Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 273-179-8 | CAS number: 68952-95-4 A complex combination of fatty acids, neutral vegetable-oil, proteins, and other minor components produced by boiling vegetable-oil soapstock with mineral acid and, optionally, further separating the oil phase acidulated soapstock from the aqueous phase.
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vivo
Administrative data
- Endpoint:
- in vivo mammalian somatic cell study: cytogenicity / erythrocyte micronucleus
- Type of information:
- experimental study
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- study well documented, meets generally accepted scientific principles, acceptable for assessment
Cross-reference
- Reason / purpose for cross-reference:
- reference to other study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 1 992
Materials and methods
Test guideline
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- OECD Guideline 474 (Mammalian Erythrocyte Micronucleus Test)
- Principles of method if other than guideline:
- Not applicable
- GLP compliance:
- yes
- Remarks:
- FDA Good Laboratory Practices Regulations (21 CFR 58)
- Type of assay:
- micronucleus assay
Test material
- Reference substance name:
- Glycerides, C16 and C18-unsatd. and C18-unsatd. hydroxy
- IUPAC Name:
- Glycerides, C16 and C18-unsatd. and C18-unsatd. hydroxy
- Details on test material:
- - Name of test material (as cited in study report): Castor oil (CAS N° 8001-79-4, EC N° 232-293-8); under the SDA nomenclature, the name of this substance is ‘Glycerides, C16 and C18-unsatd. and C18-unsatd. hydroxy'
- Physical state: Liquid
- Analytical purity: Purity and identity analyses were conducted by Midwest Research Institute (MRI) (Kansas City, MO)
- Analytical method used: Karl Fischer water analysis, thin layer and high performance liquid chromatography, and a battery of U.S. Pharmacopeia (USP) standard analyses for castor oil
- Composition of test material, percentage of components:
- Lot/batch No.: #L-5G30-01
- Other: Source: Cas Chemical, Inc.
Constituent 1
Test animals
- Species:
- mouse
- Strain:
- B6C3F1
- Sex:
- male/female
- Details on test animals or test system and environmental conditions:
- TEST ANIMALS
- Source: Simonsen Laboratories, Gilroy, CA
- Age at study initiation: 6 wk
- Fasting period before study: No
- Housing: Individually caged in polycarbonate cages lined with heat-treated hardwood chips and covered with polyester filter sheets. The cages were stored on stainless steel racks equipped with an automatic watering system
- Diet: NIH 07; available ad libitum
- Water: Ad libitum
- Acclimation period: 15 d
- Other: Feed hoppers in the animal cages were changed twice weekly
ENVIRONMENTAL CONDITIONS
- Temperature: 68-76°F
- Humidity: 42-72%
- Air changes: 10/h
- Photoperiod: 12 h dark/12 h light
- Age when killed: 19 wk
Administration / exposure
- Route of administration:
- oral: feed
- Vehicle:
- Plain diet
- Vehicle(s)/solvent(s) used: None - Details on exposure:
- DIET PREPARATION
- Method of mixing: Formulated diets were prepared by blending the appropriate amount of castor oil with a small quantity of feed to prepare a premix. The premix then was layered between the required amounts of feed in a twin-shell blender and blended for 15 min to achieve a uniform mix.
- Mixing appropriate amounts with (Type of food): 10% (100 mg/g) determined by gravimetric analysis, and blends at 0.5% (5 mg/g) determined by HPLC analysis.
- Storage temperature of food: Stored for no longer than 3 weeks at 5°C
- Stability under test conditions: 0.5% dose level is stable for at least 21 d when stored in the dark at 5°C and for 3 d when stored open to air and light in a rodent cage. - Duration of treatment / exposure:
- 13 wk or 90 d
- Frequency of treatment:
- Daily
- Post exposure period:
- At termination of 13 wk study
Doses / concentrations
- Remarks:
- Doses / Concentrations:
0, 0.6, 1.3, 2.5, 5.0 and 10.0% in feed
Basis:
actual ingested
- No. of animals per sex per dose:
- 10 mice per sex per dose
- Control animals:
- yes, plain diet
- Positive control(s):
- - Positive control: Urethane
- Dose: 0.2%
- Brief description: Male mice treated for 4 weeks with urethane in the drinking water (0.2%) were used as positive control. These animals were not part of the 13-week study, but were added as a measure of quality control for the assay.
Examinations
- Tissues and cell types examined:
- Peripheral blood samples were examined for frequency of polychromatic and normochromatic micronucleated erythrocytes (PCE and NCE)
- Details of tissue and slide preparation:
- - Method of sampling: Cardiac puncture
- Stain used: Hoechst 33258/pyronin Y (MacGregor et al., 1983)
- Number of cells scored for micronuclei: 2,000 PCE and 10,000 NCE from each animal - Evaluation criteria:
- Not reported
- Statistics:
- Not reported
Results and discussion
Test results
- Key result
- Sex:
- male/female
- Genotoxicity:
- negative
- Toxicity:
- no effects
- Vehicle controls validity:
- valid
- Negative controls validity:
- not examined
- Positive controls validity:
- valid
- Additional information on results:
- Not reported
Any other information on results incl. tables
No significant elevation in the frequency of micronucleated erythrocytes was observed in either male or female mice administered castor oil in dosed feed.
Applicant's summary and conclusion
- Conclusions:
- Under the test conditions, the substance was considered to be non-mutagenic in the micronucleus test in B6C3F1 mice.
- Executive summary:
A study was performed to investigate the genotoxic potential of the constituent ‘glycerides, C16 and C18 -unsatd. and C18 -unsatd. hydroxy’ (as castor oil) to induce micronuclei in polychromatic erythrocytes (PCE) in the peripheral blood of the mouse. Groups of 10 mice/sex were exposed to 0, 0.6, 1.3, 2.5, 5.0 and 10.0% concentrations of the substance mixed in diet for 13 weeks. At termination, smears were prepared from peripheral blood samples obtained by cardiac puncture of dosed and control animals. Slides were stained with Hoechst 33258/pyronin Y. About 2,000 PCE and 10,000 NCE from each animal were scored for frequency of micronuclei. No significant elevation in the frequency of micronucleated erythrocytes was observed in either male or female mice administered test substance in dosed feed. Therefore, under the test conditions, the substance was considered to be non-genotoxic in the micronucleus test in B6C3F1 mice (Irwin, 1992).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.