Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 232-350-7 | CAS number: 8006-64-2 Any of the volatile predominately terpenic fractions or distillates resulting from the solvent extraction of, gum collection from, or pulping of softwoods. Composed primarily of the C10H16 terpene hydrocarbons: α-pinene, β-pinene, limonene, 3-carene, camphene. May contain other acyclic, monocyclic, or bicyclic terpenes, oxygenated terpenes, and anethole. Exact composition varies with refining methods and the age, location, and species of the softwood source.
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
The biodegradation of TOPP as a whole substance is required for the purposes of hazard classification. However, for the purpose of environmental exposure assessment and persistence assessment, it is necessary to consider the properties of the individual constituents present in the substance. As a consequence, in this section, data describing the biodegradation of the whole substance and its constituents are considered. The constituents of TOPP are naturally-occuring terpenes that are components of trees and shrubs. It is therefore, expected that biodegradation will be a significant removal process in the environment.
Additional information
For the purposes of environmental exposure assessment and persistence assessment, a biodegradation rating is assigned to each constituent block on the basis of BIOWIN scores for individual constituents. As far as possible, the constituents allocated to each hydrocarbon block had the same BIOWIN-based biodegradation rating. The overall degradation rating for the block was assigned on a case-by-case basis, taking into account the rating for the most abundant constituent(s) in the block.
Additional information on the biodegradation class from available measured data for the constituents of TOPP has been presented. Where measured data indicate a different class for biodegradation compared to the prediction, this measured biodegradation rating is used in preference to the predicted rating.
Biodegradation rates in water, sediment and soil compartments are predicted within EUSES 2.1.2, based on ready biodegradability ratings. However, a maximum half-life of 300 days in soil and sediment were set where the predicted half-life is greater than 300 days. This is due to the naturally occuring nature of the constituents of TOPP and their ability to be metabolised by microorganisms.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.