linear probability modelBiowin2 = nonlinear probability modelBiowin3 = expert survey ultimate biodegradation modelBiowin4 = expert survey primary biodegradation modelBiowin5 = MITI linear modelBiowin6 = MITI nonlinear modelBiowin7 = anaerobic biodegradation model
GLP compliance:
not specified
Specific details on test material used for the study:
- Name of test material (as cited in study report): Piperazine citrate / tripiperazine dicitrate- Molecular formula: C12H30N6•Cl2H16O14 - Molecular weight: 642.76 g/mole - Substance type: Organic - Physical state: Solid
Oxygen conditions:
other: aerobic (Biowin 1-6) and anaerobic (Biowin 7)
Inoculum or test system:
other: mixed populations of environmental microorganisms
Duration of test (contact time):
3.3 wk
Details on study design:
Using the computer tool BIOWIN v4.10 by US-EPA (EPIWIN) the aerobic as well as the anaerobic biodegradability of the test material can be estimated. The follwoing seven different models are used by the tool: Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI LInear Model, MITI Non-Linear Model and Anaerobic Model (calles Biowin 1-7, respectively). Due to this results the overall prediction of readily biodegradability is done for the desired chemical.
Parameter:
other: Half-life
Value:
50
Sampling time:
3.3 wk
Remarks on result:
other: Other details not known
Details on results:
Biowin1 (Linear Model Prediction) :0.885: Biodegrade FastBiowin2 (Non-Linear Model Prediction): 0.837: Biodegrade FastBiowin3 (Ultimate Biodegradation Timeframe): 4.12: Days-WeeksBiowin4 (Primary Biodegradation Timeframe): 3.3: Weeks-MonthsBiowin5 (MITI Linear Model Prediction) : 0.701: Biodegrade FastBiowin6 (MITI Non-Linear Model Prediction): 0.697: Not Biodegrade FastBiowin7 (Anaerobic Model Prediction): 0.872: Biodegrade FastReady Biodegradability Prediction: YES

BIOWIN (v4.10) Program Results:

==============================

--------------------------- BIOWIN v4.10 Results ----------------------------

Biowin1 (Linear Model Prediction) :0.885: Biodegrade Fast

Biowin2 (Non-Linear Model Prediction): 0.837: Biodegrade Fast

Biowin3 (Ultimate Biodegradation Timeframe): 4.12: Days-Weeks

Biowin4 (Primary Biodegradation Timeframe): 3.3: Weeks-Months

Biowin5 (MITI Linear Model Prediction) : 0.701: Biodegrade Fast

Biowin6 (MITI Non-Linear Model Prediction): 0.697: Not Biodegrade Fast

Biowin7 (Anaerobic Model Prediction): 0.872: Biodegrade Fast

Ready Biodegradability Prediction: YES

Ready Biodegradability Prediction: (YES or NO)

----------------------------------------------

Criteria for the YES or NO prediction: If the Biowin3 (ultimate survey

model) result is "weeks" or faster (i.e. "days", "days to weeks", or

"weeks" AND the Biowin5 (MITI linear model) probability is >= 0.5, then

the prediction is YES (readily biodegradable). If this condition is not

satisfied, the prediction is NO (not readily biodegradable). This method

is based on application of Bayesian analysis to ready biodegradation data

(see Help). Biowin5 and 6 also predict ready biodegradability, but for

degradation in the OECD301C test only; using data from the Chemicals

Evaluation and Research Institute Japan (CERIJ) database.

Validity criteria fulfilled:
not specified
Interpretation of results:
readily biodegradable
Conclusions:
The biodegradability of the substance was calculated using seven different Biowin 1-7 models of the BIOWIN v4.10 software. The results indicate that Piperazine citrate is expected to be readily biodegradable.
Executive summary:

Estimation Programs Interface Suite (EPI suite, 2016) was run to predict the biodegradation potential of the test compound Piperazine citrate (CAS no. 144 -29 -6) in the presence of mixed populations of environmental microorganisms. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI LInear Model, MITI Non-Linear Model and Anaerobic Model (called as Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that Piperazine citrate is expected to be readily biodegradable.

Description of key information

The test chemical piperazine 2-hydroxypropane-1,2,3-tricarboxylate (3:2) (salt) was estimated to be not readily biodegradable in water, by QSAR toolbox.

Key value for chemical safety assessment

Biodegradation in water:
readily biodegradable

Additional information

Predicted data for the test compound Piperazine citrate(CAS No. 144-29-6) and the study for its read across substance were reviewed for the biodegradation end point and is presented below as weight of evidence approach:

In key study, Biodegradability of 2-hydroxypropane-1,2,3-tricarboxylate (3:2) (salt) (CAS no. 144 -29 -6) is predicted using OECD QSAR toolbox version 3.3 (2018) with log Kow as the primary descriptor. Test substance is estimated to undergo 79.422% degradation by BOD in 28 days. Thus, based on percentage degradation, the test chemical 2-hydroxypropane-1,2,3-tricarboxylate (3:2) (salt) was estimated to be not readily biodegradable in water.

Supporting above prediction, Estimation Programs Interface Suite (EPI suite, 2016) was run to predict the biodegradation potential of the test compound Piperazine citrate (CAS no. 144 -29 -6) in the presence of mixed populations of environmental microorganisms. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI LInear Model, MITI Non-Linear Model and Anaerobic Model (called as Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that Piperazine citrate is expected to be readily biodegradable.

Further, Biodegradation study was conducted according to OECD TG 301 C guideline for evaluating the percentage biodegradability of read across substance Piperazine (Kondo, M. et. al; 1988). Initial test substance conc. used in the study was 20 mg/l. Namely, a water, acetone or DMSO solution (0.1 ml) of the test chemicals was added to a mixture of river/sea water (4.9 ml) from an unpolluted area and an autoclaved solution (5.0ml) of 0.2% peptone in a sterile test tube with a tight plug. After sealed with film and fixed at an angle of 30°in a dark box, the test tubes were incubated at 30°C and shaked at 120rpm. Inoculum used for the study was mixed culture obtained from different sources (Sea water from Tama river and River water from Enoshima Beach). The percentage degradation of test substance was found to be 20% and 77% in 3 days, respectively. Thus, the substance Piperazine was determined to be readily biodegradable in nature.

 

On the basis of above results for target as well as read across substance and by applying weight of evidence approach, it can be concluded that the test substance Piperazine citrate can be expected to be readily biodegradable in nature.