Biocidal Products Committee (BPC) Opinion on the application for approval of the active substance: L(+) lactic acid **Product type: 3** ECHA/BPC/148/2017 Adopted 27 April 2017 ## **Opinion of the Biocidal Products Committee** # on the application for approval of the active substance L(+) lactic acid for product type 3 In accordance with Article 89(1) of Regulation (EU) No 528/2012 of the European Parliament and of the Council 22 May 2012 concerning the making available on the market and use of biocidal products (BPR), the Biocidal Products Committee (BPC) has adopted this opinion on the approval in product type 3 of the following active substance: Common name: L(+) lactic acid Chemical name: (S)-2-Hydroxypropanoic acid EC No.: 201-196-2 CAS No.: 79-33-4 **Existing active substance** This document presents the opinion adopted by the BPC, having regard to the conclusions of the evaluating Competent Authority. The assessment report, as a supporting document to the opinion, contains the detailed grounds for the opinion. ## **Process for the adoption of BPC opinions** Following the submission of an application by Purac Biochem on 17 July 2007, the evaluating Competent Authority Germany submitted an assessment report and the conclusions of its evaluation to ECHA on 3 May 2016. In order to review the assessment report and the conclusions of the evaluating Competent Authority, the Agency organised consultations via the BPC (BPC-20) and its Working Groups (WG V 2016). Revisions agreed upon were presented and the assessment report and the conclusions were amended accordingly. ## **Adoption of the BPC opinion** ## **Rapporteur: Germany** The BPC opinion on the approval of the active substance L(+) lactic acid in product type 3 was adopted on 27 April 2017. The BPC opinion was adopted by simple majority of the members present having the right to vote. The opinion and the minority position including its grounds are published on the ECHA webpage at: 100 g/person/day) and dietary exposure (>1 g/person/day). Therefore, neither an ADI nor an ARfD have been set. Likewise, L(+) lactic acid has been approved in the EU as a food additive without an ADI or upper limit (quantum satis; Dir. 95/2/EC), as a cosmetics ingredient, and as veterinary medicinal product without the requirement for MRL setting (EMEA 2008). The table below summarises the exposure scenarios assessed. | Scenario | Primary or secondary exposure and description of scenario | Exposed group | Conclusion | |-----------------------------------|---|---|------------| | Teat
disinfection -
dipping | Primary inhalation and dermal exposure during pouring of a ready-to-use product (8% a.s.) into a dipping cup, dipping of teats of 100 cows, cleaning of equipment | Professional user | Acceptable | | Teat
disinfection -
dipping | Primary and secondary exposure of non-
professional users and the general public
is not expected. | Non-professional
users and the
general public | Acceptable | #### Professional user According to the generally low toxicity of L(+) lactic acid, systemic effects after handling and use of the active substance L(+) lactic acid are not expected for professionals. Concerning the skin irritating properties of L(+) lactic acid, handling and use of the active substance L(+) lactic acid does not lead to concern for professionals since the concentration of the ready-to-use dummy product (8% a.s.) is below the dermal AEC of 10%. In summary, a safe use for the professional user is identified without taking into account personal protective equipment (PPE) or further risk mitigation measures (e.g. local exhaust ventilation). #### **General public** Primary and secondary exposure of non-professional users and the general public is not expected. Residues in food from the intended PT 3 use are expected to be low compared to naturally occurring levels in food. Therefore, the intended use does not significantly contribute to consumer exposure to lactic acid. #### **Environment** The table below summarises the exposure scenarios assessed. | Summar | | | |---|---|--| | Scenario | Description of scenario including environmental compartments | Conclusion | | Disinfection of cows
teats in a milking
parlour – professional
use | The biocidal product contains 84.8 g a.s. per L. The fraction of active substance emitted to waste water is assumed to be 0.5 (the other part of 0.5 remains on the teats). | Acceptable | | | Indirect releases occur via STP to the aquatic compartment (surface water and sediment) as well as due to sewage sludge application on agricultural soil to the terrestrial compartment (soil and groundwater). | | | Disinfection of cow
teats in animal
housings –
professional use | The biocidal product contains 84.8 g a.s. per L. The fraction of a.s. released to manure is assumed to be 0.5 (the other part of 0.5 remains on the teats). | Not acceptable Unacceptable risks for groundwater. | | | Direct release to soil (via manure application) occurs as well as indirect releases to groundwater, surface water and sediment. | | #### Application in milking parlour (sewage sludge application): No unacceptable risks for soil, surface water, sediment and the STP were identified in connection with the intended use of the biocidal product (containing 8% (w/w) of L(+) lactic acid) in a milking parlour (connected to STP). However, the exposure assessment for the application of sewage sludge to agricultural areas resulted in groundwater concentrations above the maximum permissible concentration of 0.1 μ g/L. The refinement of the PEC_{groundwater} with the FOCUS PEARL model revealed a concentration below the trigger value of 0.1 μ g/L and thus, safe application of sewage sludge to agricultural areas could be demonstrated for disinfection of cow teats in a milking parlour. Hence, it can be concluded that the use of the biocidal product does not result in unacceptable risks for the environment. #### Application in animal housings (manure application): No unacceptable risks for soil, surface water and sediment were identified in connection with the intended use of the biocidal product (containing 8% (w/w) of L(+) lactic acid) in animal housings (not connected to STP). However, the exposure assessment for the application of manure to agricultural areas resulted in groundwater concentrations above the maximum permissible concentration of 0.1 μ g/L. Even, the refinement of the PEC_{groundwater} with the FOCUS PEARL model did not reveal a concentration below the trigger value of 0.1 μ g/L and thus, no safe application of manure to agricultural areas could be demonstrated for disinfection of cow teats in animal housing. The current assessment of the biodegradation behaviour in soil of lactic acid is most likely too conservative: based on the information submitted in the application a default degradation half-live of 90 days was estimated and it was assumed that no (anaerobic) degradation takes places in manure. Additional information obtained via a literature search shows that in reality the degradation half-life may be lower in soil and that anaerobic degradation does occur. For product authorisation the results from this literature search together with the information on the biocidal product and the actual use shall be used to assess the risk for the groundwater compartment. #### **Overall conclusion** A safe use for human health and the environment is identified for disinfection of cow teats in a milking parlour by professional users. Unacceptable risks are identified for the groundwater compartment for disinfection of cow teats in animal housing not connected to a STP. ## 2.2. Exclusion, substitution and POP criteria #### 2.2.1. Exclusion and substitution criteria The table below summarises the relevant information with respect to the assessment of exclusion and substitution criteria: | Property | | Conclusions | | |--|---|----------------------------|---| | CMR properties | Carcinogenicity (C) | No classification required | L(+) lactic
acid does not
fulfil criterion | | | Mutagenicity (M) | No classification required | (a), (b) and
(c) of Article
5(1) | | | Toxic for reproduction (R) | No classification required | | | PBT and vPvB properties | Persistent (P) or very Persistent (vP) | not P or vP | L(+) lactic
acid does not
fulfil criterion
(e) of Article
5(1) and
does not fulfil
criterion (d)
of Article
10(1) | | | Bioaccumulative
(B) or very
Bioaccumulative
(vB) | not B or vB | | | | Toxic (T) | not T | - | | Endocrine disrupting properties | L(+) lactic acid is not considered to have endocrine disrupting properties and does not fulfil criterion (d) of Article 5(1). | | | | Respiratory sensitisation properties | No classification required. L(+) lactic acid does not fulfil criterion (b) of Article 10(1). | | | | Concerns linked to critical effects | L(+) lactic acid does not fulfil criterion (e) of Article 10(1). | | | | Proportion of non-active isomers or impurities | L(+) lactic acid does not fulfil criterion (f) of Article 10(1). | | | Consequently, the following is concluded: L(+) lactic acid does not meet the exclusion criteria laid down in Article 5 of Regulation (EU) No 528/2012. L(+) lactic acid does not meet the conditions laid down in Article 10 of Regulation (EU) No 528/2012, and is therefore not considered as a candidate for substitution. The exclusion and substitution criteria were assessed in line with the "Note on the principles for taking decisions on the approval of active substances under the BPR"² and in line with "Further guidance on the application of the substitution criteria set out under article 10(1) of the BPR"³ agreed at the 54^{th} and 58^{th} meeting respectively, of the representatives of Member States Competent Authorities for the implementation of Regulation 528/2012 concerning the making available on the market and use of biocidal products. This implies that the assessment of the exclusion criteria is based on Article 5(1) and the assessment of substitution criteria is based on Article 10(1)(a, b, d, e and f). #### 2.2.2. POP criteria As L(+) lactic acid is not P, B or vB, it does not meet the criteria for being a persistent organic pollutant. # 2.3. BPC opinion on the application for approval of the active substance L(+) lactic acid in product type 3 In view of the conclusions of the evaluation, it is proposed that L(+) lactic acid shall be approved and be included in the Union list of approved active substances, subject to the following specific conditions: - 1. Specification: minimum purity of the active substance evaluated: ≥ 955 g/kg (dry weight). - 2. The authorisations of biocidal products are subject to the following condition(s): - a. The product assessment shall pay particular attention to the exposures, the risks and the efficacy linked to any uses covered by an application for authorisation, but not addressed in the Union level risk assessment of the active substance. - b. In view of the risks identified for the uses assessed, the product assessment shall pay particular attention to groundwater for products used in animal housings with release to manure. The active substance L(+) lactic acid gives no rise to concern according to Article 28 (2) and does therefore fulfil the requirements for inclusion in Annex I of Regulation (EU) No 528/2012. However, it is noted that the classification as STOT SE 3 proposed in the CLH dossier submitted to ECHA would prevent inclusion on Annex I. #### 2.4. Elements to be taken into account when authorising products The following recommendations and risk mitigation measures have been identified for the uses assessed. Authorities should consider these risk mitigation measures when authorising products, together with possible other risk mitigation measures, and decide whether these measures are applicable for the concerned product: ² See document: Note on the principles for taking decisions on the approval of active substances under the BPR (available from https://circabc.europa.eu/d/a/workspace/SpacesStore/c41b4ad4-356c-4852-9512-62e72cc919df/CA-March14-Doc.4.1%20-%20Final%20-%20Principles%20for%20substance%20approval.doc) 3 See document: Further guidance on the application of the substitution criteria set out under article 10(1) of the BPR (available from https://circabc.europa.eu/d/a/workspace/SpacesStore/dbac71e3-cd70-4ed7-bd40-fc1cb92cfe1c/CA-Nov14-Doc.4.4%20-%20Final%20-%20Further%20guidance%20on%20Art10(1).doc) a. An unacceptable risk for groundwater is identified for uses in animal housings following manure application on agricultural soil. If the risk cannot be reduced to an acceptable level by appropriate risk mitigation measures or by other means, these uses should not be authorised. ## 2.5. Requirement for further information Sufficient data have been provided to verify the conclusions on the active substance, permitting the proposal for the approval of L(+) lactic acid.