

# **Committee for Risk Assessment**

# RAC

# Opinion

proposing harmonised classification and labelling at EU level of

# clofentezine (ISO); 3,6-bis(*o*-chlorophenyl)-1,2,4,5-tetrazine

EC Number: 277-728-2 CAS Number: 74115-24-5

CLH-O-0000006816-65-01/F

# Adopted

11 June 2020



11 June 2020

CLH-O-000006816-65-01/F

# OPINION OF THE COMMITTEE FOR RISK ASSESSMENT ON A DOSSIER PROPOSING HARMONISED CLASSIFICATION AND LABELLING AT EU LEVEL

In accordance with Article 37 (4) of Regulation (EC) No 1272/2008, the Classification, Labelling and Packaging (CLP) Regulation, the Committee for Risk Assessment (RAC) has adopted an opinion on the proposal for harmonised classification and labelling (CLH) of:

Chemical name: clofentezine (ISO); 3,6-bis(*o*-chlorophenyl)-1,2,4,5tetrazine

EC Number: 277-728-2

CAS Number: 74115-24-5

The proposal was submitted by Spain and received by RAC on 21 June 2019.

In this opinion, all classification and labelling elements are given in accordance with the CLP Regulation.

# **PROCESS FOR ADOPTION OF THE OPINION**

**Spain** has submitted a CLH dossier containing a proposal together with the justification and background information documented in a CLH report. The CLH report was made publicly available in accordance with the requirements of the CLP Regulation at *http://echa.europa.eu/harmonised-classification-and-labelling-consultation/* on **24 July 2019**. Concerned parties and Member State Competent Authorities (MSCA) were invited to submit comments and contributions by **24 September 2019**.

#### ADOPTION OF THE OPINION OF RAC

Rapporteur, appointed by RAC: **Peter Hammer Sørensen** 

Co-Rapporteur, appointed by RAC: Irina Karadjova

The opinion takes into account the comments provided by MSCAs and concerned parties in accordance with Article 37(4) of the CLP Regulation and the comments received are compiled in Annex 2.

The RAC opinion on the proposed harmonised classification and labelling was adopted on **11 June 2020** by **consensus**.

#### Classification and labelling in accordance with the CLP Regulation (Regulation (EC) 1272/2008)

|                                                       | Index No Chemical name EC No C |                                                                                   | CAS No Classification |                | Labelling                            |                                |                                      | Specific M                     | Notes                                    |                                           |  |
|-------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------|-----------------------|----------------|--------------------------------------|--------------------------------|--------------------------------------|--------------------------------|------------------------------------------|-------------------------------------------|--|
|                                                       |                                |                                                                                   |                       |                | Hazard Class and<br>Category Code(s) | Hazard<br>statement<br>Code(s) | Pictogram,<br>Signal Word<br>Code(s) | Hazard<br>statement<br>Code(s) | Suppl.<br>Hazard<br>statement<br>Code(s) | Conc.<br>Limits, M-<br>factors<br>and ATE |  |
| Current<br>Annex VI<br>entry                          |                                |                                                                                   |                       |                | No c                                 | current Annex VI en            | try                                  |                                |                                          |                                           |  |
| Dossier<br>submitters<br>proposal                     | TBD                            | clofentezine (ISO);<br>3,6-bis( <i>o</i> -<br>chlorophenyl)-1,2,4,5-<br>tetrazine | 277-<br>728-2         | 74115-<br>24-5 | Carc. 2<br>Aquatic Chronic 1         | H351<br>H410                   | GHS08<br>GHS09<br>Wng                | H351<br>H410                   |                                          | M=1                                       |  |
| RAC opinion                                           | TBD                            | clofentezine (ISO);<br>3,6-bis( <i>o</i> -<br>chlorophenyl)-1,2,4,5-<br>tetrazine | 277-<br>728-2         | 74115-<br>24-5 | Aquatic Chronic 1                    | H410                           | GHS09<br>Wng                         | H410                           |                                          | M=1                                       |  |
| Resulting<br>Annex VI<br>entry if<br>agreed by<br>COM | TBD                            | clofentezine (ISO);<br>3,6-bis( <i>o</i> -<br>chlorophenyl)-1,2,4,5-<br>tetrazine | 277-<br>728-2         | 74115-<br>24-5 | Aquatic Chronic 1                    | H410                           | GHS09<br>Wng                         | H410                           |                                          | M=1                                       |  |

# **GROUNDS FOR ADOPTION OF THE OPINION**

## **RAC general comment**

Clofentezine is an acaricide used as an active substance in plant protection products (PPP). It was included in Annex I to Directive 91/414/EEC EFSA previously finalised a conclusion on this active substance on 4 June 2009 (EFSA Scientific Report (2009) 269, 1-113) and proposed classification of clofentezine as R53 according to Directive 67/548.

Clofentezine is not currently listed in Annex VI of the CLP regulation.

A Renewal Assessment Report (RAR) in accordance with Commission Regulation (EC) No. 844/2012 has been developed by the Spanish CA. The content of this CLH Report is therefore based on data included in the RAR.



# **RAC evaluation of physical hazards**

#### Summary of the Dossier Submitter's proposal

#### Explosive

The DS originally proposed no classification based on an ECC A.14 negative study. However, after the consultation they changed the conclusion to no classification due to lack of data.

#### Flammable solids

Clofentezine did not meet the pass criteria of an EEC A.10 test and consequently, the CLP criterion. Therefore, the DS concluded that clofentezine is not a flammable solid.

#### Self-reactive substances

The DS originally proposed no classification based on perceived available data. However, after the consultation they changed the conclusion to no classification due to lack of data.

#### **Pyrophoric solids**

Although no test data are provided, there is no information to indicate that clofentezine ignites after 5 minutes in contact with air. Consequently, the DS concluded that no classification was warranted.

#### Self-heating substances

The DS originally proposed no classification based on a negative ECC A.16 study and perceived available data in line with ECHA guidance on the application of the CLP criteria. However, after the consultation they changed the conclusion to no classification due to lack of data.

#### Substances which in contact with water emit flammable gases

Although no test data are provided, there is no information to indicate that clofentezine emits flammable gases in contact with water. Consequently, the DS concluded that no classification was warranted.

#### **Oxidising solids**

Clofentezine was not oxidising according to the results of an EEC A.17 test and therefore did not meet the CLP criterion for this hazard class. Consequently, the DS concluded that clofentezine did not warrant classification as an oxidising solid.

#### Corrosive to metals

Although there are no test data available, clofentezine is a solid that decomposes before boiling (exothermic effect is observed at 233.6°C). Consequently, the DS concluded that clofentezine did not warrant classification as corrosive to metals.

#### **Comments received during public consultation**

One MSCA commented on the lack of data for precise classification of clofentezine for physical hazards: explosive, self-reactive and self-heating properties. The MSCA highlighted that a negative result from the EEC A.14 did not automatically mean that substance should not be classified as explosive under CLP. The MSCA requested as a minimum a DSC measurement for justifying that the classification procedures for explosives or self-reactive substances does not need to be performed if the exothermic decomposition energy is less than 300 J/g. The MSCA recommended new testing to determine the exothermic decomposition energy and if this is higher than 300 J/g (but less than 500 J/g) also the SADT. They also recommend the following changes to the CLH Report:

Explosives: Reason for no classification - data lacking

Self-reactive substances: Reason for no classification - data lacking

Self-heating substances: Reason for no classification - data lacking

The MSCA pointed that the EU test method A.16 as described in Regulation (EC) No 440/2008 is generally inappropriate for substances with a low melting point and that the findings do not lead to a classification.

The DS agreed that the data gap should be reflected as a "data lacking" statement.

#### Assessment and comparison with the classification criteria

RAC agrees in general with MSCA comments for appropriate data lacking but noted some important points regarding explosive, self-reactive and self-heating properties.

#### Explosives

- Clofentezine does not contain aliphatic azo groups (-R-N=N-R-) shown in Table 6.1 indicating explosive properties (Table A6.1 in Appendix 6 of the UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria)
- Clofentezine is not strictly speaking a nitrogen rich compound nitrogen content 18%.
- In the paper, Löbbecke, 1999, not one of diaryl-substituted tetrazines showed exothermic decomposition energy above 300 J/g. In addition, according to the mechanism of decomposition of diaryl-substituted tetrazines explosive decomposition should not be expected. Almost the same should be valid for clofentezine.
- In the Bretherick's Handbooks no examples for explosive diaryl-substituted tetrazines are given.
- A negative EC A.14 study is available and might be accepted as supportive evidence.
- The substance is on the market for more than 15 years without incidents.

Consequently, RAC is of the opinion that **clofentezine does not warrant classification for explosive properties**.

#### Flammable solids

The screening part of the studies for UN test N.1 and the EEC A.10 method are equivalent, therefore a result as 'not highly flammable' from the EEC A.10 method is considered sufficient to conclude on the classification (see ECHA Chapter R.7a: Endpoint specific guidance, R.7.1.10.3). Consequently, RAC is of the opinion that **clofentezine does not warrant classification as a flammable solid**.

#### Self-reactive substances

Thermally unstable substances or mixtures that are not classified as explosives should be considered for classification as self-reactive substances and mixtures.

RAC notes:

- Clofentezine does not contain aliphatic azo groups shown in Table A6.1 of UN RTGD.
- Clofentezine does not contain chemical groups shown in Table A6.3 UN RTGD (equivalent to A6.2 on a previous version) indicating self-reactive properties.
- However, an accurate determination of the exothermic decomposition energy and SADT of the substance is lacking.

In conclusion, **no classification due to lack of data** is the only appropriate recommendation RAC can make.

#### Pyrophoric solids

If a substance does not ignite upon contact with a very hot flame (as in an EEC A.10 test) or upon heating, it will not ignite spontaneously at room temperature. Therefore, RAC considers **clofentezine does not warrant classification for this hazard class**.

#### Self-heating substances

RAC agrees that EU test method A.16 is in generally inappropriate for substances with low melting points (Guidance on the application of CLP criteria, 2017).

The conclusion from the test method A.16 should be: No self-ignition temperature up to the melting range (180-195 °C).

In conclusion, **no classification due to lack of data** is the only appropriate recommendation RAC can make.

#### Substances which in contact with water emit flammable gases

The substance does not contain metals or metalloid groups, hence it fulfils the criteria for no classification in the CLP regulation 2.12.4.1. Therefore, RAC agrees that **clofentezine does not warrant classification for this hazard class**.

#### **Oxidising solids**

Clofentezine does contain fluorine atoms which are chemically bound only to carbon hence it fulfils the no classification criteria in 2.14.4.1(a). Therefore, RAC considers **clofentezine does not warrant classification for this hazard class**.

#### Corrosive to metals

Clofentezine has a melting point of 180°C, which is above the 55°C indicated in the CLP guidance, and has no acid or basic groups. Overall, RAC agrees that **clofentezine does not warrant classification for this hazard class.** 

## HUMAN HEALTH HAZARD EVALUATION

## **RAC evaluation of acute toxicity**

#### Summary of the Dossier Submitter's proposal

#### Acute oral toxicity

The LD<sub>50</sub> values obtained in the six studies performed in four species (rats, mice, hamster and dogs) are clearly above the threshold value of 2000 mg/kg bw for triggering an acute oral toxicity classification according to CLP Regulation. The Dossier Submitter (DS) proposed no classification for acute oral toxicity.

#### Acute dermal toxicity

The LD<sub>50</sub> observed in two studies both in rats showed LD<sub>50</sub> greater than 1332 mg/kg bw (limit dose) and 2100 mg/kg bw, which is above the threshold value of 2000 mg/kg bw for triggering an acute dermal toxicity classification. The DS proposed no classification for acute dermal toxicity.

#### Acute inhalation toxicity

Two acute inhalation studies in rats resulted in 4-hour inhalation  $LC_{50}$  values of > 5.20 mg/L, which is above the value for classification in the CLP Regulation (i.e. 5 mg/L dust/mist). The DS proposed no classification for acute inhalation toxicity.

#### **Comments received during public consultation**

No comments were received

#### Assessment and comparison with the classification criteria

#### Acute oral toxicity

Summary of animal studies on acute oral toxicity:

| Method                                                                                                                                | Specie                                                                                                                                                                        | Value<br>LD <sub>50</sub>                                                                                                                                                                                                                                                                                                                                                                                             | Reference               |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Method<br>comparable to<br>OECD TG 401<br>GLP: No<br>Study acceptable<br>as supporting<br>information                                 | Purity: 99%<br>Rat strain: Sprague-<br>Dawley<br>Oral (gavage)<br>3 rats/sex/dose<br>Doses: 0, 800, 1131,<br>1600, 2261 and 3200<br>mg/kg bw<br>14-day observation period     | Mortality: not occurred.<br>Clinical signs: slight urinary incontinence in 1 $\sigma$ and 19<br>at 3200 mg/kg bw and slight salivation in 1 $\sigma$ at 1131<br>mg/kg bw. Pink coloration of faeces (attributed to the<br>test chemical) between 20 and 22 hours was seen<br>after dosing in females at all dose levels and in males<br>at $\geq$ 2261 mg/kg bw.<br>LD <sub>50</sub> : > 3200 mg/kg bw for both sexes | Anonymous<br>26 (1980)  |
| Acute oral<br>toxicity study in<br>rats<br>Method: OECD<br>TG 401<br>GLP: No<br>Study acceptable                                      | Purity: 99.3%<br>Rat strain: Sprague-<br>Dawley<br>Oral (gavage)<br>5 rats/sex/dose<br>Doses: 5200 mg/kg bw<br>(limit test) and controls<br>14-day observation period         | Mortality: not occurred.<br>Clinical signs: not observed.<br>Bodyweight: no effects.<br>Necropsy: no treatment related effects.<br>LD <sub>50</sub> : > 5200 mg/kg bw for both sexes                                                                                                                                                                                                                                  | Anonymous<br>27 (1986a) |
| Acute oral<br>toxicity study in<br>mice<br>Method<br>comparable to<br>OECD TG 401<br>GLP: No<br>Study acceptable                      | Purity: 99.1%<br>Mice strain: CD-1<br>Oral (gavage)<br>6 mice/sex/dose<br>Doses: 3200 mg/kg bw<br>(limit test) and controls<br>14-day observation period                      | Mortality: none.<br>Clinical signs: not observed.<br>Bodyweight: (↓) significant in ♀ (days 1-8).<br>Necropsy: spleen with pale and pitted appearance or<br>apparently small in 4/6ơ and 1/6♀ vs. 0/6ơ and 1/6♀ in<br>controls.<br>LD <sub>50</sub> : > 3200 mg/kg bw for both sexes                                                                                                                                  | Anonymous<br>28 (1986a) |
| Acute oral<br>toxicity study in<br>mice<br>Method: OECD<br>TG 401<br>GLP: No<br>(predates GLP)<br>Study acceptable                    | Purity: 99.3%<br>Mice strain: Swiss<br>CR1:CD1 (ICR) BR<br>Oral (gavage)<br>5 mice/sex/dose<br>Doses: 5200 mg/kg bw<br>(limit test) and controls<br>14-day observation period | Mortality: none.<br>Clinical signs: not observed.<br>Bodyweight: no effects.<br>Necropsy: no treatment related effects.<br>LD <sub>50</sub> : > 5200 mg/kg bw for both sexes                                                                                                                                                                                                                                          | Anonymous<br>29 (1986b) |
| Acute oral<br>toxicity study in<br>hamster<br>Method<br>comparable to<br>OECD TG 401<br>GLP: No<br>(predates GLP)<br>Study acceptable | Purity: 99.1%<br>Hamster strain: Syrian<br>Oral (gavage)<br>6 hamsters/sex/dose<br>Doses: 3200 mg/kg bw<br>(limit test) and controls<br>14-day observation period             | Mortality: none.<br>Clinical signs: not observed.<br>Bodyweight: no effects.<br>Necropsy: no treatment related effects.<br>LD <sub>50</sub> : > 3200 mg/kg bw for both sexes                                                                                                                                                                                                                                          | Anonymous<br>30 (1980)  |
| Acute oral<br>toxicity study in<br>dogs<br>Method<br>comparable to<br>OECD TG 401<br>GLP: No<br>(predates GLP)<br>Study acceptable    | Purity: 98.8-99.6%<br>Dog strain: Beagle<br>Oral (gavage)<br>2 dogs/sex in controls and<br>at 2000 mg/kg bw and 1<br>at 1000 mg/kg bw<br>14-day observation period            | Mortality: none.<br>Clinical signs: not observed.<br>Bodyweight: no effects.<br>Necropsy: slight focal hyperplasia of the renal papillary<br>epithelium was observed amongst treated male and<br>female dogs. Although such changes were not evident<br>in controls, this is a common, spontaneous lesion in<br>laboratory dogs.<br>LD <sub>50</sub> : > 2000 mg/kg bw for both sexes                                 | Anonymous<br>31 (1981)  |

The LD<sub>50</sub> values obtained from the six studies performed in four species (rats, mice, hamster and dogs) are clearly above the threshold value of 2000 mg/kg bw for triggering acute oral toxicity classification according to the CLP Regulation. RAC concludes, in line with the DS, that **no** classification for acute oral toxicity is warranted.

#### Acute dermal toxicity

| Method                 | Species                                           | Value<br>LD <sub>50</sub>                         | Reference  |
|------------------------|---------------------------------------------------|---------------------------------------------------|------------|
| Acute dermal           | Purity: 99.1%                                     | Mortality: none.                                  | Anonymous  |
| toxicity study in      | Rat strain: Sprague                               | Clinical signs: not observed.                     | 32 (1980b) |
| Mathad comparable      | Dawley                                            | Bodyweight: no effects.                           |            |
| to OFCD TG 402         | 6 rats /sex/dose                                  | Necropsy: no treatment related effects.           |            |
| GLP: No                | Doses: 1332 mg/kg bw                              | 10cc > 1332 mg/kg by for both seves               |            |
| Supporting information | 21 h of exposition<br>(occlusive dressing)        | LD <sub>50</sub> . > 1352 mg/kg bw for both sexes |            |
|                        | 14-day observation period                         |                                                   |            |
| Acute dermal           | Purity: 99.3%                                     | Mortality: none.                                  | Anonymous  |
| toxicity study in      | Rat strain: Sprague                               | Clinical signs: not observed.                     | 33 (1987)  |
| Method comparable      | Dawley                                            | Bodyweight: no effects.                           |            |
| to OECD TG 402         | 5 rats /sex/dose                                  | Necropsy: no treatment related effects.           |            |
| GLP: No (prior to      | Doses: 2100 mg/kg bw<br>(limit test) and controls |                                                   |            |
| GLP enforcement)       | 24 h of exposition                                | $LD_{50}$ : > 2100 mg/kg bw for both sexes        |            |
| Study acceptable       | (occlusive dressing)                              |                                                   |            |
|                        | 14-day observation period                         |                                                   |            |

Summary of animal studies on acute dermal toxicity:

The acute dermal toxicity was tested in two studies, both in rats, and the observed  $LD_{50}$  were greater than 1332 mg/kg bw (limit dose) and 2100 mg/kg bw. The value is above the threshold value of 2000 mg/kg bw for triggering acute dermal toxicity classification. RAC agrees with the DS and concludes **no classification for acute dermal toxicity is warranted**.

#### Acute inhalation toxicity

Summary of animal studies on acute inhalation toxicity.

| Method                                                  | Species                                                        | Test substanc<br>partic                                                                                     | e, Dose leve<br>le size (MM        | els, form and AD) | Value LC50                                               | Reference                     |  |  |  |            |                                  |     |       |  |  |
|---------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------|----------------------------------------------------------|-------------------------------|--|--|--|------------|----------------------------------|-----|-------|--|--|
| Acute inhalation<br>toxicity study in<br>rats<br>Method | Rat strain:<br>Sprague Dawley<br>Whole body<br>exposure system | The study was performed with a preparation: wettable powder (WP) containing 77.6-82.4% w/w of clofentezine. |                                    |                   | Mortality: none.<br>Clinical signs:<br>coolness to touch | Anonymous<br>34 (1982)        |  |  |  |            |                                  |     |       |  |  |
| comparable to                                           | for 6 hour and                                                 |                                                                                                             | Va                                 | alue              | removal of animals                                       |                               |  |  |  |            |                                  |     |       |  |  |
| OECD TG 403<br>GLP: No                                  | thereafter 14-<br>day observation<br>5<br>animals/sex/dose     | Parameter                                                                                                   | Active<br>ingredient               | Preparation       | from the exposure                                        |                               |  |  |  |            |                                  |     |       |  |  |
| Deviations: 6 h<br>of exposure                          |                                                                | 5<br>animals/sex/dose                                                                                       | Nominal<br>concentration<br>(mg/L) | 9.08              | 11.35                                                    | $LC_{50} > 1.51 \text{ mg/L}$ |  |  |  |            |                                  |     |       |  |  |
| Instead of 4 h<br>Supporting<br>information             |                                                                | Mean<br>achieved<br>atmosphere<br>concentration<br>(mg/L)                                                   | 1.51                               | 1.89              |                                                          |                               |  |  |  |            |                                  |     |       |  |  |
|                                                         |                                                                |                                                                                                             |                                    |                   |                                                          |                               |  |  |  | Part<br>(M | Particle size<br>(MMAD ±<br>GSD) | 2.7 | ± 0.2 |  |  |
|                                                         |                                                                | % inspirable<br>(< 4 μm)                                                                                    | > 79.6%                            |                   |                                                          |                               |  |  |  |            |                                  |     |       |  |  |
|                                                         |                                                                |                                                                                                             |                                    |                   |                                                          |                               |  |  |  |            |                                  |     |       |  |  |

| Method                             | Species                                                                                              | Test substance, Dose leve<br>particle size (MM      | Value LC50 | Reference                         |                        |
|------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------|-----------------------------------|------------------------|
| Acute inhalation toxicity study in | Rat strain:<br>HsdHanTM:                                                                             | Purity: 98.2%.                                      |            | Mortality: not seen.              | Anonymous<br>35 (2010) |
| rats                               | WIST rats                                                                                            | Parameter                                           | Value      | Necropsy:                         |                        |
| Method                             | Nose-only for 4<br>hour exposure<br>and thereafter<br>14-day<br>observation<br>5<br>animals/sex/dose | Nominal concentration<br>(mg/L)                     | 6.17       | abnormally dark<br>lungs in 2/5 9 |                        |
| OECD TG 403<br>GLP: Yes            |                                                                                                      | Mean achieved<br>atmosphere<br>concentration (mg/L) | 5.20       | LC <sub>50</sub> > 5.20 mg/L      |                        |
| Study acceptable                   |                                                                                                      | Chamber flow rate<br>(L/min)                        | 50         |                                   |                        |
|                                    |                                                                                                      | Particle size (MMAD $\pm$                           | 3.24 ±     |                                   |                        |
|                                    |                                                                                                      | GSD)                                                | 2.45       |                                   |                        |
|                                    |                                                                                                      | % inspirable (< 4 μm)                               | 59.3%      |                                   |                        |

In Anonymous 34 (1982), an acute inhalation toxicity study in rats, performed with a preparation consisting of a wettable powder of clofentezine and deemed acceptable only as supporting information, the  $LC_{50}$  was found to be greater than 1.51 mg/L after 6-hour exposition.

In Anonymous 35 (2010), an acute inhalation toxicity study in rats carried out with clofentezine, the  $LC_{50}$  was found to be greater than 5.20 mg/L after 4-hour exposition.

Based on the 4-hour inhalation  $LC_{50}$  of > 5.20 mg/L for rats is above the value for classification in the CLP Regulation (i.e. 5 mg/L dust/mist) RAC agrees with the DS that **no classification for acute inhalation toxicity is warranted**.

# RAC evaluation of specific target organ toxicity – single exposure (STOT SE)

#### Summary of the Dossier Submitter's proposal

The only effects observed in the range for STOT SE classification after oral administration were slight salivation in rats and slight focal hyperplasia of the renal papillary epithelium in dogs. The effects in dogs are a common, spontaneous lesion, while the findings in rats were not considered by the DS to be sufficiently adverse to justify classification. No relevant effects were observed after dermal application or inhalation of clofentezine.

No clinical signs were observed which are relevant for classification for STOT SE 3 according to CLP Regulation (respiratory tract irritation and narcotic effects).

#### **Comments received during public consultation**

No comments were received.

#### Assessment and comparison with the classification criteria

RAC agrees with the DS. The slight clinical effects seen in one rat (slight salivation) and the observed slight focal hyperplasia of the renal papillary epithelium in dogs were not relevant for classification. The renal hyperplasia is commonly observed and occurs spontaneously in laboratory dogs. Therefore, **no classification for specific target organ toxicity – single exposure is warranted**.

# **RAC evaluation of skin corrosion/irritation**

#### Summary of the Dossier Submitter's proposal

In a guinea pig skin irritation study, slight oedema (not graded) was observed in 2/12 application sites of 6 animals (two sites/animal). It is not known if these two positive responses at two application sites occurred in one or two animals. The results indicated negligible primary irritation of clofentezine. The study is considered acceptable as additional supporting information only due to a large number of deficiencies.

An *in vitro* human skin irritation assay based on an OECD TG 439 compliant method resulted in a mean relative tissue viability > 50%, indicating that clofentezine did not have skin -irritating potential. The DS noted that according to the ECHA Guidance on the application of the CLP criteria (July 2017) this method can reliably distinguish non-classified from classified substances and it is considered valid for the evaluation of skin irritation potential of substances.

The DS suggested, based on data available, that clofentezine does not require classification as skin irritant.

#### **Comments received during public consultation**

No comments were received.

#### Assessment and comparison with the classification criteria

A summary table of the submitted studies relating to skin corrosion/irritation is presented below:

| Method                                                                                                                                                                | Species                                                                                                                                                                                                                                                                                                                                                                                        | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reference                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Skin irritation<br>study in guinea<br>pigs<br>Method<br>comparable to<br>OECD TG 404<br>GLP: No (predates<br>GLP)<br>Study acceptable<br>as supporting<br>information | Purity: 99.1%<br>Guinea pig strain: Dunkin-Hartley<br>6 animals (female)<br>Vehicle: 0.5% gum tragacanth (aq)<br>Test preparation: 333 mg/mL of the<br>test chemical in the vehicle.<br>4 sites of application/animal: 0.2<br>mL of the test preparation in two<br>sites (A and D), 1 with 0.2 mL of<br>vehicle (B) and one for blank (C).<br>24 h of exposition and 7 days of<br>observation. | <ul> <li>Only slight oedema (not graded) was observed in 2/12 test application areas:</li> <li> <ul> <li>1 until 2 ½ days after washing application area.</li> <li> <ul> <li>1 from 2 ½ hours after washing application area until 2 ½ days.</li> </ul> </li> <li>It is not known according to data available if both areas corresponded to 1 or 2 animals.</li> <li>Conclusion: Negligible primary skin irritation</li> </ul></li></ul>                                                                                                                                                                  | Anonymous<br>36 (1980c)                |
| In vitro skin<br>irritation: human<br>skin model test<br>Method OECD TG<br>439: EPISKIN-<br>SMTM<br>GLP: Yes<br>Study acceptable                                      | Purity: 98.7%<br>Skin model: (non-cancerous), adult<br>human-derived epidermal<br>keratinocytes (NHEK) cultured to<br>form a multi-layered, highly<br>differentiated model of the human<br>epidermis<br>Control negative (10 $\mu$ L):<br>Phosphate Buffered Saline<br>Control positive (10 $\mu$ L) : 5%<br>sodium dodecyl sulphate<br>Clofentezine: (10 mg + 10 $\mu$ L<br>distilled water)  | $\begin{tabular}{ c c c c c } \hline & & Negative & Positive & Test \\ \hline Control & Control & Chemical \\ \hline Mean & & & \\ relative & & & \\ tissue & 100 \pm & 18.5 \pm & 101.4 \pm \\ viability & 4.8 & 6.1 & 4.5 \\ \hline (\%) \pm & & & \\ SD & & \\ \hline Evaluation criteria according to the method: \\ Irritant: $\leq 50\%$ mean tissue viability (% negative control). \\ Non-Irritant: $> 50\%$ mean tissue viability (% negative control). \\ \hline Non-Irritant: $> 50\%$ mean tissue viability (% negative control). \\ \hline Conclusion: Non-irritant \\ \hline \end{tabular}$ | Gehrke<br>(2015)<br>(AS)<br>B.6.2.4-02 |

In the guinea pig skin irritation study slight oedema (not graded) was observed in 2/12 application sites of 6 animals. The result indicated negligible primary irritation of clofentezine. The study is considered acceptable only as additional information due to a large number of deficiencies.

In the *in vitro* human skin irritation assay based on an OECD TG 439 method the result was a mean relative tissue viability > 50%, indicating the non-irritative potential of clofentezine.

Based on the negative results in the available studies, RAC agrees with the DS that **clofentezine does not warrant classification as a skin irritant.** 

## RAC evaluation of serious eye damage/irritation

#### Summary of the Dossier Submitter's proposal

The DS proposed no classification for eye damage/irritation. According to the ECHA Guidance on the application of the CLP criteria (July 2017), when 6 rabbits are used in the eye irritation study the test material is considered irritant to the eye when conjunctival erythema is  $\geq$  2 in at least 4/6 animals. The erythema of 0.33 in 2/6 animals obtained in the study does not meet the criteria for classification as irritating to the eyes according to CLP.

#### **Comments received during public consultation**

No comments were received.

#### Assessment and comparison with the classification criteria

A summary table of the submitted study on eye damage/irritation is presented below:

| Method                                                    | Species                                                                                      | Results                                                                                                                                                                                                                                                 | Reference                                                 |                      |  |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------|--|
| Eye irritation study in rabbits                           | Purity: 99.3%<br>Rabbit strain: New<br>Zealand albino                                        | Results of animals with unwashed eyes after instillation:                                                                                                                                                                                               | Anonymous<br>37 (1986)                                    |                      |  |
| comparable to OECD<br>TG 405                              | 6 animals (female)<br>70 mg of undiluted                                                     | Cornea Iris Conjunctiva<br>Redness Chemosis                                                                                                                                                                                                             | B.6.2.5-01                                                |                      |  |
| GLP: No (predates GLP<br>enforcement)<br>Study acceptable | test material<br>equivalent to a<br>volume of 0.1 mL<br>instilled into one                   | After<br>24 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0<br>hours                                                                                                                                                                                    |                                                           |                      |  |
|                                                           | eye. The other one<br>served as control.<br>Eyes remained<br>unwashed after<br>instillation. | eye. The other one<br>served as control.<br>Eves remained                                                                                                                                                                                               | eye. The other one<br>served as control.<br>Eves remained | After<br>48<br>hours |  |
|                                                           |                                                                                              | After<br>72<br>hours00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 <th< td=""><td></td></th<> |                                                           |                      |  |

RAC agrees with the DS that based on the erythema score of 0.33 in 2/6 animals, the criteria for classification as irritating to the eyes according to CLP are not met. Therefore, RAC considers that **clofentezine does not warrant classification for Serious Eye Damage / Irritation**.

### **RAC** evaluation of skin sensitisation

#### Summary of the Dossier Submitter's proposal

The DS proposed no classification for skin sensitisation based on a guinea pig maximisation test (GPMT) performed with 20 animals for the tested and control groups. After challenge with 0.5 g of the test material moistened with 0.5 mL of ethanol a positive response was observed in 2/20 animals (10%). The response in these two animals was observed 24 hours after challenge but not after 48 hours. No response was observed in the 20 animals of the control group (0%). According to the results of the study, clofentezine did not show skin sensitization potential.

#### Comments received during public consultation

No comments were received.

#### Assessment and comparison with the classification criteria

| Method                                      | Test<br>substance                                                                                                      | duration                                                                                                                                | Dose levels<br>of exposure and results                                                                                                                | Reference          |  |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| Guinea pig                                  | Purity: not                                                                                                            | Preliminary test:                                                                                                                       |                                                                                                                                                       | Anonymous          |  |
| maximisation test                           | stated                                                                                                                 | Intradermal injection (ind                                                                                                              | Intradermal injection (induction): no test performed. A saturated                                                                                     |                    |  |
| Guideline: OECD<br>TG 406.                  | Female<br>Dunkin                                                                                                       | solution (80 g/L) of the te concentration of 8% p/v w                                                                                   | st compound in ethanol equivalent to a vas used.                                                                                                      | (AS)<br>B.6.2.6-01 |  |
| Deviations: An<br>additional topical        | Hartley<br>guinea pigs<br>(females)                                                                                    | Topical application (induct<br>application sites/animal w<br>following concentrations ir                                                | ion and challenge): 4 guinea pigs with 4<br>ere treated (occlusive patch 24 h) with the<br>n ethanol:                                                 |                    |  |
| test chemical was<br>applied<br>immediately | application of the<br>test chemical was 20 animals<br>applied for main<br>— A saturated solution (0.8 g/L) in ethanol. |                                                                                                                                         |                                                                                                                                                       |                    |  |
| post-intradermal<br>injection on day        | and 20 for<br>control                                                                                                  | Results: individual irritation reaction) in the 4 guinea p                                                                              |                                                                                                                                                       |                    |  |
| <b>-</b> .                                  | Vehicle:                                                                                                               | <u>Main test:</u>                                                                                                                       |                                                                                                                                                       |                    |  |
| GLP: No<br>(predates GLP<br>enforcement)    | ethanol                                                                                                                | Induction<br>intradermal injection                                                                                                      | Test                                                                                                                                                  |                    |  |
| Study acceptable                            |                                                                                                                        | 1                                                                                                                                       | FCA (Freund's Complete Adjuvant)                                                                                                                      |                    |  |
|                                             |                                                                                                                        | 2                                                                                                                                       | Saturated solution (8 % p/v)                                                                                                                          |                    |  |
|                                             |                                                                                                                        | 3                                                                                                                                       | Saturated solution (8 % p/v) mixed with FCA in proportion 1:1                                                                                         |                    |  |
|                                             |                                                                                                                        | Induction topical<br>application day 1<br>(occlusive patch 48 h)<br>0.5 g of the neat test chemical<br>moistened with 0.5 mL of ethanol |                                                                                                                                                       |                    |  |
|                                             |                                                                                                                        | Induction topical<br>application day 8<br>(occlusive patch 48 h)                                                                        | 0.5 g of the neat test chemical moistened with 0.5 mL of ethanol                                                                                      |                    |  |
|                                             |                                                                                                                        | Challenge topical<br>application day 22<br>(occlusive patch 24 h)                                                                       | <ul> <li>0.5 g of the neat test chemical<br/>moistened with 0.5 mL of ethanol</li> <li>50% suspension of the test material in<br/>ethanol*</li> </ul> |                    |  |
|                                             |                                                                                                                        | *Used to ensure that a no                                                                                                               | n-irritant concentration was used and                                                                                                                 |                    |  |

A summary of the submitted maximisation test on guinea pigs is presented below:

| Method | Test<br>substance | duration of                                                                                                                                                                                                  | Dose level<br>exposure | s<br>and results    |                         | Reference |
|--------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|-------------------------|-----------|
|        |                   | applied on the other flank of                                                                                                                                                                                | the anima              |                     |                         |           |
|        |                   | Control group had the same treatment on day 1 and 8 using ethanol instead of active substance.                                                                                                               |                        |                     |                         |           |
|        |                   | <u>Results</u> 2/20 (10%) animals showed a weak response (grade 1) 24 h after challenge with the neat test chemical but not at 48 hours. No response in the controls was observed ( $0/20 \rightarrow 0\%$ ) |                        |                     |                         |           |
|        |                   | Challenge phase                                                                                                                                                                                              |                        | Incidence (<br>resp | of significant<br>onses |           |
|        |                   | Group                                                                                                                                                                                                        |                        | 24 hours            | 48 hours                |           |
|        |                   | 0.5 g of neat test                                                                                                                                                                                           | Control                | 0/20                | 0/20                    |           |
|        |                   | chemical moistened with<br>0.5 mL ethanol                                                                                                                                                                    | Test                   | 2/20 ª              | 0/20                    |           |
|        |                   | 50% suspension of the                                                                                                                                                                                        | Control                | 0/20                | 0/20                    |           |
|        |                   | test chemical in ethanol                                                                                                                                                                                     | Test                   | 0/20                | 0/20                    |           |
|        |                   | <sup>a</sup> : The two positive response                                                                                                                                                                     | es are of gr           | ade 1               |                         |           |
|        |                   | Conclusion: Not sensitising.                                                                                                                                                                                 |                        |                     |                         |           |

RAC notes that no positive control group was included in this study and the maximum concentration used was 50%.

Based on the results from the GPMT showing a positive response of 2/10 animals 24 h after challenge but not after 48 hours, RAC agrees with the DS that clofentezine did not show skin sensitization potential, **therefore no classification for skin sensitisation is warranted.** 

# **RAC** evaluation of specific target organ toxicity – repeated exposure (STOT RE)

#### Summary of the Dossier Submitter's proposal

The DS proposed no classification for STOT RE based several studies conducted by oral administration including:

One 17-d dose range finding, two 90-d, one 13-week neurotoxicity studies in rats, one 17-d dose range finding, one 28-d dose range finding, one 13-week neurotoxicity and one year studies in dogs and one 90-d in mice. Palatability studies were performed with rats (21-d), in mice (42-d) and in dogs (28-d). A multigenerational study in rats and two carcinogenicity studies, one in rats and one in mice, were also considered for STOT RE effects.

The main target organ was the liver according to the results of the available studies listed above. However, the only effects deemed relevant for STOT RE classification were found in the oral 90day dietary study in rat with centrilobular hepatocyte enlargement in males and increases in the absolute and relative weights of liver and in the level of cholesterol at 26.2/29.3 mg/kg bw/day in both sexes. Effects were below the guidance value for STOT RE 2 (100 mg/kg bw/day) classification. The DS pointed out that no more doses were tested from 26.2/29.3 mg/kg bw/day to the limit dose of 100 mg/kg bw/day since the next tested dose level in the study was 265/292 mg/kg bw/day. It could be sufficient that the severity of the effects in liver can increase from 26.2/29.3 mg/kg bw/day onwards. Taking into account the observed effects in liver at this dose level and the lack of data at higher doses below the cut-off value for STOT RE 2, the DS considered that there is some uncertainty on the potential of clofentezine for causing adverse effects in liver. However, the weight of the evidence based on the available information from all studies in several species indicate that clofentezine does not cause liver toxicity at dose levels below guidance values for STOT RE classification. Consequently, the DS did not propose STOT RE classification.

#### **Comments received during public consultation**

One comment from the company / manufacturer related to the centrilobular hepatocyte enlargement observed amongst male rats at doses  $\geq$  400 ppm but not in females which was reversible after cessation of treatment and dosing with control diet for six weeks.

Although the effects observed at this dose level fall within the concentration range for a STOT RE 2 classification, these findings were an adaptive response of the liver and reversible after cessation of treatment and thus considered non-adverse. According to this commenter's opinion, no STOT RE classification is warranted.

#### Assessment and comparison with the classification criteria

A summary of studies witch shows relevant findings for classification for STOT RE are listed below:

|                                                                                                                                                       | Effect relevant for STOT RE                                                                                                                                                                                                                                                                                                                                                    |                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Dose levels and duration<br>of exposure                                                                                                               | Effects statistically significantly and dose-related unless stated otherwise as not significant (n.s.) or not dose-related (ndr)/ncdr (not clearly dose-related)                                                                                                                                                                                                               | Reference                                                                                                   |
| Oral 17-day range-finding<br>study in rats<br>Doses: 0, 5, 20, 80, 320 and<br>1280 mg/kg bw/day daily for<br>17 days                                  | <pre>STOT RE 2 (≤ 529.4 mg/kg bw/day (Calculated)) 320 mg/kg bw/day • Liver: (↑) absolute weight in ♀ (16%) and (↑) relative weight in ♂/♀ (7% n.s./10% ncdr). 80 mg/kg bw/day • Liver: (↑n.s.) absolute weight in ♀ (14%) and (↑) relative weight in ♂/♀ (9% ncdr/12% ncdr). STOT RE 1 (≤ 52.9 mg/kg bw/day):</pre>                                                           | Anonymous<br>68 (1980)                                                                                      |
|                                                                                                                                                       | 20 mg/kg bw/day<br>■ Liver: (↑) absolute (14%) and relative (9% ncdr) weight in $Q$ .                                                                                                                                                                                                                                                                                          |                                                                                                             |
| Oral 90-day dietary study in<br>rat<br>Doses of 0, 40, 400 and 4000<br>equivalent to 0, 2.65/2.91,<br>26.2/29.3 and 265/292<br>mg/kg bw/day for ơ/♀   | <ul> <li>STOT RE 2 (≤ 100 mg/kg bw/day):</li> <li>400 ppm (26.2σ/29.3° mg/kg bw/day)</li> <li>(↑) cholesterol in σ/° [week 12 (18%/50%)] and in ° [week 4 (34%) and 8 (23%)].</li> <li>Liver: (↑) absolute weight in σ/° [week 13 (11%/13%)] and (↑) relative weight in σ/° [week 13 (13%/9%)].</li> <li>Centrilobular hepatocyte enlargement: 13/20 σ (reversible)</li> </ul> | Anonymous<br>74 (1981)<br>Anonymous<br>75, 1983<br>(Additional<br>examination<br>of the liver<br>histology) |
| Oral 28-day range-finding<br>study in dog<br>Doses of 200, 2000 and<br>20000 ppm equivalent to 10,<br>100 and 1000 mg/kg bw/day<br>(no control group) | <ul> <li>STOT RE 2 (≤ 300 mg/kg bw/day):</li> <li>2000 ppm (100 mg/kg bw/day)</li> <li>Increase in ♂/♀ in the liver absolute (38%/7%) and relative weight (34%/21%) with respect to the lowest dose but only clearly dose-related in ♀.</li> </ul>                                                                                                                             | Anonymous<br>73 (1983)                                                                                      |

|                                                                                                                                                                         | Effect relevant for STOT RE                                                                                                                                                                                                                                         |                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Dose levels and duration<br>of exposure                                                                                                                                 | Effects statistically significantly and dose-related unless stated otherwise as not significant (n.s.) or not dose-related (ndr)/ncdr (not clearly dose-related)                                                                                                    | Reference                                                                          |
| Oral 13-week dietary study<br>in dog<br>Doses of 0, 3200, 8000 and<br>20000 ppm equivalent to 0,<br>80, 200 and 500 mg/kg<br>bw/day                                     | STOT RE 2 (≤ 100 mg/kg bw/day and > 10 mg/kg bw/day):<br>3200 ppm (80 mg/kg bw/day)<br>• (↑) AP in ♀ [day 30 (94% ndr) and day 86 (44% ndr)].<br>• Liver: in ♂ (↑) abs wt (31% ndr) and (↑n.s) rel wt (20% ndr) and in<br>♀ (↑n.s) abs wt and rel wt (13% and 12%). | Anonymous<br>78 (1981)                                                             |
| Multigenerational study in<br>rats<br>F1 treatment for 33 weeks<br>Doses:<br>F <sub>1 males</sub> → F2A and F2B:<br>36.1 mg/kg bw/day                                   | <ul> <li>STOT RE 2 (≤ 39 mg/kg bw/day and &gt; 3.9 mg/kg bw/day):</li> <li>↑ Relative liver weight (16%) in ♂.</li> <li>Increased incidence of minimal centrilobular hepatocyte enlargement in ♂ (4/10 vs 0/10 in controls).</li> </ul>                             | Anonymous<br>61 (1984)                                                             |
| Long-term oral toxicity and<br>carcinogenicity study in rats<br>(27 months)<br>Doses of 0, 10, 40 and 400<br>ppm, equivalent to 0.43,<br>1.72 and 17.3 mg/kg<br>bw/day. | STOT RE 2 (≤ 12.5 mg/kg bw/day):<br>400 ppm (17.3 mg/kg bw/day)<br>Thyroid: follicular cell tumours                                                                                                                                                                 | Anonymous<br>42 (1985a)<br>Anonymous<br>43 (1985-<br>88)<br>Anonymous<br>44 (1988) |
| Long-term oral toxicity and<br>carcinogenicity study in mice<br>(105 weeks)<br>Doses of 0, 50, 500 and 5000<br>ppm, equivalent to 0, 5.3,<br>56.9, 557.1 mg/kg bw/day.  | STOT RE 2 (≤ 12.5 mg/kg bw/day):<br>5000 ppm (557.1 mg/kg bw/day)<br>Liver: Hepatocellular tumours                                                                                                                                                                  | Anonymous<br>42 (1985a)                                                            |

RAC agrees with the DS that the main target is the liver. In the 17-d rat study, absolute and relative liver weights were increased, however relative weight were 7 and 10%, in male and females respectively, and were not accompanied by histopathological findings or any clinical chemistry parameters.

In the 90-d rat study, centrilobular hepatocyte enlargement was observed in males at 400 ppm (26.2/29.3 mg/kg bw/day) along with increases in the absolute and relative weights of liver (both sexes) and significant and dose-dependent increases in the plasma cholesterol level in both sexes. These effects show a pattern of liver damage even if they were reversible after the recovery period on week 19. It has to be noted that liver hypertrophy starts in the centrilobular hepatocytes, spreading to the intermediate zone as it progresses, and is eventually observed as diffuse hypertrophy all around the lobule of the liver. The liver effects observed in the 90-day rat repeated dose toxicity study could be considered as indicative of adverse effects. No doses in this study were tested from 26/29 mg/kg bw/day to 265/292 mg/kg bw/day, where centrilobular hepatocyte enlargement was observed in 20/20 in both males and females together with significantly increased relative liver weight (> 50%).

In the 28-d dose range finding study in dogs, the increases in liver weight were not accompanied by changes in clinical chemistry or histopathological findings.

In the 13 week study in dogs, some changes in clinical chemistry were observed, however these were not dose related. Increased liver weight was also noted but without dose dependency in females and all liver effects were not accompanied by histopathological findings.

In the multigenerational study in rats, increases in relative liver weights (16%) were observed in females, while increased incidences of minimal centrilobular hepatocyte enlargement was observed in males.

In the 2-year long-term toxicity and carcinogenicity study in rats the target organs were liver and thyroid at 400 ppm, equivalent to 17.3 and 22.1 mg/kg bw/day for males and females, respectively. The dose of 17.3 mg/kg bw/day at which effects in male liver and thyroid were observed is above the extrapolated boundary guidance value for a 2-year study for STOT RE 2 (12.5 mg/kg bw/day).

In the 2-year carcinogenicity study in mice, the liver was the target organ from 500 ppm, equivalent to 50.7 and 56.9 mg/kg bw/day for males and females, respectively. Effects in liver at 56.9 mg/kg bw/day in females are of doubtful toxicological relevance. Besides, they are above the extrapolated boundary guidance value for STOT RE 2 classification for a 2-year carcinogenicity study (12.5 mg/kg bw/day). Consequently, the effects were not regarded relevant for STOT RE classification.

The effects observed in the 90-d rat study could indicate adverse effects in the liver. However, even if this effect is regarded adverse for liver, the weight of the evidence based on the whole available information on all studies in several species indicate that clofentezine does not cause a pattern of liver toxicity at dose levels below guidance values sufficient for STOT RE classification. Therefore RAC agrees with the DS that **clofentezine does not warrant classification for STOT RE**.

## RAC evaluation of germ cell mutagenicity

#### Summary of the Dossier Submitter's proposal

Clofentezine was not mutagenic in a valid *in vivo* somatic cell mutagenicity test and therefore the DS proposed no classification. The overall body of toxicological data from a number of *in vitro* and *in vivo* assays indicates that clofentezine is of no genotoxic concern. Therefore, no classification for mutagenicity under the CLP regulation was proposed.

#### **Comments received during public consultation**

No comments were received.

#### Assessment and comparison with the classification criteria

A summary of submitted mutagenicity / genotoxicity test *in vitro* is presented below:

| Method, guideline,<br>deviations if any                                                                                                         | Test system                                                                                                                | Test substance and dosage                                                                              | Results  | Reference                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------|----------------------------------------------|
| Bacterial gene mutation<br>(Ames Test)<br>Pre-OECD TG 471 (1983)<br>Study not acceptable, due<br>to the inadequacy of the<br>positive controls. | Salmonella typhimurium:<br>TA1535, TA100, TA1538,<br>TA98, TA1537.<br>S9 from livers of rats<br>induced with Aroclor 1254. | Clofentezine<br>Purity: Not stated<br>10, 33, 100, 330, 1000,<br>3300 µg/plate (± S9)<br>Solvent: DMSO | Negative | McConville<br>(1980)<br>B.6.4.1.1-01<br>(AS) |
| Bacterial gene mutation<br>(Ames Test)<br>OECD TG 471 (1997)                                                                                    | Salmonella typhimurium:<br>TA1535, TA100, TA1537,<br>TA98, TA102<br>S9 from livers of rats                                 | Clofentezine,<br>Purity: 98.4%<br>50, 150, 500, 1500,<br>5000 µg/plate (± S9)                          | Negative | Bowles (2005)<br>B.6.4.1.1-02<br>(AS)        |

| Deviations: None<br>GLP: Yes<br>Study acceptable                                                                                                                                                                                                                                                                | induced with<br>phenobarbitone and β-<br>naphthoflavone                                                                                                            | Solvent: DMF                                                                                                                                                                                                                                                                                                            |          |                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------|
| Mammalian cell gene<br>mutation test.<br>Pre-OECD TG 476 (1984)<br>Study not acceptable.                                                                                                                                                                                                                        | Mouse lymphoma L5178Y<br>TK <sup>+/-</sup> cells.<br>S9 from livers of rats<br>induced with Aroclor 1254                                                           | Clofentezine<br>Purity: 98.4%<br><u>4 h (-S9)</u> :<br>15, 30, 70, 100, 128<br>μg/mL<br><u>4 h (+S9)</u> :<br>2, 10, 30, 80, 128 μg/mL<br>Solvent: Acetone                                                                                                                                                              | Negative | Bootman and<br>Rees (1982)<br>B.6.4.1.2-01<br>(AS)      |
| Mammalian cell gene<br>mutation test.<br>OECD TG 476 (1997)<br>Deviations: None<br>GLP: Yes<br>Study acceptable                                                                                                                                                                                                 | Chinese hamster V79 cells<br>( <i>Hprt</i> locus)<br>S9 from livers of rats<br>induced with phenobarbital<br>and β-naphthoflavone                                  | Clofentezine,<br>Purity: 98.7%<br><u>4 h (±S9)</u> :<br>0.30, 0.76, 1.52, 2.27,<br>3.03, 7.58, 15.15, 22.73<br>µg/mL<br><u>20 h (-S9)</u> :<br>0.30, 0.61, 0.91, 1.21,<br>3.03, 6.06, 15.15, 18.18<br>µg/mL<br><u>4h (+S9)</u> : 15.15, 16.67,<br>18.18, 19.70, 21.21,<br>22.73, 24.24, 27.27<br>µg/mL<br>Solvent: DMSO | Negative | Wallner (2015a)<br>B.6.4.1.2-02<br>(AS)                 |
| Mammalian cell<br>chromosome aberrations<br>test<br>OECD TG 473 (1983)<br>Deviations: None<br>GLP: No (predates GLP<br>enforcement)<br>Supporting information.                                                                                                                                                  | Chinese hamster ovary cells<br>(CHO - K1- BH <sub>4</sub> )<br>S9 from livers of rats of<br>Sprague-Dawley origin<br>induced with Aroclor 1254                     | Clofentezine<br>Purity: 99.6%<br><u>20 h (-S9):</u><br>0.4, 2, 4 µg/mL<br><u>2 h (+S9):</u><br>0.4, 2, 4 µg/mL<br>Solvent: DMSO                                                                                                                                                                                         | Negative | Allen <i>et al.</i><br>(1987)<br>B.6.4.1.3<br>(AS)      |
| Gene conversion and<br>mitotic recombination test<br>in yeast<br>Pre-OECD TG 481 (1986)<br>Deviations: None<br>GLP: No (predates GLP<br>enforcement)<br>Study acceptable only as<br>supplementary information,<br>since this study is not<br>required and OECD TG 481<br>(1986) was deleted on 2<br>April 2014. | Saccharomyces cerevisiae,<br>D7 strain<br>S9 from livers of rats<br>induced with Aroclor 1254                                                                      | Clofentezine<br>Purity: 98.4%<br>12.5, 25, 50, 100, 200<br>µg/mL<br>Solvent: DMF:ethanol<br>(1:9)                                                                                                                                                                                                                       | Negative | Riach and<br>McGregor<br>(1983)<br>B.6.4.1.4-01<br>(AS) |
| Rec-assay<br>No test guideline available<br>GLP: No<br>Study acceptable only as<br>supplementary information,<br>since it is not required.                                                                                                                                                                      | Bacillus subtilis H17 (Rec <sup>+</sup> )<br>and M45 (Rec <sup>-</sup> )<br>S9 from livers of rats<br>induced with phenobarbital<br>and<br>$\beta$ -naphthoflavone | Clofentezine<br>Purity: Not stated<br>156, 313, 625, 1250,<br>2500 µg/disk (-S9)<br>78.1, 156, 313, 625,<br>1250 µg/disk (+S9)<br>Solvent: DMSO                                                                                                                                                                         | Negative | Inoue and<br>Nakajima<br>(1986)<br>B.6.4.1.4-02<br>(AS) |

A summary of submitted mutagenicity / genotoxicity test *in vivo* is presented below:

| Method, guideline, deviations if<br>any                                                                                                                                                                                                                                                                                                                               | Test system                    | Test substance and dosage                                                                                                                                                                              | Results  | Reference                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------|
| Micronucleus test (somatic cells)<br>Pre-OECD TG 474 (1983)<br>Deviations: A single sex (male). A<br>single sampling time.<br>GLP: No (predates GLP enforcement)<br>Study not acceptable, because the<br>bone marrow sampling used (6 h<br>post the 2 <sup>nd</sup> dose) is insufficient.                                                                            | Mice, CD-1 strain              | Clofentezine<br>Purity: 99.6%<br>Doses: 800, 1600, 3200<br>mg/kg bw/day (two oral<br>administrations<br>separated by 24 h).<br>Vehicle: 0.5% aqueous<br>gum tragacanth                                 | Negative | Anonymous<br>39 (1982)<br>B.6.4.2.1-01<br>(AS) |
| Micronucleus test (somatic cells)<br>OECD TG 474 (1983)<br>Deviations: None<br>GLP: No (predates to GLP<br>enforcement)<br>Study acceptable                                                                                                                                                                                                                           | Mice, CD-1 strain              | Clofentezine<br>Purity: 99.6%<br>Dose: 8000 mg/kg bw<br>(single oral<br>administration)<br>Vehicle: 0.5% sodium<br>carboxymethyl cellulose                                                             | Negative | Anonymous<br>40 (1987)<br>B.6.4.2.1-02<br>(AS) |
| Rodent dominant lethal test (germ<br>cells).<br>Pre-OECD TG 478 (1984)<br>Deviations: No inclusion of a positive<br>control. Exposure for 10 weeks<br>exceeded the recommended one.<br>GLP: No (predates to GLP<br>enforcement)<br>Study acceptable only as supporting<br>information since this study is not<br>required and by some deficiencies in<br>methodology. | Rats, Sprague Dawley<br>strain | Clofentezine<br>Purity: ≥ 98.1%<br>Diet containing 0.28,<br>2.81 and 27.8 mg/kg<br>bw/day for 10 weeks<br>following by pairing<br>each treated male with<br>two untreated females<br>for up to14 days. | Negative | Anonymous<br>41 (1983)<br>B.6.4.3-01<br>(AS)   |

The genotoxic potential of clofentezine has been investigated in a series of *in vitro* and *in vivo* studies.

The *in vitro* bacterial gene mutation study (Ames test) (Bowles, 2005) showed no evidence of mutagenicity following testing in five Salmonella strains when tested up to 5000  $\mu$ g/plate in the absence and presence of metabolic activation using the plate incorporation method.

In the *in vitro* mammalian cell gene mutation study (Wallner, 2015a) clofentezine did not induce forward mutation at the Hprt locus of V79 Chinese hamster cells. These conditions included treatment in both the absence (4 and 20 hours) and presence (4 hours) of a rat liver metabolic activation system, which was limited by toxicity (a reduction of relative total growth below 70%).

Although both the Ames study (McConville, 1980) and the mammalian cell gene mutation assay with mouse lymphoma L5178Y cells (Bootman and Rees, 1982) were not considered acceptable for the assessment due to deficiencies noted, both gave negative results.

Regarding DNA damage studies, as supplementary information, clofentezine was negative in a gene conversion and mitotic recombination test in yeast (Riach and McGregor, 1983) and in a Rec-assay with H17 (Rec+) and M45 (Rec-) strains of *Bacillus subtilis* (Inoue and Nakajima, 1986).

Three studies have been considered to assess the chromosomal aberration potential: the *in vitro* clastogenicity test in Chinese hamster ovary (CHO) cells (Allen *et al.*, 1987), the *in vivo* mouse bone marrow micronucleus test (Anonymous 40, 1987) and the *in vivo* rat lethal dominant mutation assay (Anonymous 41, 1983). Clofentezine did not induce either micronuclei or bone marrow cell toxicity in the mouse (single oral dose at 8000 mg/kg bw). Clofentezine was also negative in both an *in vitro* clastogenicity test and an *in vivo* lethal dominant mutation assay.

Based on all the data, it can be concluded that clofentezine showed no evidence for chromosomal aberration induction.

In the other *in vivo* mouse bone marrow micronucleus test (Anonymous 39, 1982), the results were negative, but it was not considered acceptable because the bone marrow sampling used was insufficient in order to evaluate chromosomal aberrations.

In conclusion, RAC agrees with the DS that **clofentezine does not warrant classification for germ cell mutagenicity**.

# **RAC evaluation of carcinogenicity**

#### Summary of the Dossier Submitter's proposal

Two long-term toxicity/oncogenicity studies were conducted with clofentezine, one in rats and one in mice.

**In a 27-month long-term toxicity and carcinogenicity study in rats** the doses tested were 0, 10, 40 and 400 ppm equivalent to 0, 0.43, 1.72 and 17.3 mg/kg bw/day, respectively, for males and 0, 0.55, 2.18 and 22.1 mg/kg bw/day, respectively, for females.

No mortality or clinical signs were associated with the treatment.

Blood chemistry revealed a statistically significant and dose-dependent increase in free thyroxine (T4) in males at 400 ppm in month 27. Other parameters of thyroid function were not affected. Other statistically significant differences of the biochemical parameters compared with controls at 400 ppm were only marginal and not dose-dependent.

The absolute liver weight was increased in month 27 from 10 ppm in males and at 400 ppm in females, though clearly dose-related only in males. Relative liver weights were increased in both sexes in months 12 and 27 at 400 ppm though the variation was greater than 10% only in males and dose-dependency was not clear.

Histopathology revealed observations in male liver at the high dose level of 400 ppm with significant (pairwise and dose-trend) centrilobular hepatocyte vacuolation (observed at interim sacrifice and in the total number of animals including the incidence at interim sacrifice, interim deaths and terminal sacrifice) and centrilobular hepatocyte enlargement (interim sacrifice, terminal sacrifice and total number of animals). Also observed was focal cyst degeneration of hepatocytes and fat deposits in a non-specific distribution, non dose-trend significant for the total number of animals and for focal hepatocyte necrosis, dose-trend significant for interim sacrifices and the total number of animals. Telagiectasia was present in both sexes but this was only dose-trend significant in females for the total number of animals.

Thyroid effects in males were manifested at 400 ppm by dose-trend significant agglomeration of colloid at interim sacrifice, terminal sacrifice and for the total number of animals which was also pairwise significant for terminal sacrifices. Besides, follicular cell hyperplasia was observed from 40 ppm in males but this was not dose-related and not statistically significant.

Other pairwise and dose-trend significant histopathological findings at 400 ppm were glomerular nephropathy in females in the interim deaths and interstitial mononuclear infiltration of the Harderian gland in males at the interim sacrifice and total number of animals.

At 400 ppm in males, there was a slight increase in the number of follicular cell tumours (combined adenomas and carcinomas) in the thyroid at terminal sacrifice (8/50 vs. 2/50 in controls). This may have been associated with the pairwise and dose-trend significant increase

of agglomeration of colloid at terminal sacrifice (18/21 vs 12/24 in control). These tumours are not pairwise significant but exhibited dose-trend significance. Besides, it should be emphasized that the spontaneous rate of thyroid tumour development in rats increases rapidly after the animal exceeded 2 years of age. The DS concluded that the mechanism of action (MoA) thoroughly developed in the CLP report shows that follicular cell tumours are not relevant for humans.

Additionally, the DS noted the occurrence of several rare tumour incidence which were not regarded relevant:

Malignant mixed glioma: single occurrences were restricted to the mid and high dose group interim decedent males. Concurrent laboratory historical control data were not available, therefore contemporary historical control data were obtained from where the stock animals originated with an upper background level of 1.92%. In this present study the incidence was marginally above (2.0%, 1/50) this level. These effects were considered not to be treatment related but rather incidental in their occurrence because the incidences were not statistically different for the concurrent controls, and these effects were not replicated in females.

Astrocytoma: an incidence of 2 (1 in interim deaths, 1 for terminal deaths), 1 (interim death) and 1 (interim death) were observed in the low, mid and high dose group males, respectively. In females incidences of 2 and 1 were observed in the low and high dose groups, respectively, at termination. Concurrent laboratory historical control data were not available, but contemporary historical control data obtained from where the stock animals originated showed upper background levels of 4.92% and 2.31% for males and females, respectively. In this study, the tumour incidence was within the stated background range (1.90% for males 2.14% for females). These effects were considered not to be treatment related.

Leydig cell tumours, testes: the single incidence of this malignant tumour type in the high dose males falls within the historical control incidence value of 5% (equivalent to 2/50) and is not considered to be treatment-related.

**In a 2-year carcinogenicity study in mice** the tested dose levels were 0, 50, 500 and 5000 ppm equivalent, respectively, to 0, 5.0, 50.7 and 543.4 mg/kg bw/day for males and 0, 5.3, 56.9 and 557.1 mg/kg bw/day for females.

At 5000 ppm, a higher proportion of deaths was observed in females (42 vs. 27 in controls) during the latter part of the study, which was attributed to amyloidosis. Bodyweight and food consumption were not affected by treatment. Only bodyweight gain at 5000 ppm was slightly reduced in males mainly during the first half of the study. No effects were observed from week 52.

The only significant effects on haematology were observed at 5000 ppm in males on week 52 with a decrease in red blood cells (12%) not seen at terminal sacrifice.

Analysis of organ weights of mice killed after 105 weeks of treatment revealed slightly increased absolute liver weights in females (18%) at 5000 ppm that was not clearly dose-related. This increase may be correlated with a dose-related increased incidence of foci/areas of altered hepatocytes (eosinophilic) noted from 500 ppm in females at above historical control incidences. A slightly increased incidence of foci/areas of altered hepatocytes above historical controls was seen in males for decedent animals from 500 ppm. The increased incidence of this lesion in terminal males was not dose-related.

| Males               |    |             |              |              | Females      |            |               |             |              |             |            |
|---------------------|----|-------------|--------------|--------------|--------------|------------|---------------|-------------|--------------|-------------|------------|
| findings live       | er | 0           | 50           | 500          | 5000         | HCD        | 0 50 500 5000 |             |              | 5000        | HCD        |
| Number of           | D  | 39          | 35           | 36           | 41           |            | 27            | 24          | 25           | 42          |            |
| animals<br>examined | т  | 13          | 17           | 16           | 11           | 1775       | 25            | 28          | 27           | 10          | 1773       |
| Fosinophilic        | D  | 2<br>(5.1%) | 3<br>(8.6%)  | 4<br>(11.1%) | 8<br>(19.5%) | 46<br>0.0- | 1<br>(3.7%)   | 1<br>(4.1%) | 2<br>(8%)    | 4<br>(9.5%) | 35<br>0.0- |
| hepatocytes         | т  | 1<br>(7.7%) | 4<br>(23.5%) | 4<br>(25%)   | 2<br>(18.2%) | 9.8%       | 2<br>(8%)     | 2<br>(7.1%) | 5<br>(18.5%) | 5<br>(50%)  | 9.1%       |

D: animals dying or killed during study, T: animals killed at termination

At 5000 ppm an increased incidence of amyloidosis in females was observed (19/42 vs 6/27 in controls). There was no evidence of this effect in males.

A higher number of benign liver cell tumours was observed in females at 5000 ppm. The incidence (7/52; 13.5%) was slightly higher than the concurrent control incidence in females in this study (4/52; 7.7%) and outside the provided historical control range (0-7.7%) obtained from 26 studies with duration  $\geq$  92 weeks conducted at Huntingdon Research Centre (1980-83). The incidence was not significant after pairwise comparison (p > 0.05) but showed a positive trend after trend analysis (p < 0.01). The DS noted that the incidence in controls is equal to the upper HCD value of 7.7%. There was an increase in the malignant hepatic tumours (1/52; 1.9%) in females with respect to controls (0/52), however, it was within the range of historical controls and was not statistically significant. The combined analysis of benign and/or malignant hepatic tumours in females (8/52 vs. 4/52 in controls) was significant after pairwise comparison (p < 0.05) and showed a positive trend after trend analysis (p < 0.01).

The toxicological relevance of these liver tumours in females seems doubtful since they correspond to non-significant (pairwise) benign tumours occurring in one sex and one species and at high dose levels of treatment (557.1 mg/kg bw/day for females). However, the increase in liver tumours cannot be dismissed as non-relevant to humans as the mechanism of action for formation of liver tumours in female CD-1 mice developed in the CLH report remains unclear.

On this basis, the DS proposed classification for carcinogenicity in Cat. 2.

#### **Comments received during public consultation**

Comments were received from two MSCA and the company/manufacture.

One MSCA supported the proposal for classification for carcinogenicity based on the observed thyroid and hepatocellular neoplasia in rats and mice. The MSCA agreed with the DS that despite extensive and elaborate MoA analysis, the mechanistic data is not complete and thus findings cannot be dismissed. In view of the unlikely relevance of the MoA postulated for the thyroid tumours, likely lack of genotoxicity and the substantial data on the MoA for liver tumours, Cat. 1B however is clearly not justified. Therefore, the MSCA support the proposal for Carc. 2.

Another MSCA agreed with that the MoA via induction of UDP-glucuronyltransferase is sufficiently well demonstrated and therefore agreed that the slightly increased incidence of thyroid tumours as observed in the rat carcinogenicity study is not relevant for humans. The MSCA supported the DS in their assessment of the liver tumours, which cannot be fully discarded and classification for carcinogenicity in Cat. 2 is supported.

The company/manufacturer agreed with the DS that the thyroid follicular cell tumours in male rats were considered relevant to humans. However, the company/manufacturer disagreed with the DS in their assessment of the MoA for the liver findings. The slight increase in benign liver

tumours seen in females only in the mouse carcinogenicity study are likely to be via a phenobarbital-like MoA, and therefore can be considered non-relevant for humans. They highlighted the absence of a clear dose response relationship (dose levels were spaced 10-fold apart), the malignant hepatocellular tumours falling within the HCD, the increase in benign hepatocellular tumours, which were slightly above the HCD, and these tumours were observed in one species (mice) and one sex (females). Furthermore, control animals were at the higher end of the HCD range and the study duration was longer (104 weeks) compared to contemporary studies (78 weeks), which reduces the concerns regarding these tumours. Based on the available data it was the company/manufacturer's position that a carcinogenicity classification for clofentezine is not warranted.

The company/manufacturer pointed out that further work to strengthen this conclusion for mice will be conducted shortly, including an *in vitro* comparative hepatocyte proliferation study (mouse, human) to investigate enzyme induction, cell proliferation and species differences, and a short-term repeat dose mouse toxicity study to investigate enzyme activity and hepatocyte proliferation, with results from this work expected in the first half of 2020.

#### Assessment and comparison with the classification criteria

RAC identifies the following endpoints to be critical for assessment of carcinogenicity in the two year carcinogenicity studies conducted in rats and mice

- Thyroid follicular cell tumours in male rats and,
- Hepatocellular tumours in female mice

#### Thyroid follicular cell tumours in male rats

|                                                                                        | Doses |               |        |           |            |        |            |                   |            |         |    |    |
|----------------------------------------------------------------------------------------|-------|---------------|--------|-----------|------------|--------|------------|-------------------|------------|---------|----|----|
|                                                                                        |       | 0 ppm         |        |           | 10 ppm     |        | 40 ppm     |                   |            | 400 ppm |    |    |
| Thyroid follicular cell                                                                | 0     | ) mg/k        | g      | 0.4       | 0.43 mg/kg |        | 1.72 mg/kg |                   | 17.3 mg/kg |         |    |    |
| tumours in males                                                                       | I     | bw/da         | У      |           | bw/da      | у      | bw/day     |                   |            | bw/day  |    |    |
|                                                                                        |       | Time of death |        |           |            |        |            |                   |            |         |    |    |
|                                                                                        | I     | D             | Т      | Ι         | D          | Т      | Ι          | D                 | Т          | Ι       | D  | Т  |
| Rat carcinogenicity study for 27 months (March 1982-June 1984); (Anonymous 42.; 1985a) |       |               |        |           |            |        |            |                   |            |         |    |    |
| No animals examined                                                                    | 20    | 26            | 24     | 20        | 26         | 24     | 20         | 23                | 27         | 20      | 29 | 21 |
| Benign                                                                                 | 0     | 1             | 0      | 0         | 0          | 1      | 0          | 0                 | 0          | 0       | 0  | 3  |
| Probably malignant                                                                     | 0     | 0             | 0      | 0         | 0          | 0      | 0          | 0                 | 0          | 0       | 0  | 2  |
| Malignant                                                                              | 0     | 1             | 0      | 0         | 0          | 1      | 0          | 1                 | 1          | 0       | 0  | 3  |
| Total tumours (D+T)                                                                    |       | 2/50+         |        | 2/50 2/50 |            |        | 8/50       |                   |            |         |    |    |
| TOX 82074 (1982-4) Study o                                                             | onduc | ted at        | the sa | me lab    | orator     | y (Dec | ember      | <sup>,</sup> 1982 | -Marcl     | h 1985  | )  |    |
| No animals examined                                                                    | 25    | 32            | 17     |           |            |        |            |                   |            |         |    |    |
| Benign                                                                                 | 0     | 2             | 2      |           |            |        |            |                   |            |         |    |    |
| Probably malignant                                                                     | 0     | 0             | 0      |           |            |        |            |                   |            |         |    |    |
| Malignant                                                                              | 0     | 1             | 1      |           |            |        |            |                   |            |         |    |    |
| Total tumours (D+T)                                                                    |       | 6/49          |        | 1         |            |        |            |                   |            |         |    |    |

I: Interim sacrifice, D: Interim deaths during treatment, T: Terminal sacrifice

+ Positive after trend analysis

At 400 ppm in males, there was a slight increase in the number of follicular cell tumours (combined adenomas and carcinomas) in the thyroid at terminal sacrifice (8/50 vs. 2/50 in control). This may have been associated with the pairwise and dose-trend significant increase in agglomeration of colloid at terminal sacrifice (18/21 vs 12/24 in control). These tumours are not pairwise significant but exhibited dose-trend significance. No HCD are available. The only background data included in the CLH report were obtained from a single concurrently run study (TOX 82074) performed at the same laboratory with the same procedure, strain, housing condition, diet and pathologist. The incidence of thyroid follicular cell tumours in high dose males treated with clofentezine was only marginally higher than the incidence in the control group from the other concurrently run study (8/50 vs. 6/49). Besides that, the DS concluded that the thyroid

follicular cell tumours are not relevant for humans due to the UDP-glucuronosyltransferase (UDPGT) MoA.

The postulated MoA for effects on the thyroid and induction of thyroid follicular tumours in rats by clofentezine can be summarised as follows. Briefly, activation of the CAR/PXR nuclear receptors by clofentezine leads to induction of hepatic UDPGT resulting in increased conjugation and excretion of thyroxine (T4) and a decrease in serum T4 levels. A compensatory increase in thyroid stimulating hormone (TSH) levels secreted via the hypothalamus-pituitary-thyroid (HPT) axis results in the chronic proliferative stimulus of thyroid follicular cells by TSH prompting hypertrophy and hyperplasia, and eventually progress to form follicular cell adenomas and/or carcinomas. The figure below shows the normal steps in functioning of the HPT axis.



#### Listing of key events identified in experimental animals

The key events and associative events in this process have been observed and measured in male rats in several short-term and MoA studies and in the carcinogenicity study in rats (Anonymous 42, 1985a). The essential Key Events (KE) and Associative Events (AE) for the MoA of clofentezine:

| Key Events                                                                                             | Associative events                             |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------|
| MIE (Molecular Initiating Event) :<br>Activation of CAR/PXR activation                                 |                                                |
| Key event 1:<br>Induction of hepatic UDP-glucuronosyltransferase (UDPGT)                               |                                                |
| Key event 2:<br>Increased hepatic metabolism, increased glucuronidation and<br>biliary excretion of T4 | Increased liver weight<br>Liver histopathology |
| Key event 3:<br>Decreased serum T4 half-live and concentration                                         |                                                |

| Key Events                                                        | Associative events                                   |
|-------------------------------------------------------------------|------------------------------------------------------|
| Key event 4:                                                      | Increased pituitary weight                           |
| Stimulation of HPT axis                                           | Pituitary histopathology                             |
| Key event 5:                                                      | Increased Thyroid weight                             |
| Increasing circulating TSH concentration                          | Thyroids enlargement /Hypertrophy                    |
| Key event 6:                                                      | Increased colloid depletion                          |
| Increased thyroid follicular cell proliferation (hyperplasia)     | Increased mitotic activity follicular cells (lining) |
| Final adverse outcome (AO): Increase in thyroid tumours incidence |                                                      |

A summary for each steps in the key events and the associative processes are listed below:

- The Molecular Initiation event: Activation of CAR/PXE activity: No data
- KE1: Three MoA studies in male rats showed a 5 fold increase at 30000 ppm and 2 fold at 400 ppm.
- KE2: two MoA studies in rats showed increased bile flow rate, increased excretion into bile and increased clearance together with increased excretion of thyroxine glucuronide.
- AE1: Several MoA, in subchronic studies and in the carcinogenicity study, consistent findings of increased absolute and relative liver weights associated with centrilobular hepatocyte enlargement starting at doses around 400 ppm.
- KE3: five MoA studies and the carcinogenicity study again showed slight decreases in serum T4 (6.8% in week 4) and T3. Levels returned to control.
- KE4: No data.
- AE2: Two MoA studies showed pituitary histopathology and this corresponded with increased TSH. Indication for stimulation of the HPT axis.
- KE5: Three MoA studies showed increased circulation of TSH.
- AE3: Two MoA studies showed consistent increased absolute and relative thyroid weights. Another MoA study did not show any effects on thyroid weight.
- AE4: five MoA studies and one subchronic study showed consistent hypertrophy and enlargement of the thyroid and increasing in follicular cell size.
- KE6: Three MoA studies and one subchronic study showed follicular cell hyperplasia and agglomeration of colloid.
- AE5. Four MoA studies and one subchronic study showed marked to moderate depletion of colloid.
- AE6: Two MoA studies were positive in findings for increased mitotic activity of the follicular cell.
- Final adverse outcome: In the carcinogenicity study, slightly increased thyroid tumour incidences in male rats at 400 ppm.

RAC concludes that the overall picture of the assessed MoA across all the studies are moderate to strong and the proposed MoA indicating that the liver is the primary target organ and that its response to clofentezine by hepatic enzyme induction (UDPGT) and increased metabolic activity generation catabolism of T4 and increase the excretion of thyroxine metabolites which involves an turnover of thyroid hormones is partly confirmed. Stimulation of the HPT axis generates an increase in TSH which leads to increases in thyroid weight and hyperplasia and/or hypertrophy which progress to tumours. The 2-fold induction of UDPGT at 400 ppm is significant (p < 0.01 at days 5 and 15 and p < 0.05 at days 8 and 29) and 5-fold at 30000 ppm. The increased mitotic activity follicular cells (lining) showed by the cellular division was maximal at 7 days and some activity was still evident at 14 days (4 days: 5/10 rats vs 1/10 control; 7 days 7/10 vs 0/10 control; 14 days 5/10 vs 0/10 control). Based on the observed increase in induction of UDPGT, decrease in serum T4 and thyroid follicular hyperplasia, RAC concludes that the thyroid follicular

cell tumours occurring at 27 months in male rats (i.e. very late) are of little relevance to humans and therefore not considered for classification based on the incidences of the thyroid tumours.

#### RAC overall conclusion of the 27-month long-term toxicity and carcinogenicity study in rats

RAC concludes that the dose levels in the rat carcinogenicity study were too low. The highest dose tested was only up to 400 ppm,  $\sim 17.3 / 22.1 \text{ mg/kg bw/d}$ , with no mortality or clinical signs associated with the treatment; only slight liver toxicity and slightly decreased body weight gain were observed. The highest dose in the 90-day rat studies of 265/292 mg/kg bw/d indicates that MTD in the carcinogenicity study has not been reached and the carcinogenicity study in rats was not adequate for assessment of carcinogenicity potential. The conclusion is no classification based on inconclusive data.

#### Hepatocellular tumours in female mice

|                             |   | НСР            |                |                |                 |      |
|-----------------------------|---|----------------|----------------|----------------|-----------------|------|
| Neoplastic findings         |   |                |                |                |                 |      |
|                             |   | 0              | 50             | 500            | 5000            | пср  |
| Number of animals           | D | 27             | 24             | 25             | 42              |      |
| examined                    | Т | 25             | 28             | 27             | 10              |      |
| Benign tumour               | D | 0              | 1              | 0              | 3               |      |
| -                           | Т | 4              | 2              | 1              | 2               |      |
| Benign tumour (two)         | D | 0              | 0              | 0              | 1               |      |
|                             | Т | 0              | 0              | 0              | 0               |      |
| Benign tumour (multiple)    | D | 0              | 0              | 1              | 0               |      |
|                             | Т | 0              | 0              | 1              | 1               | 0-   |
|                             | D | 0              | 1              | 1              | 4<br>(9.5%)     | 7.7% |
| Benigh tumour sub-totai     | т | 4<br>(16%)     | 2<br>(7%)      | 2<br>(7.4%)    | 3<br>(30%)      |      |
| Benign tumour overall total |   | 4/52<br>(7.7%) | 3/52<br>(5.8%) | 3/52<br>(5.8%) | 7/52<br>(13.5%) |      |
| Malignant tumour (two) D    |   | 0              | 0              | 0              | 1<br>(2.4%)     |      |
| Т                           |   | 0              | 0              | 0              | 0               | U-   |
| Total malignant tumour      |   | 0/52           | 0/52           | 0/52           | 1/52<br>(1.9%)  | 5.8% |

A table presenting the results from the 105 week long term toxicity/ carcinogenicity test in mice:

HCD (Huntingdon Research Centre between March 1980 and July 1983). Study duration  $\geq$  92 weeks. D: Animals dying or killed during study, T: Animals killed at termination

RAC agrees with the DS that the toxicological relevance of these liver tumours in female mice seems doubtful since they correspond to non-significant (pairwise) benign tumours occurring in one sex and one species, at high dose levels (557 mg/kg bw/day). The DS concluded that the slight increase in liver tumours could not be dismissed as non-relevant to humans as the MoA for the liver tumours in female mice remains unclear.

The applicant / manufacturer provided data for the postulated MoA. The proposed MoA for clofentezine liver tumours consists of the activation of the CAR/PXR in the liver. CAR/PXR activation induces increased expression of pro-proliferative and anti-apoptotic genes in the liver and an early, transient, increase in hepatocellular proliferation. Over time, the increased hepatocellular foci because of clonal expansion of spontaneously mutated cells in the mouse results in slight increases in liver tumour incidence compared to concurrent controls.

Listing of Key Events (KE) and Associative Events (AE) identified in experimental animals:

| Key events                                         | Associative events         |
|----------------------------------------------------|----------------------------|
| Key event 1:                                       |                            |
| CAR nuclear receptor activation                    |                            |
| Key event 2:                                       | Enzyme induction (CYP2B)   |
| Altered gene expression specific to CAR activation | Hepatocellular hypertrophy |
|                                                    | Liver weight increase      |
|                                                    | Inhibition of apoptosis    |
|                                                    | Epigenetic changes         |
| Key event 3:                                       |                            |
| Increased cell proliferation                       |                            |
| Key event 4:                                       |                            |
| Clonal expansion leading to foci/areas of altered  |                            |
| hepatocytes (eosinophilic)                         |                            |
| Key event 5:                                       |                            |
| Liver adenomas/carcinomas                          |                            |

The submitted data to provide justification for KE and AE of a CAR-mediated induction of the findings in liver in mice are listed below.

| Reference                                                                                                                                                                                                                                                        | Dose<br>(mg/kg<br>bw/day)<br>ď/♀ | Key<br>event 1<br>Enzyme<br>induction | Associative<br>event <sup>1</sup><br>Hepatocellular<br>hypertrophy | Associative<br>event <sup>1</sup><br>Increased liver<br>weight | Key event 4<br>Clonal<br>expansion<br>leading to<br>altered foci | Key event 5<br>Liver<br>adenomas/<br>carcinomas |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|--|--|--|
| Ordered from       Key and associative events are shown in order from earliest event to         low to high       later (left to right). Results show the time that the event was observed.         dosage       Quantitative changes in severity are not shown. |                                  |                                       |                                                                    |                                                                |                                                                  |                                                 |  |  |  |
|                                                                                                                                                                                                                                                                  | MICE                             |                                       |                                                                    |                                                                |                                                                  |                                                 |  |  |  |
| Anonymous<br>45, 1985                                                                                                                                                                                                                                            | 5/5.3                            | ND                                    | - 105 weeks                                                        | - 105 weeks                                                    | + 105 weeks<br>(♂)                                               | - 105 weeks                                     |  |  |  |
| Anonymous<br>45, 1985                                                                                                                                                                                                                                            | 50.7/56.9                        | ND                                    | - 105 weeks                                                        | - 105 weeks                                                    | + 105 weeks<br>(♂/೪)                                             | - 105 weeks                                     |  |  |  |
| Anonymous<br>77, 1982                                                                                                                                                                                                                                            | 151.4/176.5                      | ND                                    | - 13 weeks                                                         | + 13 weeks<br>(Rel in ♂/♀)                                     | NA                                                               | NA                                              |  |  |  |
| Anonymous<br>45, 1985)                                                                                                                                                                                                                                           | 543.4/557.1                      | ND                                    | - 105 weeks                                                        | + 105 weeks<br>(abs in ♀)                                      | + 105 weeks<br>(♂/♀)                                             | + 105 weeks<br>(♀)                              |  |  |  |
| Anonymous<br>77, 1982                                                                                                                                                                                                                                            | 757.1/884.9                      | ND                                    | + 13 weeks ª<br>(♂)                                                | + 13 weeks<br>(Abs in ♂<br>Rel in ♂/♀)                         | NA                                                               | NA                                              |  |  |  |
| Anonymous<br>70, 1982                                                                                                                                                                                                                                            | 766/912                          | ND                                    | + 6 weeks <sup>b</sup><br>(♂)                                      | + 6 weeks<br>(abs and rel in<br>♂)                             | NA                                                               | NA                                              |  |  |  |
| Anonymous<br>70, 1982                                                                                                                                                                                                                                            | 5149/5395                        | ND                                    | + 6 weeks <sup>b</sup><br>(♂)                                      | + 6 weeks<br>(abs and rel in<br>♂)                             | NA                                                               | NA                                              |  |  |  |

-: negative response, +: positive response, ND: Not determined, NA: Not applicable, <sup>a</sup>: Observed as centrilobular hepatocyte enlargement, <sup>b</sup>: observed as centrilobular hepatocytomegaly.

<sup>1</sup>Associative events are referred to key event 2 (altered gene expression specific to CAR activation)

Clofentezine treatment first led to early events such as enzymatic activation, hypertrophy and liver weight increase. The final adverse outcome effect (Key Event 5) of formation of hepatocellular tumours and the key event 4 of formation of eosinophilic foci only occurs in mice. At same doses these two effects are always late events, only observed at 104 weeks (no evidence at 52 weeks). Although eosinophilic foci and hepatocellular tumours do not have sufficient time points to distinguish temporally between both, the incidence of foci occurred at lower doses at

which tumours have not been developed yet. A sex difference for the final adverse outcome was evident (female mice having a higher tumour incidence than males).

The weight of evidence linking the key and associative events with the toxicological response is quite consistent with the hepatic effects observed in mice. The succession of key and associative events, including liver enzyme induction (only tested in rats), proliferation of smooth endoplasmic reticulum, increased liver weight with associated histopathological hepatocellular changes (hypertrophy, centrilobular enlargement), foci/ areas of altered hepatocytes (eosinophilic) and liver benign tumours in mice is consistent with a phenobarbital (PB)-like mechanism.

Reversibility is also consistent with the proposed CAR MoA where the non-neoplastic cellular changes may be reset by the normal feedback-control systems and reversed. Liver effects observed might be considered as an adaptive effect if they are caused by induction of enzyme activities; if it is not associated with any other liver toxicity and if it is a transient phenomenon, which is fully reversible. In this sense, there are studies with clofentezine that showed reversible effects. The 90-day study in rats (Anonymous 63, 1982b) showed reversibility in the increases in liver weight, liver macroscopic pathology and histopathological changes (centrilobular hepatocyte enlargement). Besides, in the other 90-day study in rats (Anonymous 74, 1981) there was also reversibility in the increase in liver weight and the centrilobular hepatocellular enlargement.

Hepatic tumours in mice are preceded by foci/ areas of altered hepatocytes (eosinophilic) that occurred at lower doses and at a higher incidence than seen for tumours. In the chronic toxicity/ oncogenicity study at 5000 ppm in female mice (557 mg/kg bw/day), the incidence of hepatocellular adenomas was 13.5% (7/52 animals) while the incidence in foci of animal dying or killed during study and at termination was 17% (9/52 animals). These observations also fit with the MoA, where, at similar doses, the incidence/severity of later key events would not be expected to be greater than that of earlier key events.

The key and associative events occurred in a logical temporal sequence and in a dose-dependent manner and were reversible when exposure was discontinued. At similar doses, the incidence of later key events is not greater than that of earlier key events. All these factors provide support for the proposed MoA. However, there is not evidence for all key events of this MoA and the strength, consistency and specificity of association of the hepatic tumour response with key events suggested that the MoA is only partially convincing.

Overall, the key and associative events observed in mice and rats receiving clofentezine occurred in a logical temporal sequence and in a dose-dependent manner. However, there is not evidence for all key events of this MoA.

#### Other possible modes of action

Mutagenicity: DNA reactivity can be excluded since the genotoxicity testing *in vivo* and *in vitro* gave no evidence of a genotoxic potential.

Cytotoxicity and regenerative hyperplasia: In a 42-day study in mice (Anonymous 70, 1982) localized areas of hepatic necrosis were observed in male at 5149 mg/kg bw/day. In addition, slight incidences of degenerative lesions (vacuolization, focal cyst degeneration of hepatocytes and focal hepatocyte necrosis) were reported in males of the 27-month chronic toxicity rat study (Anonymous 42, 1985a) at 17 mg/kg bw/day. Tumours observed in the chronic/ carcinogenicity

study in mice were observed in female at dose levels of 557 mg/kg bw/day. However, there were not increases in other necrosis indicators (e.g., alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase) and, in contrast with classic cytotoxic carcinogens, there was reversibility in the early key events (hepatocellular hypertrophy and increased liver weight).

Oestrogen activity: There was no structural similarity with oestrogens, no changes in clinical chemistry parameters and no hepatic necrosis or other histological changes suggestive of other receptor (oestrogen, statins) and non-receptor-mediated (apoptosis, infections or metal accumulation) involvement. Data evaluation indicate that these alternative possible MoAs are not likely to be relevant.

PPARa or AhR MoA: these MoAs have not been experimentally ruled out since there are no measures in lauric acid 12a-hydroxylase activity and Cyp4a protein levels to determine PPARa activation, neither were there measurements of EROD activity and Cyp1a protein levels to determine AhR activation in mouse liver microsomes.

Missing data: data providing evidence for microsomal enzyme induction, CAR activation (KE1) and *in vitro* studies in different hepatocyte cultures (mouse wild type, mouse CAR/PXR KO and human) would have strengthened the evidence for CAR/PXR MoA.

#### RAC overall conclusion for liver effects

When proposing a CAR MoA for liver tumours induced by a test compound, there are critical parameters to be included in the final mechanistic data package, which should (at a minimum) include demonstration of the molecular initiating event (CAR activation, KE1) and the obligatory key event of increased cell proliferation (KE3). However, in the analysis of postulated MoA for hepatocellular tumour caused by clofentezine, there is not experimental evidence for these crucial key events as CAR activation (KE1) and increased cell proliferation (KE3).

Therefore, there is no clear evidence that CAR receptor activation is involved in the tumourigenic action of clofentezine in the liver of CD-1 mice. The absolute certainty on CAR involvement could have been confirmed with a CAR-knock-out mouse study and the evidence for cell proliferation could have been strengthened with an *in vitro* comparative cell proliferation study (mouse, rat, human). Further enzyme induction studies might also have been done.

However, the available data suggest that the slight increase in benign liver tumours seen in females only in the mouse carcinogenicity study are likely to be via a CAR mode of action. Increased PROD, BROD and BQ activity and increased CYP2b and CYB3a enzymes, indicate CAR activation, was found in rats and a similar MoA could be plausible between mice and rats.

A clear dose response relationship was absent (dose levels were spaced 10-fold apart), the single case of malignant hepatocellular tumours fell within the HCD, only a slight increase in benign hepatocellular tumours was seen, which were slightly above the HCD and these tumours were only observed in one species (mice) and one sex (females) at the highest dose tested.

The historical control data for hepatocellular tumours in mice were from six studies started in 1980-1981, but new data have been submitted to RAC from 26 studies started in 1980-1983. The incidence of 7/52 benign hepatocellular tumours (13.5%) is above of the historical control range for females, where the range was 0-7.7% (see table below):

|                             | Females (ppm) |           |             |          |             |           |              |      |  |  |
|-----------------------------|---------------|-----------|-------------|----------|-------------|-----------|--------------|------|--|--|
| Tumour data                 | 0             |           | 50          |          | 500         |           | 5000         |      |  |  |
|                             | D             | Ter       | D           | Ter      | D           | Ter       | D            | Ter  |  |  |
| Benign tumour               | 0/27          | 0/27 4/25 |             | 2/28     | 0/25        | 1/27      | 3/42         | 2/10 |  |  |
| Benign tumour (two)         | 0/27          | 0/25      | 0/24        | 0/28     | 0/25        | 0/27      | 1/42         | 0/10 |  |  |
| Benign tumour (multiple)    | 0/27          | 0/27 0/25 |             | 0/28     | 1/25        | 1/27      | 0/42         | 1/10 |  |  |
| Benign tumour sub-total     | 0/27          | 4/25      | 1/24        | 2/28     | 1/25        | 2/27      | 4/42         | 3/10 |  |  |
| Benign tumour overall total | 4/52 (7.7%)   |           | 3/52 (5.8%) |          | 3/52 (5.8%) |           | 7/52 (13.5%) |      |  |  |
| Malignant tumour (two)      | 0/27          | 0/25      | 0/24        | 0/28     | 0/25        | 0/27      | 1/42         | 0/10 |  |  |
| Total malignant tumour      | 0/52          | (0%)      | 0/52 (0%)   |          | 0/52 (0%)   |           | 1/52 (1.9%)  |      |  |  |
| Historical control data     | for hepat     | ocellular | tumours     | in mouse | studies s   | tarted in | 1980-19      | 83ª  |  |  |
| Tumoun tuno                 |               | M         | ales        |          |             | Fem       | ales         |      |  |  |
| i umour type                | Low           | (%)       | High        | n (%)    | Low         | (%)       | High (%)     |      |  |  |
| Benign liver cell tumour    | 3.8           |           | 30          | 5.5      | 0           |           | 7.           | .7   |  |  |
| Malignant liver cell tumour | 8.            | 8.7       |             | 38.5     |             | 0         |              | 3.8  |  |  |
| Infarcted liver cell tumour | (             | )         | 1.9         |          | -           |           | -            |      |  |  |

Tumour data (liver tumour) for females and HCD for both sexes:

D: decedents, Ter: terminal; <sup>a</sup> : Study duration is  $\geq$  92 weeks.

The tumour profile has some factors that reduce considerably the level of concern regarding the carcinogenicity. These include the lack of progression to malignance of the adenomas, as well as the long time of latency, as the adenomas were only observed at the end of the study. The incidence of the liver adenomas was not statistically significant after pairwise comparison (p > 0.05) and there was no clear dose-response and only slightly above the historical control.

The occurrence of the benign hepatocellular tumours were limited to one sex of one species, only at the highest dose tested and slightly above the HCD without statistical significance after pairwise comparison. In addition, the lack of progression to malignancy further decreases the concern. On a weight of evidence basis, RAC concludes that **classification for carcinogenicity is not warranted**.

# **RAC evaluation of reproductive toxicity**

#### Summary of the Dossier Submitter's proposal

#### Sexual function and fertility

The potential effects of clofentezine on fertility and reproductive performance have been investigated in a reliable standard 2-generation study in rat. Information from this study in rats (summarised in the table below) showed that clofentezine has no effects on fertility and reproductive performance. Consequently, the DS was of the opinion that classification is not warranted.

Summary of the submitted study on adverse effects on sexual function and fertility (Anonymous 61, 1984; Seamons and Crofts, 1984 (dietary concentrations), Anonymous 62, 1986).

| Method                                                                                                    | Test substance, dose<br>levels duration of<br>exposure                                                                            | Results                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multigeneration                                                                                           | Purity: 97.9 – 99.3%                                                                                                              | PARENTAL ANIMALS                                                                                                                                                                                                                                                               |
| study in the rat                                                                                          | Oral (diet)                                                                                                                       | <b>Parental toxicity</b><br>Mortality                                                                                                                                                                                                                                          |
| 416                                                                                                       | Study scheme<br>F0 $\rightarrow$ F1A and F1B                                                                                      | Fo:                                                                                                                                                                                                                                                                            |
| GLP: No (predates<br>GLP enforcement)<br><u>Rat strain</u> : Charles<br>River Sprague Dawley<br>Crl CD BR | F1 $\rightarrow$ <u>F2A</u> and F2B                                                                                               | gestation of the $F_{1A}$ litter and 1 $\circ$ (400 ppm) during<br>parturition of the $F_{1B}$ litter.<br>1 $\circ$ (40 ppm) was killed <i>in extremis</i> following weight loss.<br>This animal was found to have to a fractured upper jaw.                                   |
| No. animals (groups):<br>F0: 30 rats/sex/dose                                                             | <u>Doses</u> : 0, 4, 40 or 400 ppm<br>equivalent to:                                                                              | 2 9 (40 ppm) died during their first breeding phase: during parturition and 1 9 killed in extremis on day 3 <i>post-partum</i> after total litter loss                                                                                                                         |
| (0, 4, 40 ppm) and 40<br>rats/sex/dose (400<br>ppm)                                                       | F0 → F1A and F1B<br>♂: 0, 0.28, 2.79, or 27.8<br>mg/kg bw/day                                                                     | 1 $\sigma$ (400 ppm) died during the maturation period a 1 $\sigma$ (4 ppm) during lactation of F2A offspring.                                                                                                                                                                 |
| F2: 20 rats/sex/dose                                                                                      | ♀: 0, 0.33, 3.22, 31.7                                                                                                            | <u>400 ppm</u>                                                                                                                                                                                                                                                                 |
| Study acceptable                                                                                          | F1 → F2A and F2B<br>$\sigma$ : 0, 0.35, 3.57, or 36.1                                                                             | <ul> <li>bw gain in \$ between days 4-7 post coital to give F1B (33%).</li> </ul>                                                                                                                                                                                              |
|                                                                                                           | mg/kg bw/day<br>♀: 0, 0.39, 3.85 or 38.5<br>mg/kg bw/day<br>F2<br>♂: 0, 0.36, 3.55, or 36.1                                       | <ul> <li>↓ bw in ♂ at week 1 and 5 of pre-mating period (11 and 7% respectively) and in ♀ following the birth of F2A (10% and 7% on days 10 and 14 of <i>post-partum</i>) and F2B litters (6-7% days 4-14 <i>post coital</i> and 7-9% days 4-21 <i>post-partum</i>)</li> </ul> |
|                                                                                                           | mg/kg bw/day<br>ዩ: 0, 0.38, 3.85 or 39.3<br>mg/kg bw/day.                                                                         | <ul> <li>↓ bw gain in ♀ at week 12 of pre-mating period (<i>ndr</i> 43%) and on days 4-10 <i>post-partum</i> (37%) following the birth of F2A.</li> </ul>                                                                                                                      |
|                                                                                                           | Exposure:<br>Pre-mating treatment:<br>E0 (74 days) >E14                                                                           | <ul> <li>↓ Terminal bw in ♀ (10%).</li> <li>↑ Relative liver weight (16%) in ♂ and ↓ absolute liver weight (<i>ndr</i> 11%) in ♀</li> </ul>                                                                                                                                    |
|                                                                                                           | F1 (88 days) $\rightarrow$ F2A<br>Treatment continued in F1                                                                       | <ul> <li>↑ Relative ovary weight (<i>ndr</i> 15%) in ♀.</li> <li>Increased incidence of minimal centrilobular hepatocyte enlargement in ♂ (4/10 vs 0/10 in controls)</li> </ul>                                                                                                |
|                                                                                                           | and F0 throughout<br>gestation and lactation. 14<br>days after weaning,<br>animals of F0 and F1 were<br>remated again to give F1B | <ul> <li>F2 (maturation):</li> <li>↓ bw in ♂ at week 1 (12%), week 2 (11%), week 3 (10%) and week 6 (7%) and in ♀ at week 2 and 3 (10% and 7% respectively).</li> </ul>                                                                                                        |
|                                                                                                           | and F2B. Treatment did not stop until weaning of the 2 <sup>nd</sup> generation.                                                  | ↑ Relative liver weight (14%) in ♂. In the absence of<br>histopathological change, this marginal effect is of no<br>toxicological relevance.     10 ppm                                                                                                                        |
|                                                                                                           | $\downarrow$                                                                                                                      | <b>FO:</b> There were no treatment-related effects.                                                                                                                                                                                                                            |
|                                                                                                           | Total treatment for both<br>sexes: F0 (32 weeks) and<br>F1 (33 weeks)                                                             | <ul> <li>↓ bw gain in ♀ at week 12 (<i>ndr</i> 43%) and on days 4-10 <i>postpartum</i> (33%) following the birth of F2A (33%).</li> <li>↓ Absolute liver weight (<i>ndr</i> 11%) in ♀.</li> </ul>                                                                              |
|                                                                                                           | F2 (maturation of 82-84<br>days).                                                                                                 | <ul> <li>↑ Relative ovarys weight (<i>ndr</i> 18%) in ♀.</li> <li>F2:</li> <li>↑ Relative liver weight (9%) in ♂.</li> <li>4 ppm</li> </ul>                                                                                                                                    |
|                                                                                                           | Parameters observed:                                                                                                              | <b>F0:</b> There were no treatment-related effects.<br><b>F1:</b>                                                                                                                                                                                                              |
|                                                                                                           | <i>ro, r1 and r2 parental:</i><br>Mortality, clinical signs,<br>bodyweights, food                                                 | <ul> <li>↓ bw gain in ♀ following the birth of F2A (<i>ndr</i> 41%) on days</li> <li>4-10 <i>post-partum</i>.</li> </ul>                                                                                                                                                       |
|                                                                                                           | consumption, organ<br>weights, gross pathology.                                                                                   | <ul> <li>↓ Absolute liver weight (<i>ndr</i> 12%) in ♀.</li> <li>↑ Relative ovary weight (<i>ndr</i> 15%) in ♀.</li> </ul>                                                                                                                                                     |
|                                                                                                           | histopathology and<br>reproductive parameters                                                                                     | F2: There were no treatment-related effects.                                                                                                                                                                                                                                   |
|                                                                                                           | (mating, fertility and<br>pregnancy index and                                                                                     | bw/day)                                                                                                                                                                                                                                                                        |
|                                                                                                           | gestation period).                                                                                                                | REPRODUCTIVE PARAMETERS                                                                                                                                                                                                                                                        |

| $F0 \rightarrow F1A/F1B$ and                            | All reproductive parameters were similar to controls                                                                                                                                                                                                                 |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $F1 \rightarrow F2A/F2B$ litter:                        | NOAEL reproductive toxicity > 400 ppm (>27.8 mg/kg bw/day)                                                                                                                                                                                                           |
| Mortality, clinical signs,<br>body weights, litter size | LITTER DATA                                                                                                                                                                                                                                                          |
| pup developmental (pinna                                | <u>400 ppm</u>                                                                                                                                                                                                                                                       |
| detachment, tooth eruption                              | $\underline{FO} \rightarrow FIA \text{ and } FIB$ : There were no treatment-related effects.                                                                                                                                                                         |
| and eye opening), organ<br>weights, gross pathology     | $\underline{F1} \rightarrow \underline{F2A} \text{ and } \underline{F2B}$                                                                                                                                                                                            |
| and histopathology                                      | F1→F2A                                                                                                                                                                                                                                                               |
|                                                         | $f1 \rightarrow F2B$                                                                                                                                                                                                                                                 |
|                                                         | <ul> <li>↓Mean litter size: born pups (12%), live pups (16% on day 1 <i>post-partum</i> and 18% on day 21 <i>post-partum</i>).</li> <li>↓ Litter weights between days 4 and 21 <i>post-partum</i> (16-18%).</li> </ul>                                               |
|                                                         | <u>40 ppm</u>                                                                                                                                                                                                                                                        |
|                                                         | <i>F0→F1A and F1B</i> : There were no treatment-related effects.                                                                                                                                                                                                     |
|                                                         | $\underline{F1} \rightarrow \underline{F2A} \text{ and } \underline{F2B}$                                                                                                                                                                                            |
|                                                         | <ul> <li>F1→F2A</li> <li>↓ Pup weights (11%) at day 21 <i>post-partum</i>. This slight reduction reflected the slightly higher mean litter size at this dose and is of no toxicological concern</li> <li>F1→F2B: There were no treatment-related effects.</li> </ul> |
|                                                         | NOAEL neonatal toxicity: 40 ppm (equivalent to approx. 4 mg/kg bw/day)                                                                                                                                                                                               |

n.s: not significant, ndr: not dose-related, ncdr: not clearly dose-related

#### **Comments received during public consultation**

No comments were received for any reproductive endpoints.

#### Assessment and comparison with the classification criteria

A standard 2-generation study in rats (Anonymous 61, 1984) was performed with doses up to 400 ppm (approx. equivalent to 27.8 / 39.3 mg/kg bw/day for males/females).

Parental toxicity was evident in F1 and F2 parents at 400 ppm (in F0 there were no treatment-related effects):

In F1 parents, body weights were lower than control values in both sexes: throughout the maturation phase in males (11% and 7% at week 1 and 5 respectively) and gestation and lactation period in females [F1 $\rightarrow$ F2A (10% and 7% on post-partum days 0 and 14) and F1 $\rightarrow$ F2B (6-7% during period 4-14 days *post-coitum* and 7-9% during period 4-21 days *post-partum*]. In addition, in females it was observed a decrease in body weight gain F1 $\rightarrow$ F2A (37%) during on days 4-10 days *post-partum* and in terminal body weight (10%). In males, an increase in relative liver weight (16%) was seen which was associated with histopathology (increased incidence of minimal centrilobular hepatocyte enlargement).

In F2 parents, there were a decrease in bodyweight from week 1 to week 6 in males (7-12%) and at week 2 and 3 (10% and 7% respectively) in females. In males, an increase in relative liver weight (14%) was seen, but this increase was not associated with histopathological changes, so this marginal effect was of no toxicological relevance. NOAEL for maternal toxicity was set at 40 ppm (equivalent to approximately 4 mg/kg bw/day).

Neonatal toxicity was evident in F2 pups at 400 ppm (in F1 pups there were no treatment-related effects). In F2A pups, a decrease in pup's weights (17%) on day 21 post-partum was observed. In F2B pups, a decrease in mean litter size [born pups (12%) and live pups (16% and 18% on days 1 and 21 post-partum respectively)] and litter weights (16-18% between days 4 and 21 post-partum) were seen. The NOAEL for development was set at 40 ppm (equivalent to approx. 4 mg/kg bw/day).

RAC concludes that the dose levels in the rat multi-generation study have been too low. The highest dose tested was only up to 400 ppm  $\sim 36.1 / 39.3$  mg/kg bw/day where slight clinical signs associated with treatment, only slight liver toxicity and slightly decreased body weight gain, were observed. The highest dose in the teratology study in rats was up to 3200 mg/kg bw/day and a maternal NOAEL from this study was 1280 mg/kg bw/day, indicating that the MTD in the multi-generation study had not been reached and the multi-generation study in rats is not considered to be adequate for assessment of reproductive toxicological potential.

# RAC concludes on **no classification for sexual function / fertility based on inconclusive data**.

#### Developmental toxicity

The DS proposed no classification for developmental toxicity as no evidence of teratogenicity was observed in two prenatal developmental toxicity studies, one performed in rats (Anonymous 65, 1982) and the other in rabbits (Anonymous 66, 1983). Both studies predate the current OECD TG 414 (2001) and do not include the recommended extended dosing period (i.e. from implantation to one day prior to the day of scheduled kill). However, both studies are considered adequate and relevant for evaluation of the potential of clofentezine to induce developmental effects.

Summary of submitted studies on adverse effects on developmental toxicity:

| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Test<br>substance,<br>dose levels<br>duration of<br>exposure                                                                                                                                                                                                                                 | <b>Results</b><br>[Effects statistically significantly and dose-related unless stated<br>otherwise as not significant (n.s.) or not dose-related (ndr) or not<br>clearly dose-related (ncdr)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reference                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Teratology<br>study in rats<br>Laboratory:<br>Fisons Limited<br>Pharmaceutical<br>Division<br><u>Method:</u> "In<br>house method"<br>comparable to<br>OECD TG 414<br>(1981) / B.31<br>GLP: Yes<br>Oral (gavage)<br>Rat strain: CD<br>Sprague Dawley<br>34 or 35 mated<br>females/group<br>Study<br>acceptable<br><u>Deviations</u> : The<br>exposure period<br>was from day 7<br>to 20 of<br>gestation when<br>it should have<br>begun at least<br>from<br>implantation.<br>The highest<br>dose tested,<br>3000 mg/kg<br>bw/day exceeds<br>the dose | Test<br>substance:<br>Clofentezine<br>(NC 21314,<br>technical<br>material;<br>batch CR<br>20099/8;<br>purity 100%)<br>Dose levels:<br>0, 320, 1280,<br>3200 mg/kg<br>bw/day<br>Vehicle:<br>0.5 %<br>carboxymethyl<br>cellulose<br>Exposure:<br>dosing on<br>gestation days<br>7-20 gestation | <ul> <li>Maternal toxicity</li> <li>Mortality: During treatment 39 were found dead, 2 at 1280 mg/kg bw/day and 1 at 3200 mg/kg bw/day. The cause of these deaths was considered to be misdosing into the respiratory system.</li> <li>3200 mg/kg bw/day: <ul> <li>↓ bw on day 21 for body weight (4%) and corrected bw for uterine contents (5%).</li> <li>↓ bw gain during periods days 7-14 (24%) and days 14-21 (9%).</li> <li>↑ Relative liver weight (10%) when corrected for the uterine contents, associated with histopathology changes (staining and enlargement of centrilobular hepatocytes).</li> </ul> </li> <li>1280 mg/kg bw/day: <ul> <li>↑ Relative liver weight (7%) when corrected for the uterine contents. This increase was &lt; 10% and was not associated with histopathological changes (not toxicologically relevant).</li> </ul> </li> <li>320 mg/kg bw/day: No effects.</li> <li>NOAEL maternal: 1280 mg/kg/day <ul> <li>Developmental toxicity</li> <li>3200 mg/kg bw/day:</li> <li>Skeletal alteration:</li> <li>↑Incidence foetuses with:</li> <li>Incomplete ossification of the hyoid (8.92 vs 2.69).</li> <li>One or less sternebrae incompletely ossified (57.28 vs 40.81)</li> <li>Two or more ossified caudal vertebrae (78.87% vs 52.47)</li> </ul> </li> </ul> | Anonymous 65<br>(1982)<br>Crofts,<br>(1982a)<br>(Determination<br>concentrations<br>in<br>suspensions)<br>(AS)<br>B.6.6.2.1 |

| Method                                                                                                                                             | Test<br>substance,<br>dose levels<br>duration of<br>exposure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Results</b><br>[Effects statistically significantly and dose-related unless stated<br>otherwise as not significant (n.s.) or not dose-related (ndr) or not<br>clearly dose-related (ncdr)]                                                                                                                                                                                                                                                                                                                                     |                                      |                      |                                            | Reference                 |                                                                             |                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|--------------------------------------------|---------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|
| recommended                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Foetal skeletal alterations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                      |                                            |                           |                                                                             |                                                                      |
| for a test limit                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      | Dose level           | (mg/kg bw/day)                             |                           |                                                                             |                                                                      |
| (1000  mg/kg)                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                    | 320                  | 1280                                       | 3200                      |                                                                             |                                                                      |
| Stif day)                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Foetuses examined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 223                                  | 207                  | 193                                        | 213                       |                                                                             |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Litters examined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35                                   | 33                   | 30                                         | 33                        |                                                                             |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | Foetal incidence     | % (Litter incidence %                      | (6)                       |                                                                             |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Incomplete ossification or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | absence of hyoid                     | 5 00 (10 10)         |                                            | 0.000000000               |                                                                             |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.69 (8.57)                          | 5.80 (18.18)         | 7.25 (26.67)                               | 8.92** (18.18)            |                                                                             |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Incomplete ossification of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sternebrae - numb                    | er of bones affected | 27.21 (76.67)                              | 57 29** (06 07)           |                                                                             |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40.81 (85.71)                        | 40.58 (81.81)        | 52 27 (06 67)                              | <b>41 32</b> * (81 82)    |                                                                             |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | >3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 38 (20 00)                         | 676(2424)            | 9 33 (40 00)                               | <b>141</b> *(6.06)        |                                                                             |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number of ossified caudal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | vortohrao                            | 0.70 (24.24)         | 7.55 (40.00)                               | 1.41 (0.00)               |                                                                             |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < <u>,</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47.53 (85.71)                        | 20.77** (57.58)      | 17.62** (56.67)                            | 21.13** (69.70)           |                                                                             |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ≥2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52.47 (88.57)                        | 79.23** (96.97)      | <b>82.38</b> ** (100.00)                   | 78.87** (100.00)          |                                                                             |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *p≤0.05; **p≤0.01; *** p≤0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 001                                  |                      |                                            |                           |                                                                             |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | These increases since:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | were not o                           | considered           | to be related                              | l to the treatr           | nent                                                                        |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>No signification parameters</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ant differe<br>was deteo             | ence in the<br>cted. | e litter inci                              | dences of t               | hese                                                                        |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>The number of foetuses with one or less sternebrae incompletely ossified was significantly increased. However, the number of foetuses with 2, 3 or more sternebrae incompletely ossified was reduced at 3200 mg/kg bw/day compared to controls.</li> <li>The number of foetuses with two or more ossified caudal vertebrae was significantly increased at all dose levels but these findings were not dose-dependent.</li> <li><u>1280 mg/kg bw/day</u>: No effects</li> <li>NOAEL maternal: 250 mg/kg bw/day</li> </ul> |                                      |                      |                                            |                           |                                                                             |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                      |                                            |                           |                                                                             |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                      |                                            |                           |                                                                             |                                                                      |
| Teratology<br>study in rabbit                                                                                                                      | <u>Test</u><br>substance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maternal toxicity     Anonymous 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                      |                                            |                           |                                                                             |                                                                      |
| Laboratory:<br>Schering<br>Agrochemical<br>limited<br><u>Method</u> : "In<br>house method"<br>comparable to                                        | Clofentezine<br>(NC 21314),<br>Lot/Batch No.:<br>CR 20099/12,<br>Purity: 98.5%<br>Dose levels:<br>0, 250, 1000<br>and 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>3000 mg/kg bw/day:</li> <li>1/14 dead treatment-related associated with anorexia, reduced faecal output and weight loss.</li> <li>↓ bw change relative to the initiation of dosing on day 7 of gestation on day 10 (90%), 14 (51%), 18 (38%), 22 (33%), 26 (29%) and day 29 (19% but not significant).</li> <li>↓ Food consumption (~ 20% from day 7 to day 25). There is no statistical calculation for this effect.</li> <li>Pink discoloration of the GIT.</li> </ul>                                                 |                                      |                      |                                            |                           |                                                                             | Anonymous 67<br>(1983)<br>(Report<br>addendum)<br>Crofts,<br>(1982b) |
| OECD TG 414<br>(1981) / B.31<br><u>GLP</u> : No<br>(conducted<br>prior to GLP).<br>Oral (gavage)<br><u>Rabbit strain</u> :<br>New Zealand<br>White | mg/kg bw/day       1000 mg/kg bw/day:       (Deter concert concent concent concert concert concert concert concert c |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                      |                                            |                           | (Determination<br>concentrations<br>in<br>suspensions)<br>(AS)<br>B.6.6.2.2 |                                                                      |
| 14 or 15 mated females/group                                                                                                                       | gestation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ■ ↓ bw change relative to the initiation of dosing on day 7 of gestation on day 18 (27%).                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                      |                                            |                           |                                                                             |                                                                      |
| Study                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NOAEL maternal: 250 mg/kg bw/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                      |                                            |                           |                                                                             |                                                                      |
| acceptable                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Developmenta</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>l toxicity</u>                    |                      |                                            |                           |                                                                             |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>3000 mg/kg b</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | w/day:                               |                      |                                            |                           |                                                                             |                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>↓ Mean foet<br/>weights were<br/>difference did</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al weight<br>lower tha<br>not attair | (13%). In the contr  | n conseque<br>ol value (12<br>significance | nce, mean<br>%), although | litter<br>1 the                                                             |                                                                      |

| Method | Test<br>substance,<br>dose levels<br>duration of<br>exposure | <b>Results</b><br>[Effects statistically significantly and dose-related unless stated<br>otherwise as not significant (n.s.) or not dose-related (ndr) or not<br>clearly dose-related (ncdr)] | Reference |
|--------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|        |                                                              | 1000 mg/kg bw/day:<br>No effects<br>NOAEL developmental: 1000 mg/kg bw/day                                                                                                                    |           |

#### Assessment and comparison with the classification criteria

In the rat study, the highest dose tested of 3200 mg/kg bw/day induced maternal toxicity. Bodyweights were significantly decreased (also when they were corrected for uterine content) at day 21 (4%) and also body weight gain between days 7-14 (24%) and 14-21 (9%). Dose-related and significantly increased relative liver weights were observed (also when corrected for uterine content). This increase (10%) was associated with histopathology (staining and enlargement of centrilobular hepatocytes).

The foetal skeletal alterations observed were considered to be in the range of variations not related to treatment at this dose level. The number of ossified caudal vertebrae seen at various dose levels was not dose-dependent and the incomplete ossification of sternebrae was higher in the number of foetuses with  $\geq 2$  bones affected in controls than the highest treated group. Besides, the incomplete ossification or absence of hyoid was seen in foetuses but not in litters (not significant and not dose-related). Consequently, no developmental effects were attributable to this dose level.

At the intermediate dose level of 1280 mg/kg bw/day no maternal toxicity or developmental effects were observed. The NOAEL for maternal toxicity was set at 1280 mg/kg bw/day and NOAEL for development was considered to be higher than 3200 mg/kg bw/day.

In the rabbit study, the highest dose of 3000 mg/kg bw/day was associated with death in one rabbit (with anorexia, reduced faecal output and weight loss), markedly reduced body weight gain and reduced food consumption ( $\sim$  20% from day 7 to day 25). Developmental effects included reduced foetal weight (13%) and mean litter weight (12%).

At the intermediate dose, 1000 mg/kg bw/day, a decrease of body weight gain (85% days 7-10 and  $\sim$  20% from day 10 to day 18) was observed.

At the lowest dose, 250 mg/kg bw/day, no maternal toxicity or development effects were observed.

There were no effects triggering classification for clofentezine due to developmental toxicity and therefore RAC agrees with the DS that no evidence for teratogenicity was observed in the submitted studies and **no classification for developmental toxicity is warranted**.

#### Effects on or via lactation

There were no indication of adverse effect in the offspring due to transfer in the milk or adverse effect on the quality of the milk. Overall, based on the limited data, RAC concludes that **no classification for effects on or via lactation is warranted**.

# **RAC evaluation of aspiration toxicity**

#### Summary of the Dossier Submitter's proposal

Based on the available data for the toxicity of clofentezine included in this dossier as well as the physicochemical properties of the active substance it does not seem to pose an aspiration toxicity hazard to humans. There are no data in humans indicating evidence of this toxicity and clofentezine is a solid organic substance but not a hydrocarbon.

The DS is of the opinion, with the current data available on clofentezine, that classification due to aspiration hazard is not required.

#### **Comments received during public consultation**

No comments were received.

#### Assessment and comparison with the classification criteria

RAC agrees with the DS that classification due to aspiration hazard is not warranted.

# ENVIRONMENTAL HAZARD EVALUATION

#### RAC evaluation of aquatic hazards (acute and chronic)

#### Summary of the Dossier Submitter's proposal

#### Degradation

#### Abiotic degradation

#### Hydrolysis

A study conducted in accordance with OECD TG 111 was provided to assess hydrolysis and was considered valid, although the concentrations used were above the clofentezine water solubility (Previous value: 0.0025 mg/L, current value: 0.034 mg/L, see explanation in consultation section). The hydrolytic behaviour of [<sup>14</sup>C]-clofentezine was studied at pH 4, 7 and 9 in aqueous solution at different temperatures. A Tier 1 preliminary test was performed at each pH and 50°C: [<sup>14</sup>C]-clofentezine was stable at pH 4, accounting for 99.4% AR after 168 hours, was degraded rapidly at pH 7, accounting for 19.5% AR after 168 hours, and was degraded rapidly at pH 9, accounting for 3.1% AR after 5 hours. In conclusion, clofentezine is hydrolytically stable at pH 4 but degraded rapidly at pH 7 and 9. The DT<sub>50</sub> values for the pH 7 samples were 828, 526 and 37.7 hours at 20, 25 and 50°C, respectively. The DT<sub>50</sub> values for the pH 9 samples were 81.4, 62.8 and 0.574 hours at 20, 25 and 50°C, respectively.

Three further studies to address the hydrolytic degradation of clofentezine were accepted by the DS, with some limitations. However, the main conclusion for hydrolytic stability of clofentezine at low pH values and instability at pH 7 and above are supported.

#### Photodegradation

Three experimental studies on photodegradation of [<sup>14</sup>C]-clofentezine in aqueous buffered solution at pH 5 and natural waters were included in the submission of the revised dossier (March 2009). In the first GLP study, performed according to Japanese Ministry of Agriculture, Forestry and Fisheries (JMAFF) test guidelines section 2-6-2, DT<sub>50</sub> values of 3.54 days (pH 5 buffer) and 5.99 days (natural water), calculated for Europe based on mean maximum summer sunlight at latitude 30°N, 40°N and 50°N were found. Mineralisation was not observed and degradants were identified by HPLC. In the second study, these values from the experimental study were input into the program GCSOLAR from the US EPA Centre of Exposure Modelling to determine the half-lives at three latitudes (30°N, 40°N and 50°N), and at three seasons (spring, summer and autumn). The DT<sub>50</sub> values were found to be in the range of 2.67 to 5.63 days across the latitudes and seasons. In the third study, the photodegradation and quantum yield of clofentezine was investigated in natural water (river water, collected from Shiny Brook, Saddleworth Moor near Manchester, UK). The DT<sub>50</sub> values for clofentezine were determined to be 9.56 and 22.32 days in the irradiated and dark samples, respectively.

#### Biotic degradation

#### Ready biodegradation

There was one ready biodegradability test available on clofentezine (OECD TG 301B, GLP) showing 12% degradation in 28 days. The test design strictly follows the test guideline requirements. Under the conditions of the test, clofentezine attained 12% degradation after 28 days, and therefore cannot be considered as readily biodegradable.

#### Aerobic mineralisation

Aerobic mineralisation of [Tetrazine-14C]-clofentezine (4.0 and 41.3  $\mu$ g/L) was studied in natural German surface water in the dark at 20±2°C under constant bubbling of air through the water (GLP, OECD TG 309). Traps for organic volatiles and carbon dioxide were used. The total mass balance was between 96.3% and 103.8% of the applied radioactivity for low concentrations and between 90.0 and 104.4% for high concentrations. CO<sub>2</sub> and organic volatiles were observed at low concentrations: respectively 10.8% and 4.6% of applied dose for low concentration and 3.6 and 3.1% for high concentration. Clofentezine degraded rapidly in the water from a maximum of 103.8% applied dose initially to 0% after 30 days. AE C593600, 2-CBA and 2-CBZ were identified as major metabolites.

#### Water/sediment

A GLP study, in line with OECD TG 308 (April 2002) was submitted, which provided information about acidic water bodies of water/sediment systems as a worse case data. The degradation of [Tetrazine-U-14C] clofentezine (0.3 mg/L) under aerobic conditions was investigated in two water sediment systems – Taunton River (sandy loam) and Weweantic River (sand). The major degradation product for the total system was 2-CBA, which had a maximum level at 26.7% of the applied dose at 58 day after treatment. The data generated from these studies was analysed using the CAKE v3.1 and v 3.2 software package according to guidance provided by FOCUS (2006) based on level P-1 and M-1 kinetics (single compartment kinetics) and results calculated were proposed as new endpoints. Resulting total system DT<sub>50</sub> and DT<sub>90</sub> values (16.5 – 37 and 76.4 – 123 days, respectively) indicate that clofentezine cannot be considered rapidly biodegradable, according to the DS.

#### Bioaccumulation

The experimentally determined log  $K_{OW}$  (two valid GLP studies according to OECD TG 107 and OECD TG 117) was 4.1 and so a potential for bioaccumulation could not be excluded. The study aimed to determine the accumulation and elimination of [<sup>14</sup>C]-clofentezine in bluegill sunfish (*Lepomis macrochirus*) was found unreliable and the calculated BCF of 248 was considered not valid. The uncertainties identified include; the concentration of clofentezine not being maintained, it could not be demonstrated that the total radioactivity measured in the water was the parent compound, the concentration of clofentezine is above the water solubility limit, and calculated BCFs were not lipid normalized. In the absence of a reliable experimental bioaccumulation study, the information of the octanol/water partition coefficient should be taken into account to evaluate the substance's bioaccumulation potential, resulting in the DS's conclusion that clofentezine has a high potential for bioaccumulation.

#### Acute aquatic toxicity

| Method                                                                                            | Species                                                     | Substance                                                                      | Results                                                                          | Reference                         |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------|
| Acute toxicity to<br>fish in line with<br>OECD TG 203                                             | Rainbow trout<br>(Oncorhynchus<br>mykiss)                   | clofentezine (98.6%)<br>[ <sup>14</sup> C]-clofentezine,<br>purity not stated. | 96h LC <sub>50</sub> > 0.0146 mg/L, based<br>on mean measured<br>concentrations. | Anonymous<br>(1986)<br>B.9.2.1/01 |
| Acute toxicity to fish                                                                            | Bluegill sunfish<br>( <i>Lepomis</i><br><i>macrochirus)</i> | clofentezine, (99.8%)                                                          | 96h LC <sub>50</sub> > 0.25 mg/L, based<br>on mean measured<br>concentrations.   | Anonymous<br>(1981)<br>B.9.2.1/02 |
| Aquatic<br>invertebrates<br>Guideline: OECD<br>TG 202 I and US<br>EPA EG1 31: 5007-<br>5009       | Water flea<br>(Daphnia<br>magna)                            | clofentezine, (99.8%)                                                          | EC <sub>50</sub> > 0.001123 mg/L, based<br>on mean measured<br>concentrations.   | Barrett and<br>Arnold (1988)      |
| Aquatic<br>invertebrates<br>Guideline US EPA<br>660/3-75-<br>009(1975) and US<br>EPA draft (1978) | Water flea<br>(Daphnia<br>magna)                            | clofentezine, (99.0%)                                                          | 48h EC <sub>50</sub> > 0.040 mg/L                                                | Lines (1981)                      |

Acute aquatic toxicity tests for fish and invertebrates with clofentezine (algae presented below)

Acute toxicity studies were also available for different metabolites of clofentezine. The available data indicates no toxicity at the concentrations tested so these substances are not considered further.

#### Acute toxicity to fish

Acute toxicity of clofentezine to fish was investigated in two non-guideline studies with rainbow trout (*Oncorhynchus mykiss*) and bluegill sunfish (*Lepomis macrochirus*). In both studies, no effects were reported at the highest concentrations tested -  $LC_{50} > 0.0146 \text{ mg/L}$  mean measured (substance was firstly absorbed to pumice which was then used, via a saturation column, to supply a constant level of dissolved [<sup>14</sup>C]-labelled clofentezine to the fish) for rainbow trout and  $LC_{50} > 0.25 \text{ mg/L}$  (substance suspension, actual concentration not known) for bluegill sunfish.

The acute toxicity of metabolites 2-chlorobenzoic acid (2-CBA), chlorobenzonitrile, AE C593600, AE F092117 to Rainbow trout (*Oncorhynchus mykiss*) was tested in four separate studies. No toxic effects were observed at highest concentration tested.

#### Acute toxicity to aquatic invertebrates

Acute toxicity of clofentezine to *Daphnia magna* was studied in two guideline studies under static conditions. In both studies, only one concentration was tested due to the low solubility of clofentezine. Toxic effects were not observed in either investigation:  $EC_{50} > 0.001123$  mg/L (measured, representing the maximum solubility attainable at the end of the test) and  $EC_{50} > 0.040$  mg/L (mean measured at the end of the test) were found.

The acute toxicity of metabolites: 2-Chlorobenzoic acid (2-CBA, 2-Chlorobenzonitrile, AE C593600, 2-Chlorobenzamide to Water flea *Daphnia magna* was examined in separate tests. Results did not show toxic effect at highest concentration level tested.

The DS concluded that several toxicity endpoint values derived were above the water solubility limit of clofentezine (previously, 0.0025 mg/L) and therefore the studies could not provide data for classification purposes but were used as supplementary information. In all other cases, regarding the fact that no acute toxicity was recorded at levels up to the substance's solubility in the tests, no acute hazard classification would apply for clofentezine. Algal data are discussed below.

#### Chronic aquatic toxicity

Chronic aquatic toxicity tests for fish and invertebrates with clofentezine (algae presented below)

| Method                                                                                                         | Species                                        | Substance                                                                    | Results                                                                                                                                                           | Reference                         |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Fish<br>TG equivalent<br>to OECD TG<br>210                                                                     | Rainbow trout<br>(Oncorhynchus mykiss)         | clofentezine,<br>(99.5%)                                                     | 97d NOEC > 0.007 mg/L,<br>based on mean measured<br>concentrations.                                                                                               | Anonymous<br>(1993)<br>B.9.2.2/01 |
| Reproductive<br>toxicity to<br>Daphnia<br>Guideline OECD<br>TG 202 II<br>(1984) and US<br>EPA 540/9-86-<br>141 | Water flea ( <i>Daphnia</i><br>magna)          | clofentezine,<br>(99.8%)<br>[ <sup>14</sup> C]-<br>clofentezine,<br>(99.21%) | 21d NOEC > 0.025 mg/L, [ <sup>14</sup> C]<br>- clofentezine                                                                                                       | Barber and<br>Latimore<br>(1992)  |
| Lifecycle<br>toxicity test<br>Guideline<br>OPPTS<br>850.1350                                                   | Saltwater mysid shrimp<br>(Americamysis bahia) | clofentezine,<br>(98.29%)                                                    | 28d NOEC > 0.0269 mg/L,<br>based on mean measured<br>concentrations.<br>Endpoint recalculated by DS:<br>28d- NOEC Mean total young<br>per F0-female = 0.0033 mg/L | Aufderhide<br>(2009, 2016)        |

#### Chronic toxicity to fish

Chronic toxicity of clofentezine to early life stages of the rainbow trout *Oncorhynchus mykiss* was investigated in a flow through study, which can be considered equivalent to the requirements of OECD TG 210. Due to the low solubility of clofentezine in water, a single maximum attainable concentration was tested. Clofentezine (technical) had no chronic toxicity to early life stages of the rainbow trout at the maximum solubility obtained under study conditions (i.e. 0.007 mg/L) over a 97 day continuous exposure period, so the 97 day-NOEC can be estimated to be > 0.007 mg/L. Several technical protocol deviations were reported for this study; particularly temperature deviated from the specified value, feeding regime, length determination of fish and concentration

measurements during the study. Despite this, the study was considered reliable for use as supportive information.

#### Chronic toxicity to aquatic invertebrates

The effect of clofentezine to *Daphnia magna* was studied in a GLP study (OECD TG 202 and USEPA). First instar daphnids (less than 24 hours old) were exposed for 21 days to the single concentration of [<sup>14</sup>C]-clofentezine, 25  $\mu$ g/L, which represented the maximum sustainable concentration under the test conditions (substance first absorbed to pumice stone that was then used, via a saturation column, to supply dissolved clofentezine to the test chambers). The results indicated that at highest concentration (0.025 mg/L) clofentezine had no effect on survival, growth or reproduction of *Daphnia magna*, therefore the NOEC was concluded to be > 0.025 mg/L. During the peer review, this point was revised and finally it was concluded that this endpoint will not be considered for risk assessment purposes and this endpoint was not considered reliable.

The effects of clofentezine on the survival, growth, and reproduction of saltwater mysid shrimp, *Americamysis bahia* were studied in a GLP guideline study under flow through conditions. Five different clofentezine concentrations were tested, using DMF as solvent to enhance substance solubility. Statistical analysis of results showed that the number of young per female mysid was the only biological parameter that resulted in a statistically significant difference when compared to the negative control data at the concentrations of 0.0067 mg/L and 0.0269 mg/L (mean measured concentrations). Therefore, the NOEC value determined for mean number of total young produced per female was 0.0033 mg/L clofentezine. However, in accordance with the OECD Number 54 Guidance document, the applicant submitted an additional statistical analysis (the Williams' trend test) using the vehicle control data instead of dilution water control. This indicated no statistically significant reduction in the reproductive data for any of the treatment levels tested. Subsequently, following this approach, the NOEC value for mean total number of young per F0-female mysid was > 0.00269 mg/L. In conclusion, as comparing the response data with the water control resulted in a significant dose-response, the DS proposes to maintain the NOEC of 0.0033 mg/L, as a conservative approach.

#### Acute and chronic toxicity to algae

| Method                                                                                                         | Species                                 | Substance                               | Results                                                                                                                                                  | Reference                        |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Effects on<br>growth of<br>green algae<br>Dutch draft<br>standard<br>method NEN<br>6506                        | Algae<br>(Scenedesmus<br>pannonicus)    | NC 21314<br>Technical<br>clofentezine   | 120h - EC <sub>50</sub> > 0.32 mg/L<br>No chronic values derived.                                                                                        | Oldersma <i>et al.</i><br>(1983) |
| Effects on<br>growth of<br>green algae<br>Guidelines:<br>OECD TG 201<br>(1984)<br>modified by<br>EG-8 and ES-5 | Algae<br>(Selenastrum<br>capricornutum) | Apollo 50 SC<br>50% w/w<br>clofentezine | 72h - E <sub>r</sub> C <sub>50</sub> not reported<br>72h NOEC > 40 mg/L<br>DS recalculation:<br>92h E <sub>r</sub> C50 > 34 mg/L<br>No 96h NOEC provided | Hanstveit (1987)                 |

Available data on algae

The toxicity of clofentezine to green algae *Scenedesmus pannonicus* was examined according to the Dutch draft NEN 6506 guideline. Comparison of the growth curves of algal suspension exposed to the test substance with those algal controls (solvent controls with DMSO, no negative controls were used) the NOEC was estimated to be 0.32 mg/L (n), although no statistical treatment of data were reported. When actual concentrations were measured, less than 10% of nominal were found at the end of the test. Therefore, the applicant reported that the results showed that clofentezine in concentrations up to its solubility limit in water did not impair the growth of the alga *Scenedesmus pannonicus* under the conditions of the test. The endpoint was not stated (the effect value was claimed to be greater than the water solubility of clofentezine). No effect values for growth rate are available from this study. This study was already evaluated during Annex I inclusion of clofentezine. However, the EC<sub>50</sub> endpoint was not stated (claimed to be greater that the water solubility of clofentezine) and it was not used for risk assessment purposes in the DAR (2005). The results are accepted as supplementary information.

The toxicity of metabolites: Metabolite 2-CBA, Metabolite 2-CBA, Metabolite AE C593600, Metabolite AE F092117 to algae (*Pseudokirchneriella subcapitata*) was given in separate studies. Toxic effects were not observed at highest concentration tested.

#### Conclusions

The DS concluded that based on 28-d NOEC of 0.0033 mg/L for saltwater mysid shrimp, *Americamysis bahia* for reproduction clofentezine meets the CLP Regulation criteria for being classified as Aquatic chronic 1 with M factor of 10

**DS proposal**: Acute Aquatic Hazard: No classification, Aquatic Chronic 1 (H410), M=10.

#### **Comments received during the consultation**

Six MSCAs and one Industry association submitted comments on the DS's proposal during the public consultation.

Two MSCAs commented on the water solubility value and one asked for clarification on the value to be used for assessing the aquatic toxicity. The DS clarified that the value of 0.0025 mg/L was an old value used under the pesticide assessment and that in their view, the newer value of 0.034 mg/L should be used as the water solubility value.

All commenting MSCAs agreed with no classification for aquatic acute toxicity. One MSCA required clarification on the DS opinion on the validity of acute toxicity studies.

Three MSCAs supported aquatic chronic classification as Aquatic Chronic 1, M=10. One commenting MSCA did not support aquatic chronic classification of the substance in category Aquatic Chronic 1 based on NOEC of 0.0033 mg/L derived in chronic toxicity study to mysid shrimp, *Americamysis bahia*. They thought it useful for the DS to compare exposure treatment data with pooled controls (i.e. solvent and procedural controls) in order to clarify if there was a statistically significant effect. One MSCA required clarification for the devaluation of bioaccumulation study given in CLH report in the light of new data for clofentezine water solubility of 0.034 mg/L.

An industry association pointed out that a new study, compliant with OECD TG 305 showed a lipid-normalised growth-corrected kinetic BCF value of 276 L/kg for spiked aqueous solution. The study was considered valid by the RMS (revised dRAR of July 2019). Based on the information presented in this study, the DS concluded that clofentezine does not bioaccumulate in fish.

An industry association disagreed with the DS proposal to classify the substance as Aquatic Chronic 1, M-factor=10 due to inappropriate acceptance of 28d-NOEC of 0.0033 mg/L 28d-NOEC (Mean total young per F0-female), in the chronic toxicity study with mysid shrimp, *Americamysis* 

*bahia*, only taking into account the water control. They commented that a value of 28d-NOEC of 0.0269 mg/L, calculated using the solvent control, would be a more appropriate value for classification. The industry association supported classification Aquatic chronic 1, but proposed M-factor 1 instead of the DS-proposed M-factor of 10.

The DS responded that the proposed aquatic chronic classification in the CLH report is based on a 28d-NOEC (Mean total young per f0-female) of 0.0033 mg clofentezine/L, taking into account only the water control, which is considered as a conservative approach. However, in the course of the EU evaluation for renewal of clofentezine registration, the applicant submitted additional statistical evaluations and data analyses demonstrating that the negative control is not appropriate for statistical comparison and the solvent control is the most suitable to derive a reliable endpoint with a NOEC of 0.0269 mg/L. This endpoint is agreed (revised dRAR of July 2019) and the final classification proposed by DS after PC for clofentezine should be Aquatic Chronic category 1, M=1.

Editorials and minor comments were submitted from 3 MSCAs, these are reflected in the DS response.

#### Assessment and comparison with the classification criteria

#### Degradation

RAC agrees with the DS to consider clofentezine as 'not rapidly degradable', as based on the following information:

- 12 % degradation in 28 days in a ready biodegradability test (OECD TG 301B) less than 70% clofentezine is not ultimately degraded to 70% or greater within 28 days (Annex I: 4.1.2.9.5)
- Less than 11% mineralization after 30 days in surface water simulation test.

Based on the hydrolysis and primary degradation data from the surface water simulation study, the substance is rapidly primary degradable. However, as no chronic data are available for all hydrolysis products, it cannot be excluded that the criteria for classification as hazardous to the aquatic environment are not met for the hydrolysis products. The substance therefore cannot be regarded as rapidly degradable for classification via primary degradation.

#### Bioaccumulation

Based on the log K<sub>ow</sub> value of 4.09 bioaccumulation could not be excluded. However, the new experimentally determined lipid-normalised growth-corrected kinetic BCF values is 276 L/kg for spiked aqueous solution (as presented by the applicant in a new study), is considered reliable by RAC and is taken as the primary evidence for assessing bioaccumulation in the aquatic environment. Consequently, as the BCF is below 500, RAC agrees with the DS to consider clofentezine as not bioaccumulative.

#### Acute aquatic toxicity

RAC notes that the reliable water solubility value to be taken into account is 0.034 mg/L and that some endpoint values are in excess of this value. However, in all cases no effects have been recorded up to and including the maximum concentration tested in any acute toxicity test presented.

There are valid acute toxicity data for fish and invertebrates. For algae, no acute toxicity was recorded at levels at any concentrations tested. However, only nominal values are available and the results are far in excess of the water solubility. In conclusion, no reliable  $ErC_{50}$  can be determined from this study. In the other available algal study, a formulation was used (Apollo

50 SC) and although the study did not derive an  $ErC_{50}$ , the DS recalculated a 96h  $ErC_{50}$  of > 34 mg a.s./L (based on mean measured concentration). However, due to difficulty determining the measured concentrations of the test substance, a formulation being used, and the resulting value being far in excess of the water solubility, this value is not considered reliable.

Consequently, due to the available reliable data indicating no toxicity at the concentrations tested, RAC agrees with the DS that **clofentezine does not warrant classification for acute aquatic hazards**.

#### Chronic aquatic toxicity

RAC concludes that there are reliable chronic toxicity data available for fish and invertebrates. Regarding the invertebrate study with *Americamysis bahia*, RAC agrees with parties commenting during the consultation that the solvent control should be used for deriving the dose-response curve and that the NOEC derived from the study should be 0.0269 mg/L. The DS agreed with commenting parties and changed their proposal after the consultation to use this value for the classification of clofentezine and RAC therefore also agrees to use this value, instead of the previous value of 0.0033 mg/L. Results for algae are not considered reliable for the reasons stated above. Consequently, there are no chronic data for algae and in the absence of reliable acute data, the surrogate approach is not possible. No effects for fish were observed up to the maximum solubility used in the test and therefore the lowest chronic toxicity value is the 28d NOEC of 0.0269 mg/L for mysid shrimp, *A. bahia*.

#### Comparison with the criteria

| Parameter              | CLP criteria                                                                             | Results                                                                    | Conclusion                       |  |
|------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------|--|
| Ready biodegradation   | < 70% for 28 days                                                                        | 12%                                                                        |                                  |  |
| Water simulation study | Ultimate degradation<br><16 day < 11% in 30 days                                         |                                                                            | Not rapidly degradable           |  |
| Bioaccumulation        | Log K <sub>ow</sub> ≥ 4<br>BCF ≥ 500 L/Kg                                                | Log K <sub>ow</sub> > 4<br>BCF < 500 L/Kg                                  | Not bioaccumulative              |  |
| Acute toxicity         | L(E)C <sub>50</sub> ≤ 1 mg/L                                                             | No effects observed in<br>fish or invertebrates. No<br>reliable algae data | No classification                |  |
| Chronic toxicity       | For a NRD substance<br>NOEC $\leq$ 0.1 mg/L<br>M-factor - 0.01 < NOEC<br>$\leq$ 0.1 mg/L | 28d-NOEC of 0.0269<br>mg/L for mysid shrimp,<br><i>Americamysis bahia</i>  | Aquatic Chronic 1<br>(H410), M=1 |  |

NRD: not readily degradable

In conclusion, RAC agrees with the DS's proposal (modified after the consultation) that **clofentezine warrants classification as Aquatic Chronic 1 (H410), M = 1.** 

#### ANNEXES:

- Annex 1 The Background Document (BD) gives the detailed scientific grounds for the opinion. The BD is based on the CLH report prepared by the Dossier Submitter; the evaluation performed by RAC is contained in 'RAC boxes'.
- Annex 2 Comments received on the CLH report, response to comments provided by the Dossier Submitter and RAC (excluding confidential information).