A7.1.1.1.1 Dint IIA 1 Reference Data protection Data owner Criteria for data protection	Hydrolysis as a function of pH and identification of breakdown products 1 REFERENCE Haag, W.R. et al. (1988a), Estimation of Hydrolysis Rate Constants for Acrolein (Magnacide®H Herbicide, Magnacide®B Microbiocide) in the Environment, SRI International, SRI Project No. 3562-3. Yes Baker Petrolite Data on new a.s. for first entry to Annex I	Official use only
Data protection Data owner Criteria for data	Haag, W.R. et al. (1988a), Estimation of Hydrolysis Rate Constants for Acrolein (Magnacide®H Herbicide, Magnacide®B Microbiocide) in the Environment, SRI International, SRI Project No. 3562-3. Yes Baker Petrolite	
Data protection Data owner Criteria for data	Acrolein (Magnacide®H Herbicide, Magnacide®B Microbiocide) in the Environment, SRI International, SRI Project No. 3562-3. Yes Baker Petrolite	5
Data owner Criteria for data	Baker Petrolite	3
Criteria for data		
	Data on new a.s. for first entry to Annex I	
	2 GUIDELINES AND QUALITY ASSURANCE	
Guideline study	Yes US EPA-FIFRA, Subdivision N, Guideline 161-1	
GLP	Yes	
Deviations	No	
	3 MATERIALS AND METHODS	
fest material	As given in Section 2	
.ot/Batch number	NN-481-76	
specification	As given in Section 2	
Purity	See 3.1.2	
Further relevant properties		-
Reference ubstance	No	
nitial concentration of reference ubstance		
Cest solution	See Tables A7_1_1_1-1 and A7_1_1_1-2	
Cesting procedure		
Fest system	See Table A7_1_1_1-3	
Cemperature	25°C	
	eference abstance aitial concentration Freference abstance est solution esting procedure est system	operties No eference abstance No itial concentration Freference abstance See Tables A7_1_1_1-1 and A7_1_1_1-2 est solution See Tables A7_1_1_1-3 est system See Table A7_1_1_1-3

ACROLEIN

December 2005

	а А7.1.1.1.1 coint ПА 2.1	Hydrolysis as a function of pH and identification of breakdown products				
3.4.3 pH		EXPERIMENTAL CONDITIONS FOR DETERMINING ACROLEIN HYDRATION RATE CONSTANTS				
		<u>Run</u>	pH	[Acrolein] _o	Water, or Buffer Type	Method
		1	0.0	20	1.0 N HC104	UV-10
		2	0.97		0.1 N HC104	UV-le
		3	1.78	40	100 nM phosphate	UV-10
		4	3.28		10 mH phosphace	UV-1
		5	5.37	10	10 mM phosphate	HPLC
		6	6.22	10	10 mM phosphate	HPLC
		7	7.23		10 mM phosphate	
		8	7.2	10	10 mM phosphate	UV-1
		9	7.2	10	10 mM phosphate	UV-1
		10	8.19	10	10 mM phosphate	HPLC
		11	5.87	10	10 mM phosphate	HPLC
		12	9.25	10	10 mM phosphate	HPLC
		13	10.07	5	10 mM phosphate	UV-le
		14	10.98	5	10 mM phosphate	UV-lc
		15	12.00	10	0.01 N NaCH	HPLC
		16	12.11	5	0.01 N NaOH	W-lc
		17	5.65	10	pure water	UV-1
		18	7.34	10	2 mM phosphate	UV-1
		19	7.03	20	100 mM phosphate	UV-10
		20	7.75	10	10 mg/L humic acid	UV-1
		21	7.99	10	Seawater	UV-I
		22	8.46	10	Kansas River	UV-1
		23	5.28	30	10 mM phosphate	UV-1
		24	7.19	30	10 mM phosphate	UV-1
		25	8.74	30	10 zM phosphate	UV-1
		25	8.92	30	10 mM phosphate	UV-1
		Figure 1: Experimental Conditions for Determining Acrolein Hydration Rate Constants				
3.4.4	Duration of the test	Up to 290 hours				
	Number of replicates	Duplicate analyses run on each sample				
3.4.6	Sampling	Method UV-1c				
		Solutions were placed into 1 cm spectrophotometer cells thermostatted at $25 \pm 1^{\circ}$ C and the reaction monitored continually by UV absorbance at 210 nm. This method was the most convenient and precise and was used whenever the reaction could be completed within 24 hours (pH extremes).				
		Method UV-10				

Baker Petrolite	ACR	December 2005	
Section A7.1.1.1.1 Annex Point IIA VII.7.6.2.1	Hydrolysis as a f breakdown prod	function of pH and identific lucts	cation of
	absorbance at 320 nm the cells were stored	d into 10 cm spectrophotometer ce n measured periodically. Between at 25°C in the dark. This method v fore the other more sensitive analy	measurements was used in three
	Method UV-1		
	bath at $25 \pm 0.2^{\circ}$ C, ar 218 nm in a 1 cm cell reactions taking long chosen to minimise b and natural waters. In	red in volumetric flasks, placed im and aliquots removed periodically for l. This method was the most conve- er than 24 hours. A wavelength of background absorbance in solutions in principle, any wavelength near the could have been used.	for UV analysis at enient for 218 nm was s of humic acid
	Method HLPC		
	bath at 25 ± 0.2 °C, a stopped by cooling to analysed at the end of small error introduce was corrected for by method was used init before the more conv	ed in volumetric flasks, placed into and aliquots removed periodically a o 1 °C. Samples were stored at 1°C f the reaction by HPLC as described d by incomplete stoppage of the re adding the rate constant observed a ially for reactions taking longer the renient method UV-1 as developed as used in Run number 15 to detern g at equilibrium.	and the reaction C in the dark and ed below. The eaction at 1 °C at 1°C. This tan 24 hours, I. In particular,
3.4.7 Analytical methods		inetic runs were performed on a H e array detector. Conditions were a	
	Column:	3 μm Hypersil C18 60 mm x	
	Eluent:	20% acetonitrile in water at	0.4 ml/min
	Injection volume:	15 µl	(a) All a second sec
	Detection:	210 nm	
	Acrolein retention tin	ne: 2.5 minutes	
		external standards; peak areas vari- e range of 1-100 ppm with a corre	
	Absorbance measurements for kinetic runs were made on HP 8450 UV/VIS spectrophotometer. Acrolein absorbance obeyed Beer's law with an extinction coefficient of 11,800 M ⁻¹ cm ⁻¹ over the concentration range studied. A similar calibration curve was found at 328 nm, also with a correlation coefficient greater than 0.999.		
	following the deriviti mixed with 1.0 ml of (PFPH) (12) in metha dark. At pH > 7, the 1 unstable and therefor phosphate buffer was to 6. The PFPH deriv	re performed using HPLC GC/ECI station with PFPH. Aqueous sampl a solution of 1.53 g/l pentafluroph anol and allowed to react overnigh PFPH derivative of 3-hydroxyprop re for samples at pH 9, 24 μl of 0.5 s added to the derivitising mixture vative of acrolein was similarly uns n was determined directly by ultrav	les (1.0 ml) were henylhydrazine at at 1 °C in the banal was 50 M pH 4 to bring the pH stable at pH > 5

Baker Petrolite		ACROLEIN Decemb			
		Hydrolysis as a function of pH and identification of breakdown products			
		spectrometry at 210 nm on a separate, underivatised aliquot. In each case, the reference cell contained buffer at the same pH as the reaction solution but without acrolein. The data were analysed using the general kinetic rate law for a reversible first order reaction. Statistical analysis was performed using the Statworks® statistics programme.			
3.5	Preliminary test	Yes 0.5M phosphate buffer used			
-		4 RESULTS			
4.1	Concentration and hydrolysis values	See Table A7_1_1_1-4			
4.2	Hydrolysis rate constant (k _h)				
4.3	Dissipation time	See Table A7_1_1_15			
4.4	Concentration - time date				
4.5	Specification of the transformation products	See Table A7_1_1_1-6			
		5 APPLICANT'S SUMMARY AND CONCLUSION			
5.1	Materials and methods	US EPA-FIFRA, Subdivision N, Guideline 161-1. Hydrolysis was studied in a variety of water types and over a broad pH range, in order to gain fundamental kinetic data and allow confident prediction of rates under varying conditions.			
5.2	Results and discussion	Acrolein hydration in water is catalysed by both hydrogen and hydroxide ions, but neither process is expected to be very significant in the natural water pH range of 5 to 9. However, unidentified catalysts, probably including both organic and inorganic compounds, are ubiquitously present in natural waters in sufficient quantities to increase the hydration rate at pH 5 to 9 by an order of magnitude over that observed in pure water. The catalytic effect appears to be quite constant over a broad range of water types and therefore the measured half-lives of 14 to 92 hours (pH 9.3 to 5.3, respectively) are expected to generally be applicable.			
5.2.1	k _H				
5.2.2	DT ₅₀	See Table A7_1_1_1-5	Х		
5.2.3	r ²		8		
5.3	Conclusion	The major hydration product is 3-hydroxypropanal, which could not be distinguished from its hydrated form, 3,3-dihydroxy-1-propanol. At 25° C, $9.1 \pm 1.5\%$ of acrolein remains at equilibrium. The reversibility of the hydration reaction implies that a small fraction of acrolein will persist for reaction times much longer than the hydration half-life, in the absence of other loss processes. Because volatisation of acrolein is a significant aquatic fate process in turbulent waters, hydration products			

Baker Petrolite	ACROLEIN Decem						ecember 200	
Section A7.1.1.1.1 Annex Point IIA VII.7.6.2.1	Hydrolysis as a function of pH and identification of breakdown products							
	may simply act as a reservoir of acrolein to slow down the volatilisation process. However, in calm waters where volatisation is less important, sorption of acrolein and biotransformation of the hydrated products may drive the reaction to completion, as has been observed previously in irrigation supply waters.						nt, may	
5.3.1 Reliability	1							
5.3.2 Deficiencies	No							1
	Evaluation by (Compe	tent A	uthori	ties			
	Use separate "evalu comments and view			provide	transpar	ency as	to the	
	EVALUATION B	Y RAPI	PORTE	UR ME	MBER	STATE		
Date	30/11//2007	-						
Materials and Methods	The Applicant's ver	sion is o	considere	ed to be	acceptal	ole		
Results and discussion	The Applicant's version is considered to be acceptable with the following amendment. 5.2.2 Table A7 1 1 1 1-5 should be replaced with the following (corrected							
	values <u>underlined</u>);							
	values <u>underlined</u>); Table A7_1_1_1	d a	lissipation t pH 5.3	on time 3, pH 7.2	(hours) 2 and pl	of tran H 9.3	sformati	pound, and ion product
		d a pH	lissipation t pH 5.3 I 5.3	on time 3, pH 7.2 pH	(hours) 2 and pl 7.2	of tran H 9.3 PH	sformati [9.3	
	Table A7_1_1_1_1	d a	lissipation t pH 5.3	on time 3, pH 7.2	(hours) 2 and pl	of tran H 9.3	sformati	
	Table A7_1_1_1_1	d a pH DT ₅₀	lissipation at pH 5.3 H 5.3 DT ₉₀	on time 3, pH 7.2 pH DT ₅₀	(hours) 2 and pl 7.2 DT ₉₀	of tran H 9.3 DT ₅₀	sformati [9.3 DT ₉₀	
Conclusion	Table A7_1_1_1_1	d a pE DT ₅₀ <u>92</u> 100	lissipation at pH 5.3 H 5.3 DT ₉₀ >209 >209	on time 3, pH 7.3 PH DT ₅₀ <u>37</u> <48	(hours) 2 and pl 7.2 DT ₉₀ 209 >209	of tran H 9.3 DT ₅₀ <u>14</u> 18.5	sformati 19.3 DT ₉₀ >65.8	
	Table A7_1_1_1_1 Parent compound (acrolein) Transformation	d a pE DT ₅₀ <u>92</u> 100	lissipation at pH 5.3 H 5.3 DT ₉₀ >209 >209	on time 3, pH 7.3 PH DT ₅₀ <u>37</u> <48	(hours) 2 and pl 7.2 DT ₉₀ 209 >209	of tran H 9.3 DT ₅₀ <u>14</u> 18.5	sformati 19.3 DT ₉₀ >65.8	
Conclusion Reliability Acceptability	Table A7_1_1_1 Parent compound (acrolein) Transformation product	d a pE DT ₅₀ <u>92</u> 100	lissipation at pH 5.3 H 5.3 DT ₉₀ >209 >209	on time 3, pH 7.3 PH DT ₅₀ <u>37</u> <48	(hours) 2 and pl 7.2 DT ₉₀ 209 >209	of tran H 9.3 DT ₅₀ <u>14</u> 18.5	sformati 19.3 DT ₉₀ >65.8	
	Table A7_1_1_1 Parent compound (acrolein) Transformation product The Applicant's ver 1	d a DT ₅₀ 92 100 sion is o	lissipation t pH 5.3 I 5.3 DT ₉₀ >209 >209 >209 considered ented in	ed to be	(hours) 2 and pl 7.2 DT ₉₀ 209 >209	of tran H 9.3 DT ₅₀ <u>14</u> 18.5	sformati 9.3 DT90 >65.8 >65.8	ion product
Reliability Acceptability	Table A7_1_1_1 Parent compound (acrolein) Transformation product The Applicant's ver 1 Acceptable All endpoints and d	d a DT ₅₀ <u>92</u> 100 sion is o ata presere corre	lissipation t pH 5.3 I 5.3 DT ₉₀ >209 >209 >209 considered ented in	ed to be	(hours) 2 and pl 7.2 DT ₉₀ 209 >209	of tran H 9.3 DT ₅₀ <u>14</u> 18.5	sformati 9.3 DT90 >65.8 >65.8	ion product
Reliability Acceptability	Table A7_1_1_1 Parent compound (acrolein) Transformation product The Applicant's ver 1 Acceptable All endpoints and d original study and a	d a DT ₅₀ <u>92</u> 100 sion is o ata pres re corre	lissipation t pH 5.3 I 5.3 DT ₉₀ >209 >209 >209 considered ented in et.	ed to be	(hours) 2 and pl 7.2 DT ₉₀ 209 >209	of tran H 9.3 DT ₅₀ <u>14</u> 18.5	sformati 9.3 DT90 >65.8 >65.8	ion product
Reliability Acceptability Remarks	Table A7_1_1_1 Parent compound (acrolein) Transformation product The Applicant's ver 1 Acceptable All endpoints and d original study and a COMMENTS FRO	d a pE DT ₅₀ <u>92</u> 100 100 sion is o ata prese re corre DM mts subr relevant ummary	lissipation t pH 5.3 I 5.3 DT ₉₀ >209 >209 >209 considered ented in ct. mitted discreption and controls and contro	ed to be the sum	(hours) 2 and pl 7.2 DT ₉₀ 209 >209 >209 acceptal mary ha	of tran H 9.3 PH DT ₅₀ <u>14</u> 18.5 ole.	sformati 9.3 DT90 >65.8 >65.8	against the
Reliability Acceptability Remarks Date	Table A7_1_1_1 Parent compound (acrolein) Transformation product The Applicant's ver 1 Acceptable All endpoints and doriginal study and a COMMENTS FRO Give date of comme Discuss additional is and to applicant's state	d a pE DT ₅₀ 92 100 sion is o sion is o ata press re corre DM nts subr relevant unmary from vi	lissipation t pH 5.3 I 5.3 DT ₉₀ >209 >209 >209 considered considered in ct. mitted discreption faither and con- lew of rap	ed to be the sum	(hours) 2 and pl 7.2 DT ₉₀ 209 >209 >209 acceptal mary ha	of tran H 9.3 PH DT ₅₀ <u>14</u> 18.5 Dle. ve been to the (s	sformati 9.3 DT90 >65.8 >65.8	against the

Baker Petrolite	ACROLEIN	December 2005
Section A7.1.1.1.1 Annex Point IIA VII.7.6.2.1	Hydrolysis as a function of pH and identification of breakdown products	f
Reliability	Discuss if deviating from view of rapporteur member state	
Acceptability	Discuss if deviating from view of rapporteur member state	
Remarks		

ACROLEIN

рН	Type of buffer (final molarity)	Composition
5	Phosphate	2 ml of 0.5 M buffer stock solution made up to 100 ml with water
7	Phosphate	2 ml of 0.5 M buffer stock solution made up to 100 ml with water
9	Phosphate	2 ml of 0.5 M buffer stock solution made up to 100 ml with water

I able A7_1_1_1_1-1, I ype and composition of bullet solution	Table A7_1_1_1-1:	Type and composition of buffer solutions
---	-------------------	--

Table A7_1_1_1-2: Description of test solution

Criteria	Details
Purity of water	Filter-sterilised
Preparation of test medium	Stock solution was prepared by adding neat acrolein to unbuffered Milli-Q purified water. Typically a 200ppm solution was prepared by dissolving 11.9 μ l of acrolein in 50 ml of pure water, and a 1000ppm solution by mixing 29.8 μ l of acrolein with 25 ml of pure water. The stock solutions were usually prepared daily, stored at 2°C and discarded after two days.
Test concentrations (mg a.i./l)	5 ppm or 10 ppm
Temperature (°C)	25 ± 0.2
Controls	2.0 ml of 5.0 M phosphate buffer diluted up to 100 ml.
Identity and concentration of co-solvent	None
Replicates	Duplicate analyses were run on each sample, but one sample per time point was adequate because of the excellent reproducibility of the UV and HPLC measurements.

Table A7_1_1_1-3: Description of test system

Glassware	Glass cuvettes, 1 cm and 10 cm
Other equipment	Not specified
Method of sterilisation	Reaction vessels were usually autoclaved to prevent microbial transformation; however, runs using unsterilised glassware were considered equally valid because duplicate runs at certain pH values showed no effect of autoclaving.

ACROLEIN

Table A7_1_1_1-4:Hydrolysis of test compound, transformation products and reference
substance, expressed as percentage of initial concentrations, at pH 5,
pH 7 and pH 9

pH 5 (5.28)

Compound	Sampling times (hours)							
	0	48	76	100	122	144	168	209
Parent compound (acrolein)	100		63	50	44	40	36	29
Transformation product (3-hydroxypropanal)	0	29	40	47	57	63	66	71
Total % recovery	100		103	97	101	103	102	100

pH 7 (7.19)

Compound			Sam	pling tin	nes (hou	rs)		
	0	48	76	100	122	144	168	209
Parent compound (acrolein)	100		25	19	16	16	11	8
Transformation product (3-hydroxypropanal)	0	60	73	77	83	81	82	87
Total % recovery	100		98	96	99	97	93	95

pH 9 (8.92)

pii > (0.92)	71						
Compound							
	Sampling times (hours)						
	0	3.8	18.5	28	43	51.7	65.8
Parent compound (acrolein)	97	90	60	47	32	26	19
Transformation product (3-hydroxypropanal)	3	14	44	56	69	76	79
Total % recovery	100	104	104	103	101	102	98

Table A7_1_1_1-5:Dissipation times (hours) of parent compound, transformation products
and reference compound at pH 5, pH 7 and pH 9

	рН 5		рН 7		рН 9	
	DT ₅₀	DT ₉₀	DT ₅₀	DT ₉₀	DT ₅₀	DT ₉₀
Parent compound (acrolein)	100	>209	76	209	28	>65.8
Transformation product	100	>209	<48	>209	18.5	>65.8

Table A7_1_1_1-6: Specification and amount of transformation products

CAS- Number	CAS and/or IUPAC	Amount [%]	of parent compound measured at		
Number	Chemical Name(s)	рН 5	pH 7	pH 9	
	3-hydroxypropanal	71	87	79	

Baker Petrolit	te
-----------------------	----

	on A7.1.1.1.2 : Point IIA7.1.1.1.2	Phototransformation in water including identity of transformation products		
		1 REFERENCE	Officia use onl	
Reference		Haag, W.R. et al. (1988b) Estimation of Photolysis Rate Constants for Acrolein (Magnacide®H Herbicide and Magnacide®B Microbiocide) in the Environment, SRI International, SRI Project No. 3562-3.		
1.1	Data protection	Yes		
1.1.1	Data owner	Baker Petrolite		
1.1.2	Criteria for data protection	Data on new a.s. for first entry to Annex I		
		2 GUIDELINES AND QUALITY ASSURANCE	6	
2.1	Guideline study	Yes FR 796.3700 and Pesticide Assessment Guidelines, Subdivision N, 161-2		
2.2	GLP	Yes		
2.3	Deviations	No	х	
		3 METHOD		
• Te	est material	As given in Section 2		
3.1.1	Lot/Batch number	NN-481-76	F	
3.1.2	Specification	As given in Section 2	Ì	
3.1.3	Purity	96.2 %		
3.1.4	Radiolabelling	Not used		
3.1.5	UV/VIS absorption spectra and absorbance value	Extinction coefficients were estimated relative to the maximum of 11,800 M ⁻¹ cm ⁻¹ at 210 nm using the respective attenuations		
3.1.6	Further relevant properties	None		
3.2	Reference substance	No		
3.2.1	Initial concentration of reference substance			
3.3	Test solution	See Table A7_1_1_1_2-1		
3.4	Testing procedure			
3.4.1	Test system	Sunlight irradiations were performed in screw-capped, 11-mm o.d. quartz tubes, held on a rack at about 30° to the horizon on the roof of the SRI Physical Sciences building on consecutive cloudless days from 6 July to 10 July 1987 (kinetic studies) and from 26 May to 3 June 1988 (product studies). Photolyses were run at ambient temperature, which was 25 ± 5 °C. The actinometer solution (10 µM p-nitroacetophenone/20 mM pyridine) was irradiated in identical fashion and sampled at the same time as the acrolein solutions. Controls consisted of replicate solutions		

Section A7.1.1.1.2 Annex Point IIA7.1.1.1.2		Phototransformation in water including identity of transformation products	
1		placed in tubes and in the sun but covered with aluminium foil. During analysis the tubes were sampled at regular intervals and replaced on the rack.	
3.4.2	Properties of light source	See Table A7_1_1_1_2-2	X
3.4.3	Determination of irradiance	A sunlight actinometer was used for kinetic studies. The solution contained 10 μ M p-nitroacetophenone and 20 mM pyridine.	
3.4.4	Temperature	25 ± 5 °C	X
3.4.5	pH	7	
3.4.6	Duration of test	Kinetic studies: 4 days Product studies: 8 days	
3.4.7	Number of replicates	Not specified	
3.4.8	Sampling	Samples were stored at 1 °C before analysis. Samples were taken at 0, 18, 42, 66 and 90 hours.	
3.4.9	Analytical methods	Reaction solutions for kinetic runs were prepared by diluting 1.0 ml of 1000 ppm acrolein stock and 2 ml of 0.5 M phosphate buffer to 100 ml with Milli-Q water to yield 10 ppm acrolein and 10 mM phosphate. Runs were performed at pH 3, where the dark hydration reaction is the slowest, at pH 7, which is more typical of natural waters.	
		Solutions of 10 ppm acrolein in 10 mg/l humic acid were prepared by diluting 0.5 ml of 1000 ppm acrolein stock, 5 ml of 100 mg/l humic acid stock and 1.0 ml of 0.5 M pH 7 phosphate buffer to 50 ml.	
		The actinometer solution was prepared by diluting 0.5 ml of PNAP stock and 161 μ l of pyridine to 100 ml with Milli-Q water.	
		Solutions for product studies were prepared as for kinetic studies except that 3.0 ml of acrolein stock was used, yielding a final concentration of 30 ppm. Product studies were run only at pH 7, and no actinometer was used.	
		During kinetic studies, acrolein was determined by HPLC on a HP 1090 system equipped with a diode array detector. Conditions were as follows:	
		Column: 3 µm hypersil C18 60 mm x 4.5 mm	
		Eluent: 20 % acetonitrile in water at 0.4 mL/min.	
		Injector volume: 15 µl	
		Detection: 210 nm	
		Acrolein retention time: 2.7 min.	
		Quantitation was achieved by the external standard method.	
		During product studies, acrolein was analysed by direct UV spectrophotometry on a HP 8450 UV/VIS spectrophotometer. The hydration product, 3-hydroxypropanal, was analysed by HPLC following derivatisation with pentafluorophenylhydrazine (PFPH). Conditions were as follows:	
		Column: 3 µm hypersil C18 60 mm x 4.5 mm	
		Eluent: 40 % acetonitrile in water for 3.8 min. increasing to	

Baker P	etrolite
---------	----------

Section A7.1.1.1.2 Annex Point IIA7.1.1.1.2		Phototransformation in water including identity of transformation products
		70 % acetonitrile at 4.1 minutes.
		Injection volume: 5 µl
		Detection: 260 nm
		Retention times: 4.7, 7.5 and 7.8 min. for derivatives of 3- hydroxypropanal, acrolein and propanal, respectively.
		The retention time of PFPH-derivatised 3-hydroxypropanal was verified by use of a standard prepared by allowing a 30 ppm solution acrolein to hydrate at pH 7 for 40 days. In lieu of an authentic standard for PFPH- derivatised 3-hydroxypropanal, PFPH-derivatised propanal was used as a quantitative standard and assumed that the molar absorptivities of the two derivatives are identical.
		Statistical analyses were performed using the Statworks® statistical program.
3.5	Transformation products	Yes
3.5.1	Method of analysis for transformation products	3-hydroxypropanal was analysed by HPLC following derivatisation with PFPH.
-		4 RESULTS
4.1	Screening test	Not performed See Table A7 1 1 1 2-3
4.2	Actinometer data	See Table A7 1 1 1 2-4
4.3	Controls	
4.4	Photolysis data	
4.4.1	Concentration values	
4.4.2	Mass balance	
4.4.3	k ^c _p	0.01 d ⁻¹
4.4.4	Kinetic order	
4.4.5	k_{p}^{c}/k_{p}^{a}	
4.4.6	Reaction quantum yield (ϕ^{c}_{E})	≤ 0.001
4.4.7	k _{pE}	
4.4.8	Half-life (t _{1/2E})	70 days
		5 APPLICANT'S SUMMARY AND CONCLUSION
5.1	Materials and methods	The study was performed according to the protocols in Federal Register 1985, 50(188) 796.3700, 796.3780,796.3800 and Pesticide Assessment Guidelines, Subdivision N, 161-2, 161-3, 161-4, Report PB83-153973 (Washington, DC: USEPA) 1982.
		Sunlight irradiations were performed on the samples of acrolein, the

Section A7.1.1.1.2 Annex Point IIA7.1.1.1.2		Phototransformation in water including identity of transformation products				
		actinometer solution (10 μ M p-nitroacetophenone/20 mM pyridine) and the controls, on consecutive cloudless days over a period of 4 to 8 days. Sampling occurred at 0, 18, 42, 66, and 90 hours. Photolyses were run at ambient temperature (25 ± 5 °C). During kinetic studies, acrolein was determined by HPLC and during product studies, it was analysed by direct UV spectrophotometry. The hydration product, 3- hydroxypropanal, was analysed by HPLC following derivatisation with PFPH.				
5.2	Results and discussion	The results show that photolysis is negligible compared to the dark hydration reaction. In addition, the run with 10 mg/l humic acid indicates that sensitised photolysis is unimportant. Because the hydration rate is unaffected by sunlight, the primary products must also be the same in light and dark. However, it is conceivable that the hydration product, 3- hydroxypropanal, is transformed photochemically. To test for this, product concentrations were determined as a function of time. This demonstrated that a material balance of reactant and product was obtained in both light and dark reactions.				
5.2.1	k ^c _p					
5.2.2	K _{pE}	0.01 d ⁻¹				
5.2.3	ϕ^{c}_{E}					
5.2.4	t _{1/2E}	70 days				
5.3	Conclusion	The photolysis of acrolein in water was found to proceed at a rate much slower than hydrolysis, and therefore the aqueous photolysis rate could not be measured. The maximum quantum yield was estimated to be \leq 0.001. From this, the photolysis rate constant was calculated to be 0.01 d ⁻¹ and the minimum half-life was estimated to be 70 days under summer sunlight conditions at 40 °N. Since no photolysis occurred, no photolysis products could be found. However, it was shown that sunlight had no effect on the formation of the hydration product, 3-hydroxypropanal.				
5.3.1	Reliability	1				
5.3.2	Deficiencies	No				
	_	Evaluation by Competent Authorities				
		Use separate "evaluation boxes" to provide transparency as to the comments and views submitted				
		EVALUATION BY RAPPORTEUR MEMBER STATE				
Date		10/07/2007				
Materi	ials and Methods	The Applicant's version is considered acceptable with the following exceptions:				
		2.3 No data on hours of daylight, see point 3.4.2.				
		3.4.2 Table A7_1_1_2-2: Description of test system:				
		The hours of daylight have not been included in the table. This does not affer endpoint from the study.	ect the			
		3.4.4 Temperature:				
		The stated temperature range is $25 \pm 5^{\circ}$ C. EPA guideline 161-2 states the derange to be $25 \pm 1^{\circ}$ C. This does not affect the endpoint from the study.	esired			

Section A7.1.1.1.2 Annex Point IIA7.1.1.1.2	Phototransformation in water including identity of transformation products			
Results and discussion	The Applicant's version is considered to be acceptable			
Conclusion	The Applicant's version is considered to be acceptable			
Reliability	1			
Acceptability	Acceptable			
Remarks	All endpoints and data presented in the summary have been checked against the original study and are correct.			
	COMMENTS FROM (specify)			
Date	Give date of comments submitted			
Materials and Methods	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state			
Results and discussion	Discuss if deviating from view of rapporteur member state			
Conclusion	Discuss if deviating from view of rapporteur member state			
Reliability	Discuss if deviating from view of rapporteur member state			
Acceptability	Discuss if deviating from view of rapporteur member state			
Remarks				

Criteria	Details
Purity of water	Unbuffered Milli-Q water
Preparation of test chemical solution	Solutions of 10 ppm acrolein in 10 mg/l humic acid prepared by diluting 0.5 ml of 1000 ppm acrolein stock, 5 ml of 100 mg/l humic acid stock and 1.0 ml of 0.5M pH 7 phosphate buffer to 50 ml.
Test concentrations (mg a.s./l)	Initial concentration: 10 ppm acrolein.
Temperature (°C)	Ambient 25°C ± 5°C
Preparation of a.s. solution	0.5 ml of p-nitroacetophenol stock and 161 μ l of pyridine diluted to 100 ml with Milli-Q water.
Controls	None
Identity and concentration of co-solvent	No co-solvent used

 Table A7_1_1_2-2:
 Description of test system

Criteria	Details
Laboratory equipment	Screw-capped 11 mm o.d. quartz tubes.
	HPLC: HP 1090 system
	Spectrometer: HP 8450 UV/Vis
	Give details on the type and geometry of the reaction vessels (test tubes, material, size, type of absorption cell, pathlength); describe applicability in relationship to the applied wavelength. Report the name and the model of the spectrometer used.
Test apparatus	e.g. sunlight actinometer; describe details
Properties of artificial light source:	No artificial light source used.
Properties of natural sunlight:	Natural sunlight used
Latitude	40°N
Hours of daylight	Not stated
Time of year	Kinetic studies: 6 - 10 July 1987
	Product studies: 26 May - 3 June 1988
Light intensity	Not stated
Solar irradiance (L_{λ})	Not stated

Table A7_1_1_2-3: Screening test results

Absorption curve	give the plot of absorbanc of test substance vs. wavelenght (plus baseline)
A_{λ}	give the absorbance at wavelength λ for each replicate and the mean value.
ε ^λ ς	give determined molar absorptivity $(\varepsilon_{\lambda}^{c})$ of the test substance (determined from absorption spectra
k _{pEmax}	give the calculated maximum direct aqueous photolysis sunlight rate constant $(K_{pE})_{max}$ for summer and winter solstices using appropriate L_{λ} values
t _{1/2Emin}	give the calculated minimum sunlight half-life in water bodies $(t_{1/2E})_{min}$
L_{λ}	Give the solar irradiance in water $[10^{-3} \text{ einsteins cm}^{-2} d^{-1}]$

Table A7_1_1_1_2-4:	Actinometer data
---------------------	------------------

PNAP/ pyridine concentrations	0.51 of PNAP stock and 161 µl of pyridine diluted to 100 ml with Milli-Q water
	Give the molar concentration values of the actinometer chemicals at the start of each photolysis experiment and each time point t for each replicate (mean values).
φ ^a _E	3.4E-04 for 20 mM pyridine
k ^a _p	Give the rate constant for the used actinometer

Table A7_1_1_2-5: Specification and amount of transformation products (adjust table size as required)

CAS-	CAS and/or IUPAC Chemical Name(s)	Amount [%] of parent compound measured at			
Number		pH ₁	pH ₂	pH ₃	

	on 7.1.1.2.1 : Point IIA 6.1.1	Ready Biodegradation	
		1 REFERENCE	Official use only
1.1	Reference	Tabak, H.H., Quave, S.A., Mashni, C.I., Barth, E.F., "Biodegradability studies with organic priority pollutant compounds", Journal WPCF, Volume 53, No. 10, Oct, 1981, pp1503-1518.	х
1.2	Data protection	No	
1.2.1	Data owner		
1.2.2	Criteria for data protection	Not applicable.	
		2 GUIDELINES AND QUALITY ASSURANCE	
2.1	Guideline study	Bunch, R.L. and Chambers, C.W., "A Biodegradability Test for Organic Compounds." Jour. Water Poll. Control Fed., 39, 181 (1967).	х
2.2	GLP	No	Х
2.3	Deviations	Initial 7-day study, triplicate subcultures taken to 14 days. No information on the test substance. Specification of sewage sludge not given. Reference substance not the one specified by the guidelines. Results based on DOC and extraction from test substrate for detection by GC. Full range of controls not used.	
		3 METHOD	
3.1	Test material	Commercially available Acrolein.	-
3.1.1	Lot/Batch number	Not stated.	x
3.1.2	Specification	Not stated.	X
3.1.3	Purity	Not stated.	x
3.1.4	Further relevant properties		
3.2	Reference substance	Yes, Phenol.	
3.2.1	Initial concentration of reference substance	5, 10 mg/l	
3.3	Testing procedure		
3.3.1	Test vessels	250 ml glass-stopped reagent bottles	
3.3.2	Test concentrations	5, 10 mg/l	
3.3.3	Controls	Blank control, inoculum – medium and substrate - medium control.	
3.3.4	Test conditions	The test with acrolein was carried out in glass-stopped reagent bottles to minimise volatilisation, inoculated with pre-chilled yeast extract and settled domestic wastewater. The bottles were incubated at a constant room temperature of 25°C in darkness.	x

	on 7.1.1.2.1 : Point IIA 5.1.1	Ready Biodegradation	
3.3.5	Duration of test	28 days	
3.3.6	Analytical parameters		
3.3.7	Sampling	Duplicate samples at the beginning of each incubation period and triplicate samples at the end of the 7 day incubation	
3.3.8	Analysis of study data		
		4 RESULTS	
4.1	Ready Biodegradability	The seven day culture (and all of the further subcultures) showed 100% biodegradation at both initial concentrations of 5 and 10 mg/l.	
4.2	Dissolved Oxygen		
		5 APPLICANT'S SUMMARY AND CONCLUSION	
5.1	Materials and methods	The biodegradability test method used was the static-culture flask- screening procedure of Bunch and Chambers, utilising biochemical oxygen demand (BOD) dilution water containing 5 mg yeast extract per litre, as the synthetic medium; 5 and 10 mg/l concentrations of the test compound, a 7 day static incubation of 25°C in the dark, followed by three weekly subcultures, incorporating settled domestic wastewater as microbial inoculum. The test was modified to include the capability to study volatile compounds and to facilitate the use of GC, DOC and TOC analytical procedures. The procedure was extended to include the determination of the initial concentration of the test compound at the beginning of each incubation period.	
		Aqueous stock solutions were used to prepare the culture media. Biodegradability studies with acrolein were carried out in glass-stopped reagent bottles to minimise volatilisation. These were then inoculated with the pre-chilled yeast extract and settled domestic wastewater inoculum, before incubation at a constant room temperature of 25°C in darkness.	
		Duplicate samples at the beginning of each incubation period and triplicate samples at the end of the 7 day incubation were subjected to GC and DOC analysis as follows:	
		The culture samples were extracted three times with 20 ml portions of methylene chloride. The pooled solvent extracts were evaporated by the Kuderna-Danish evaporation technique and the concentrated extracts were then processed for GC analysis. For DOC, the samples were membrane filtered through a system using 0.22 μ m porosity filters.	
5.2	Results and discussion	The seven-day culture (and all of the further subcultures) showed 100% biodegradation at both initial concentrations of 5 and 10 mg/l. The 100% biodegradation results only indicate that test substance concentrations had fallen below the detectable level. The minimum sensitivity of the GC procedures used was about 0.1 mg/l, as the procedure was not optimised for sensitivity.	х
		The extraction efficiency differed with each of the test compounds and the recovery value ranged from 78 to 98% and were fairly reproducible for several test runs with each of the substrate-dosed culture samples.	
5.3	Conclusion	Acrolein was shown to be easily dissimilated with rapid acclimation of microbiota to the substrate.	X

Section 7.1.1.2.1 Annex Point IIA VII.7.6.1.1	Ready Bi	odegrada	ition				
	The reliabil	ity of 2 was	given in the	EU risk as	sessment of	Acrolein.	
5.3.1 Reliability	2						
5.3.2 Deficiencies	Not to stand	lard test gui	deline.				
	Evaluatio	on by Cor	npetent Au	athoritie	s		
	Use separate comments a		n boxes" to p ibmitted	rovide trar	isparency as	to the	
	EVALUAT	TION BY R	APPORTEU	R MEME	BER STATI	E	
Date	21/03/2006						
Materials and Methods	The Applica	ant's version	n is considere	d to be acc	eptable, not	ing the follo	wing:
		a submitted ce statement	is taken from t is given.	a publishe	ed study and	no raw data	or quality
	Biodegr 39, 181	adability Te (1967)' was	eline 'Bunch, est for Organi s not accessib scientific com	c Compour le, therefor	nds." Jour. V re the evalua	Water Poll. (ation by the	UK CA is
	2.2 As the s	tudy was pu	ublished befor	re 1989, it	is exempt fr	om GLP.	
	3.1.1 Batch	number not	t stated.				
	3.1.2 Specif	fication not	stated.				
	3.1.3 Purity	not stated.					
	3.3.4 Test c 30°C.		t 25°C, OECI) guideline	es state test t	o be carried	out at
Results and discussion	The Applica	ant's version	n is considere	d to be acc	eptable, not	ing the follo	wing:
	5.2 No tabu are availabl		s are presente final paper:	d in the RS	S, however	the followin	ng results
	Table 5: Bio	odegradabili	ity of Acrolei	n.			
	Test Compound	Conc. Of test	Performance summary	Averag		s (Biodegradat in 7 days (%))	ion of test
	compound	Compound (mg/L)	summary	Original Culture	1 st Culture	2 nd Culture	3 rd culture
	Acrolein	5	D*	100	100	100	100
	Acrolein	10	D*	100	100	100	100
	D*= signific	cant degrad	ation with rap	oid adaptati	on.		
Conclusion	The Applica	ant's version	n is considere	d to be acc	eptable, not	ing the follo	wing:
	acclima	tion of micr	olein was sho obiota to the re are no data	substrate'	is a stateme	nt by the aut	
Reliability	3						
Acceptability	Not Accepta	able.	·				
	The reliabil	ity level has e a number	been change of deficienci				

Section 7.1.1.2.1 Annex Point IIA VII.7.6.1.1	Ready Biodegradation
Remarks	The guideline 'Bunch, R.L. and Chambers, C.W., 'A Biodegradability Test for Organic Compounds." Jour. Water Poll. Control Fed. 39, 181 (1967)', was not available to view and therefore the reliability level was changed as an accurate evaluation could not be made. [This has been requested so the remark may change].
	As no tabulated results or graphs were included in the RSS, the reporting was considered to be deficient. All endpoints addressed in the summary have been checked against those in the study.
	Taking the above factors into account, the UK CA considers that this study can only be used as supporting evidence that acrolein would degrade in the aquatic environment.
	COMMENTS FROM (specify)
Date	Give date of comments submitted
Materials and Methods	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state
Results and discussion	Discuss if deviating from view of rapporteur member state
Conclusion	Discuss if deviating from view of rapporteur member state
Reliability	Discuss if deviating from view of rapporteur member state
Acceptability	Discuss if deviating from view of rapporteur member state
Remarks	

Section A7.1.1.2.2 Annex Point IIA VII.7.6.1.2	Inherent biodegradability	
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only
Other existing data []	Technically not feasible [] Scientifically unjustified [X]	
Limited exposure []	Other justification []	
Detailed justification:	As a ready biodegradability study was carried out and gave a positive result (Section A7.1.1.2.1, Annex Point IIA, VII.7.6.1.2.), in accordance with the TNsG on Data Requirements for the Biocidal Products Directive an inherent biodegradability study is not required. In addition the active substance has been shown to undergo rapid degradation by physico-chemical processes including rapid volatilisation (A7.2.1) and photodegradation (A7.1.1.2), and microbial degradation in water (anaerobic and aerobic freshwater-sediment radio-labelled studies, A7.1.2.1.1 and A7.1.2.1.2) transforming the active substance to CO2.	
Undertaking of intended data submission []		
	Evaluation by Competent Authorities	
	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted	
	Use separate "evaluation boxes" to provide transparency as to the	
Date	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted	
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE	show
Date Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 30/11/2007 The UK CA has made the decision at the evaluation stage that the ready biodegradation test is not acceptable as a stand alone endpoint. However, the exposure route i.e. not via an STP, and the availability of other data to degradation no additional data are considered necessary for this specific u	show se
Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 30/11/2007 The UK CA has made the decision at the evaluation stage that the ready biodegradation test is not acceptable as a stand alone endpoint. However, the exposure route i.e. not via an STP, and the availability of other data to degradation no additional data are considered necessary for this specific u pattern. Acceptable because of the availability of other studies and not on the basis	show se
Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 30/11/2007 The UK CA has made the decision at the evaluation stage that the ready biodegradation test is not acceptable as a stand alone endpoint. However, the exposure route i.e. not via an STP, and the availability of other data to degradation no additional data are considered necessary for this specific u pattern. Acceptable because of the availability of other studies and not on the basis	show se
Date Evaluation of applicant's justification Conclusion Remarks	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 30/11/2007 The UK CA has made the decision at the evaluation stage that the ready biodegradation test is not acceptable as a stand alone endpoint. However, the exposure route i.e. not via an STP, and the availability of other data to degradation no additional data are considered necessary for this specific u pattern. Acceptable because of the availability of other studies and not on the basis ready biodegradability.	show se
Date Evaluation of applicant's justification	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 30/11/2007 The UK CA has made the decision at the evaluation stage that the ready biodegradation test is not acceptable as a stand alone endpoint. However, the exposure route i.e. not via an STP, and the availability of other data to degradation no additional data are considered necessary for this specific u pattern. Acceptable because of the availability of other studies and not on the basis ready biodegradability.	show se
Date Evaluation of applicant's justification Conclusion Remarks Date Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 30/11/2007 The UK CA has made the decision at the evaluation stage that the ready biodegradation test is not acceptable as a stand alone endpoint. However, the exposure route i.e. not via an STP, and the availability of other data to degradation no additional data are considered necessary for this specific u pattern. Acceptable because of the availability of other studies and not on the basis ready biodegradability. COMMENTS FROM OTHER MEMBER STATE (specify) Give date of comments submitted	show se

Annex Point IIA VII.7.6.1.2	Inherent biodegradability		
L	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only	
Other existing data []	Technically not feasible [] Scientifically unjustified [X]		
Limited exposure []	Other justification []		
Detailed justification:	As a ready biodegradability study was carried out and gave a positive result (Section A7.1.1.2.1, Annex Point IIA, VII.7.6.1.2.), in accordance with the TNsG on Data Requirements for the Biocidal Products Directive an inherent biodegradability study is not required. In addition the active substance has been shown to undergo rapid degradation by physico-chemical processes including rapid volatilisation (A7.2.1) and photodegradation (A7.1.1.2). and microbial degradation in water (anaerobic and aerobic freshwater-sediment radio-labelled studies, A7.1.2.1.1 and A7.1.2.1.2) transforming the active substance to CO2.		
Undertaking of intended data submission []			
	Evaluation by Competent Authorities		
	Evaluation by Competent Authorities		
	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted		
	Use separate "evaluation boxes" to provide transparency as to the		
Date	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted		
Date Evaluation of applicant's justification	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE	show	
Evaluation of applicant's justification	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 30/11/2007 The UK CA has made the decision at the evaluation stage that the ready biodegradation test is not acceptable as a stand alone endpoint. However, a the exposure route i.e. not via an STP, and the availability of other data to degradation no additional data are considered necessary for this specific up	show se	
Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 30/11/2007 The UK CA has made the decision at the evaluation stage that the ready biodegradation test is not acceptable as a stand alone endpoint. However, of the exposure route i.e. not via an STP, and the availability of other data to degradation no additional data are considered necessary for this specific up pattern. Acceptable because of the availability of other studies and not on the basis	show se	
Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 30/11/2007 The UK CA has made the decision at the evaluation stage that the ready biodegradation test is not acceptable as a stand alone endpoint. However, of the exposure route i.e. not via an STP, and the availability of other data to degradation no additional data are considered necessary for this specific up pattern. Acceptable because of the availability of other studies and not on the basis	show se	
Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 30/11/2007 The UK CA has made the decision at the evaluation stage that the ready biodegradation test is not acceptable as a stand alone endpoint. However, a the exposure route i.e. not via an STP, and the availability of other data to degradation no additional data are considered necessary for this specific up pattern. Acceptable because of the availability of other studies and not on the basis ready biodegradability.	show se	
Evaluation of applicant's justification Conclusion Remarks	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 30/11/2007 The UK CA has made the decision at the evaluation stage that the ready biodegradation test is not acceptable as a stand alone endpoint. However, of the exposure route i.e. not via an STP, and the availability of other data to degradation no additional data are considered necessary for this specific up pattern. Acceptable because of the availability of other studies and not on the basis ready biodegradability.	show se	
Evaluation of applicant's justification Conclusion Remarks Date Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 30/11/2007 The UK CA has made the decision at the evaluation stage that the ready biodegradation test is not acceptable as a stand alone endpoint. However, of the exposure route i.e. not via an STP, and the availability of other data to degradation no additional data are considered necessary for this specific up pattern. Acceptable because of the availability of other studies and not on the basis ready biodegradability. COMMENTS FROM OTHER MEMBER STATE (specify) Give date of comments submitted	show se	

Section A7.1.1.2.2 Annex Point IIA VII.7.6.1.2	Inherent biodegradability	
Section A7.1.1.2.2 Annex Point IIA VII.7.6.1.2	Inherent biodegradability	
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only
Other existing data []	Technically not feasible [] Scientifically unjustified [X]	-
Limited exposure []	Other justification []	
Detailed justification:	As a ready biodegradability study was carried out and gave a positive result (Section A7.1.1.2.1, Annex Point IIA, VII.7.6.1.2.), in accordance with the TNsG on Data Requirements for the Biocidal Products Directive an inherent biodegradability study is not required. In addition the active substance has been shown to undergo rapid degradation by physico-chemical processes including rapid volatilisation (A7.2.1) and photodegradation (A7.1.1.1.2), and microbial degradation in water (anaerobic and aerobic freshwater-sediment radio-labelled studies, A7.1.2.1.1 and A7.1.2.1.2) transforming the active substance to CO2.	
Undertaking of intended	A7.1.2.1.1 and A7.1.2.1.2) transforming the active substance to CO2.	
Undertaking of intended data submission []	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted	
	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the	
data submission []	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted	
data submission [] Date Evaluation of applicant's	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE	
	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE Give date of action	
data submission [] Date Evaluation of applicant's justification Conclusion	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE Give date of action Discuss applicant's justification and, if applicable, deviating view Indicate whether applicant's justification is acceptable or not. If unaccept because of the reasons discussed above, indicate which action will be required	
data submission [] Date Evaluation of applicant's justification Conclusion	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE Give date of action Discuss applicant's justification and, if applicable, deviating view Indicate whether applicant's justification is acceptable or not. If unaccept because of the reasons discussed above, indicate which action will be required	
data submission [] Date Evaluation of applicant's justification Conclusion Remarks	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE Give date of action Discuss applicant's justification and, if applicable, deviating view Indicate whether applicant's justification is acceptable or not. If unacceptable because of the reasons discussed above, indicate which action will be require, g. submission of specific test/study data	
data submission [] Date Evaluation of applicant's justification	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE Give date of action Discuss applicant's justification and, if applicable, deviating view Indicate whether applicant's justification is acceptable or not. If unaccept because of the reasons discussed above, indicate which action will be require, g. submission of specific test/study data COMMENTS FROM OTHER MEMBER STATE (specify)	

Baker Petrolite	
------------------------	--

Acres and a second second	on 7.1.1.2.3 : Point IIIA XII 2.1	Biodegradation in seawater	
		1 REFERENCE	Officia use only
1.1	Reference	Manley, R. (2003a) A Study of the Aerobic Biodegradation in Seawater of MAGNATREAT-M using the Closed Bottle Procedure in a Screening Test. Severn Trent Limited. Study No. STL031989.	
1.2	Data protection	Yes	
1.2.1	Data owner	Baker Petrolite	Į
1.2.2	Criteria for data protection	Data on new a.s. for first entry to Annex I	
à		2 GUIDELINES AND QUALITY ASSURANCE	
2.1	Guideline study	Yes OECD Guideline 306	
2.2	GLP	Yes	
2.3	Deviations	No	x
2		3 METHOD	
3.1	Test material	Magnatreat M: As given in Section 2	х
3.1.1	Lot/Batch number	STL reference: 832111	
3.1.2	Specification	As given in Section 2	X
3.1.3	Purity	Not stated	
3.1.4	Further relevant properties	None	
3.2	Reference substance	Yes	
3.2.1	Initial concentration of reference substance	Sodium benzoate: 2.5mg/l	
3.3	Testing procedure		
3.3.1	Test vessels	Completely filled, sealed glass biological oxygen demand (BOD) bottles of nominal 272 ml volume.	
3.3.2	Test concentrations	Magnatreat-M used at 2.0 mg/l and 3.5 mg/l. Soluble test materials are added to the test media from a 1.0 g/l stock solution	
3.3.3	Controls	Sodium benzoate, at a concentration of 2.5 mg/l was used to as a reference substance to monitor microbial activity. Sodium benzoate at 2.5 mg/l and 2.0 mg/l Magnatreat-M were used as an inhibition blank to monitor any inhibition/toxicity of the sample.	
3.3.4	Test conditions	All test bottles contained coarse filtered, natural seawater as inoculum. For each of the sample days, duplicate bottles were prepared for each of the test material concentrations and sodium benzoate. All bottles were incubated at 18.5 - 21.0°C in the dark. The incubator was at 21°C for one day only and was adjusted back to 15.0-20.0°C.	
3.3.5	Source of seawater	Natural seawater was collected from Penrhyn Point in North Wales. The temperature at collection was 9.5°C, pH 7.96, salinity 32.9 g/l and the	х

Section 7.1.1.2.3 Annex Point IIIA XII 2.1		Biodegradation in seawater	
		dissolved oxygen level 98.4%. After collection, the seawater was coarse filtered and maintained in the dark. The seawater was aged prior to use by gentle aeration, at $20 \pm 2^{\circ}$ C.	
3.3.6	Duration of test	28 days	
3.3.7	Analytical	Dissolved Oxygen (DO) concentrations	
	parameters	Theoretical Oxygen Demand (ThOD)	
3.3.8	Sampling	Days 0, 14, 28.	X
		Duplicate bottles of each concentration of test material, and bottles containing sodium benzoate were measured.	
3.3.9	Analysis of study data	The calculated ThOD and dissolved oxygen data were recorded at each analysis point (including Day 0 readings), and processed to derive the percentage degradability of the test material. Degradation values were calculated using the equation:	
		% Degradability = $\underline{BODmgO_2mg^{-1}test material}$ x 100 ThOD (mgO_2mg^{-1})	
		4 RESULTS	
4.1	Thod	The theoretical oxygen demand was 2.0 mg mg ⁻¹	
4.2	Dissolved Oxygen	See Table A7_1_2_2_3-1	
4.1.1	Graph	100.0 80.0 80.0 60.0 40.0 20.0 -20.0 -40.0 Time (Days) MAGNATREAT-M 2.0mg/l -40.0 MAGNATREAT-M 2.0mg/l MAGNATREAT-M 2.5 mg/l) MAGNATREAT-M 3.5 mg/l MAGNATREAT-M 3.5 mg/l	
		Degradation profile of MAGNATREAT-M, at 2.0 mg l ⁻¹ and 3.5 mg l ⁻¹ , plus sodium benzoate at 2.5 mg l ⁻¹ , and sodium benzoate and 2.0 mg l ⁻¹ MAGNATREAT-M inhibition blank over 28 days.	
		5 APPLICANT'S SUMMARY AND CONCLUSION	
5.1	Materials and methods	The study was performed in accordance with OECD Guideline 306. A sample of Magnatreat-M was assessed for 28 days in a screening test. All test bottles contained seawater collected from Penrhyn Point in North Wales. Magnatreat-M at concentrations of 2.0 mg/l and 3.5 mg/l was added. Sodium benzoate, (2.5 mg/l) was used as a reference material to monitor microbial activity. Sodium benzoate at 2.5 mg/l and 2.0 mg/l Magnatreat-M were used as an inhibition blank to monitor any inhibition/toxicity of the sample. All bottles were incubated at 18.5 -	

Baker Petrolite	Bake	r Peti	rolite
------------------------	------	--------	--------

Section 7.1.1.2.3 Annex Point IIIA XII 2.1		Biodegradation	in seawater			
		21°C in the dark for	28 days.			
		Dissolved oxygen an Days 0, 14 and 28.	d theoretical oxygen demand were measured on			
5.2 Results and discussion	indicative of a good p Under the test condit showed limited poter test concentrations of inclusion of an inhib	radation within 28 days is usually taken as being potential for degradation in the marine environment. ion in the closed bottle procedure, Magnatreat-M ntial for degradation in the marine environment at f 2.0 and 3.5 mg/l. It was concluded from the ition blank that the sample was either toxic or ro-organisms present.	Х			
		% Degradability				
		Material (mg/l): Magnatreat M				
		Day 14:	Negative value, indicating possible toxicity/inhibition.			
		Day 28:	Negative value, indicating possible toxicity/inhibition.			
		Material (mg/l):	Magnatreat-M (3.5)			
		Day 14:	Negative value, indicating possible toxicity/inhibition.			
		Day 28:	Negative value, indicating possible toxicity/inhibition.			
		Material (mg/l):	Sodium benzoate (2.5)*			
		Day 14:	91.3 %			
		Day 28:	93.9 %			
	Material (mg/l):	Inhibition blank, Sodium benzoate (2.5) + Magnatreat-M at (2.0)				
		Day 14:	Negative value, indicating possible toxicity/inhibition.			
		Day 28:	Negative value, indicating possible toxicity/inhibition.			
			alated theoretical oxygen demand (ThOD) of e as $1.67 \text{ mg O}_2/1$			
		A degradation of 93.9% after 28 days was obtained from sodium benzoate. This demonstrates that the inoculum was biologically active Negative values indicated inhibition or toxicity by the test material.				
5.3	Conclusion			X		
5.3.1	Reliability	1				
5.3.2	Deficiencies	No.		X		

Baker Petrolite

Section 7.1.1.2.3 Annex Point IIIA XII 2.1	Biodegradation in seawater		
	Evaluation by Competent Authorities		
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted		
	EVALUATION BY RAPPORTEUR MEMBER STATE		
Date	24/03/2006		
Materials and Methods The Applicant's version is acceptable, noting the following:			
	2.3 Deviations were made, see points 3.1, 3.1.2, 3.3.5 and 3.3.8 below.		
	3.1, & 3.1.2 No details provided in the study, or the summary, on the test substance 'MAGNATREAT-M' to compare with details in section 2. 'Section 2' refers to section 2 of Doc III, but there is nothing in the report to verify this.		
	3.3.5 Information on the seawater missing from the original study. Namely, depth of collection, appearance of seawater, length of time between collection and use, and the length of time the seawater was aged prior to use.		
	3.3.8 OECD guideline 306 that states analysis should be performed after 5, 15 and 28 days as a minimum.		
Results and discussion	The Applicant's version is considered to be acceptable, noting the following;		
	5.2 The first % degradability summary does not state the concentration of MAGNATREAT-M in the test solution. This should read MAGNATREAT-M (2.0)		
Conclusion	The Applicant's version is considered to be acceptable, noting the following;		
	5.3 No conclusion provided by the Applicant. The UK CA suggests the following should be used;		
	'It was concluded from the inclusion of an inhibition blank that the sample was either toxic or inhibitory to the microorganisms present in the seawater. A degradation of 93.9% after 28 days was obtained from sodium benzoate demonstrating that the inoculum was biologically active'. Further testing, using a lower concentration of test substance, may address this issue. However, the toxicity of acrolein is such that derivation of a valid (measured) endpoint would be unlikely.		
Reliability	2		
Acceptability	Acceptable		
	5.3.2 The reliability level has been changed from a 1 to a 2 because the UK CA believes that there are a number of deficiencies in the methodology and reporting.		
Remarks	The UK CA believes that the study was performed correctly with only minor deviations from OECD guideline 306.		
	All endpoints addressed in the summary have been checked against those in the study.		
	Under the conditions tested Acrolein has not been shown to be readily biodegradable in seawater. This study should have been performed with lower test concentrations.		
	COMMENTS FROM (specify)		
Date	Give date of comments submitted		

Section 7.1.1.2.3 Annex Point IIIA XII 2.1	Biodegradation in seawater	
Materials and Methods	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state	
Results and discussion	Discuss if deviating from view of rapporteur member state	
Conclusion	Discuss if deviating from view of rapporteur member state	
Reliability	Discuss if deviating from view of rapporteur member state	
Acceptability	Discuss if deviating from view of rapporteur member state	
Remarks		

Table A7_1_2_2_3-1: Dissolved oxygen (mg/l) data for control and inoculum blanks and test media containing MAGNATREAT-M

Culture medium	Flask No.		mg O ₂ /l after n days	
		Day 0	Day 14	Day 28
Test:	1	7.65	7.15	7.07
Nutrient fortified	2	7.66	7.15	7.07
seawater with 2.0 mg/l test material	Mean	7.65	7.15	7.07
Test:	1	7.66	7.25	7.09
Nutrient fortified	2	7.71	7.30	7.10
seawater with 3.5 mg/l test material	Mean	7.69	7.28	7.10
Reference: Nutrient fortified	1	7.64	3.00	2.10
seawater with 2.5	2	7.66	2.92	2.40
mg/l sodium benzoate	Mean	7.65	2.96	2.25
Blank:	1	7.62	6.80	6.16
Nutrient fortified	2	7.64	6.70	6.14
seawater only	Mean	7.63	6.75	6.15
Reference: Nutrient fortified	1	7.62	7.30	6.92
seawater with 2.5 mg/l sodium	2	7.63	7.21	7.03
benzoate and 2.0 mg/l test material	Mean	7.63	7.26	6.98

Section A7.1.2 Annex Point IIIA XII.2.1	Rate and route of degradation in aquatic systems including identification of metabolites and degradation products		
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only	
Other existing data []	Technically not feasible [] Scientifically unjustified [X]		
Limited exposure []	Other justification []		
Detailed justification:	The rate and route of degradation in water/sediment has been determined and discussed in section IIIA7.1.2.1.1 & IIIA7.1.2.1.2		
Undertaking of intended data submission []			
	Evaluation by Competent Authorities		
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted		
	EVALUATION BY RAPPORTEUR MEMBER STATE		
Date	18/05/2006		
Evaluation of applicant's justification	The Applicant's justification is acceptable.		
Conclusion	Acceptable		
Remarks			
	COMMENTS FROM OTHER MEMBER STATE (specify)		
	1 000		
Date	Give date of comments submitted		
Date Evaluation of applicant's justification			
Evaluation of applicant's	Give date of comments submitted		

Section A7.1.2.1.1 Annex Point IIIA XII.2.1	Biological sewage treatment: Aerobic simulation study							
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only						
Other existing data []	Technically not feasible [] Scientifically unjustified [X]	-						
Limited exposure []	Other justification []							
Detailed justification:	The active substance will not be released to biological sewage treatment plants before release as it is used exclusively in the marine environment on off-shore oil product platforms. An aerobic simulation study is therefore considered to be scientifically unjustified.							
Undertaking of intended								
data submission []								
data submission []	Evaluation by Competent Authorities							
data submission []	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted							
	Use separate "evaluation boxes" to provide transparency as to the							
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted							
Date Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE							
Date Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 16/05/2006							
Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 16/05/2006 The Applicant's justification is acceptable							
Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 16/05/2006 The Applicant's justification is acceptable							
Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 16/05/2006 The Applicant's justification is acceptable Acceptable							
Date Evaluation of applicant's justification Conclusion Remarks	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 16/05/2006 The Applicant's justification is acceptable Acceptable COMMENTS FROM OTHER MEMBER STATE (specify)							
Date Evaluation of applicant's justification Conclusion Remarks Date Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 16/05/2006 The Applicant's justification is acceptable Acceptable COMMENTS FROM OTHER MEMBER STATE (specify) Give date of comments submitted							

Section A7.1.2.1.2 Annex Point IIIA XII.2.1	Biological sewage treatment: anaerobic degradation study							
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only						
Other existing data []	Technically not feasible [] Scientifically unjustified []							
Limited exposure []	Other justification []							
Detailed justification:	The active substance will not be released to biological sewage treatment plants before release as it is used exclusively in the marine environment on off-shore oil product platforms. An anaerobic degradation study is therefore considered to be scientifically unjustified.							
Undertaking of intended data submission []								
	Evaluation by Competent Authorities							
	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted							
	Use separate "evaluation boxes" to provide transparency as to the							
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted							
Date Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE							
Date Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 16/05/2006							
Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 16/05/2006 The Applicant's justification is acceptable.							
Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 16/05/2006 The Applicant's justification is acceptable.							
Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 16/05/2006 The Applicant's justification is acceptable. Acceptable							
Date Evaluation of applicant's justification Conclusion Remarks	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 16/05/2006 The Applicant's justification is acceptable. Acceptable COMMENTS FROM OTHER MEMBER STATE (specify)							
Date Evaluation of applicant's justification Conclusion Remarks Date Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 16/05/2006 The Applicant's justification is acceptable. Acceptable COMMENTS FROM OTHER MEMBER STATE (specify) Give date of comments submitted							

Baker Petrolite	Ba	ker	P	etr	olite	
------------------------	----	-----	---	-----	-------	--

And the second second	on 7.1.2.2.1 : Point IIIA XII 2.1	Aerobic aquatic degradation				
		1 REFERENCE	Official use only			
1.1	Reference	Smith, A.M. (1993a). (¹⁴ C-Acrolein) - Determination of the Aerobic Aquatic Metabolism, Springborn Laboratories, Inc. SLI Report No. 91-3- 3747.				
1.2	Data protection	Yes				
1.2.1	Data owner	Baker Petrolite				
1.2.2	Criteria for data protection	Data on new a.s. for first entry to Annex I				
		2 GUIDELINES AND QUALITY ASSURANCE				
2.1	Guideline study	Yes				
1.1		US EPA FIFRA Guideline 162-4				
2.2	GLP	Yes				
2.3	Deviations	No				
		3 METHOD				
3.1	Test material	As given in Section 2				
3.1.1	Lot/Batch number	Sample no. 6587				
3.1.2	Specification	As given in Section 2				
3.1.3	Purity	95.06%	х			
3.1.4	Further relevant properties	Acrolein has a water solubility of 23.7% at 25°C.				
3.1.5	Composition of Product	Not applicable				
3.1.6	TS inhibitory to microorganisms	Yes Exposure to increasing concentrations of acrolein had increasingly inhibitory effects upon the population of <i>Anabaena flos-aquae</i> . The effects of test substance on mean standing crop on day 5, relative to control, ranged from 5.12% to 98.6% inhibition.				
3.1.7	Specific chemical analysis	None used				
3.2	Reference substance	No	1			
3.2.1	Initial concentration of reference substance					
3.3	Testing procedure					
3.3.1	Inoculum / test species	See Table A7_1_2_1_2-1				
3.3.2	Test system	See Table A7_1_2_1_2-2				
3.3.3	Test conditions	See Table A7 1 2 1 2-3	X			

Bal	ker	Petrolite

	on 7.1.2.2.1 x Point IIIA XII 2.1	Aerobic aquatic degradation						
3.3.4	Method of preparation of test solution	A radiolabelled superstock solution was prepared by quantitatively transferring the entire contents of an ampoule of radiolabelled ¹⁴ C- Acrolein (100 mCi) through repetitive rinsing with Burdick and Jackson high purity acetone into a 100 ml volumetric flask and diluting to volume. This super-stock had a mean measured concentration of 4.30 mg/ml (triplicate analysis by liquid scintillation counting (LSC)). A 1.25 ml sample of the 4.30 mg/ml radiolabelled stock was combined with 32.125 mg of non-radiolabelled acrolein and diluted to a final volume of 25 ml with NANOpure® water, to obtain a dosing solution concentration of 1.50 mg/ml acrolein. Exactly 4.00 ml of this solution was added by gas-tight syringe to each replicate test vessel containing sediment and 400 ml of canal water to obtain a nominal concentration of 15.0 mg/l.						
3.3.5	Initial TS concentration	15.0 mg/l						
3.3.6	Duration of test	32 days	X					
3.3.7	Analytical parameter	Rate of metabolism and pattern of decline of ¹⁴ C-acrolein.						
3.3.8	Sampling	The sampling intervals for this study were chosen as events where maximum levels of each degradation product would be expected based on the results observed in the interim study. Sediment samples were taken for microbial biomass determinations at initiation and termination of the study. At hours 0, 3, and 5 and Days 1, 2, 5 and 32, HPLC and LSC analysis samples were drawn. On Day 32 the canal water was decanted and the volume recorded. Percent moisture analysis and radiometric combustion analysis was carried out on the remaining sediment. Sub-samples were extracted with 120 ml of sodium hydroxide and analysed by HPLC and LSC techniques. After extraction, radiometric combustion samples were weighed and analysed for non- extractable residues. The sodium hydroxide trapping systems were replaced and analysed at each sampling interval except Hour 0. In order to preclude saturation,						
		additional trap changes were performed on Days 3, 4, 6, 7, 8, 9, 11, 12, 14, 17, 20 and 25 over the 32-day study. The total volume of the sodium hydroxide traps was measured and samples were analysed by LSC.						
		At Day 32, the Tenax® traps were eluted twice sequentially with methanol and the eluent analysed by LSC.						
		Representative sodium hydroxide traps (replicate 1 Day 3, 11, 25, and 32 and replicate 3 Day 25) were analysed by barium hydroxide precipitation procedure to determine the presence of ¹⁴ C-carbon dioxide Replicate 1 Day 32 canal water was also analysed to confirm the presence of ¹⁴ C-carbon dioxide						
		Samples were treated with a saturated barium hydroxide solution and the resulting precipitate filtered. Precipitate and supernatant liquid were subsequently analysed by LSC.						
3.3.9	Intermediates/	Identified						
	degradation products	High performance liquid chromatography with radiometric detection (HPLC-RAM) of the natural water phase collected at Hours 0, 3 and 5 and on Days 1, 2, 5 and 32, revealed the rapid degradation of ¹⁴ C-acrolein. Through Day 5 of the study, six products were produced in the water phase which were ephemeral in nature: 3-hydroxypropanal, acrylic acid, allyl alcohol, propionic acid, glyceric acid and 3-hydropropionic acid. An additional product, oxalic acid, was formed on Day 2 and						

	on 7.1.2.2.1 Point IIIA XII 2.1	Aerobic aquatic degradation	
		remained throughout the study. All of these metabolites were further mineralised to carbon dioxide.	
3.3.10	Controls	Not specified	X
3.3.11	Statistics	The rate constant and half-life of acrolein in natural water under aerobic aquatic conditions were determined in this study. The interim study presents rate constants and half-lives in both the canal water and sediment phases.	
		A cumulative material balance was calculated for each replicate at each sampling interval and a final material balance was calculated upon termination. The final material balance was calculated by summing the cumulative disintegrations per minute (DPM) recovered in the carbon dioxide and Tenax® traps, DPM recovered in the canal water, DPM recovered in the sediment extract, and the non-extractable DPM remaining in the sediment, and then dividing by the total DPM applied in the dose.	
		4 RESULTS	
4.1	Degradation of test substance		
4.1.1	Degradation of TS in abiotic control	Not specified	
4.1.2	Degradation	Carbon dioxide, the primary degradation product was formed in the water phase on Day 2 and remained throughout the study. Expressed as bicarbonate ion (HCO_3^-) , carbon dioxide represented greater than 90% of the HPLC-RAM peak area on Days 5 and 32 and was observed to be 40% (4.7 ppm acrolein equivalents) and 25% (2.9 ppm acrolein equivalents) of the initial dose on the Day 5 and Day 32 sampling events, respectively.	
4.1.3	Graph	Figure 9. The ratio of CO ₄ to other volatiles in the trapping system at representative sampling events.	
		$\frac{100}{90}$	
		and and a set of an est of a	

Document IIIA

Baker l	Petrolite
---------	-----------

	Section 7.1.2.2.1 Annex Point IIIA XII 2.1		obic	aquatio	c deg	radat	ion						
j.		Figur	re 1:	tl					de to Oth presenta				
4.1.4	Other observations	None	5									1	
4.1.5	Degradation of reference substance	Not a	ot applicable										
4.1.6	Intermediates/ degradation products	See Section 5.2											
		5	5 APPLICANT'S SUMMARY AND CONCLUSION										
5.1	Materials and methods	US E	US EPA FIFRA Guideline No. 162-4						-				
5.2	Results and discussion	H	IPLC	results o	f cana	l wateı	sample	s as pe	ercent of j	peak :	area		Х
			rolein	3-hydroxy propanal		allyl alcohol	propionic acid	oxalic acid	3-hydroxy propionic acid	sum	bi- g carb- onate	dyceris acid	
		Hour 0 R1	78	6	10	6	MD	ND	ND	ND	ND	ND	
		R2 R3	78 76 74	6 5 4	10 11 7	6 8 10	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	
		Hour 3										100	
		R1 R2 R3	76 76 72	5 5 7	12 13 12	7 6 8	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	
		Hour 5										1.1	
		R1 R2 R3	72 71 69	7 10 8	12 13 13	6 6 10	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	
		Day 1									10000	-	
		R1 R2 R3	55 53 52	24 25 23	14 15 20	6 7 5	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	
		Day 2											
		R1 R2 R3	ND ND ND	12 18 19	23 24 25	4 4 6	22 25 27	2 2 2	17 10 7	65 66 66	12 12 14	ND ND ND	
		Day 5											
		R1 R2 R3	ND ND ND	ND ND ND	ND ND ND	5 3 6	ND ND ND	1 2 3	ND ND ND	ND ND ND	93 95 88	ND ND 3	
		Day 32	- 200-	and the second	0001				(400)	2.5	(refer	5	
		R1 R2 R3	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	1 3 1	ND ND ND	ND ND ND	99 97 99	ND ND ND	
		pathw hydro acid. also d allyl a	vays. oxypro The b lemon	This is evo opanal wo piotransfonstrated, a ol. This r	videnc as ther ormation as evid nicrob	ed by t n furthe on of a lenced ial biot	he formation for oxidis crolein u by the for ransform	ed to p inder a ormul nation	e main de of 3-hydro produce 3 aerobic co ation of a of acrole olysis pro-	-hydronditi crylic ein to	ropana roprop ons w c acid ok pla	oionic as and ce	

	on 7.1.2.2.1 Point IIIA XII 2.1	Aerobic aquatic degradation	
		oxidative product, acrylic acid and its reductive product, allyl alcohol. Acrylic acid was reduced to propionic and which oxidised to oxalic acid and eventually to carbon dioxide through complete mineralization. The fate of allyl alcohol was less obvious largely due to its volatility. For the same reason, allyl alcohol was not present in the aqueous phase in the same amount as acrylic acid.	
		All metabolites of acrolein are polar and highly water soluble and are less volatile than acrolein. Due to the rapid degradation of acrolein through these pathways, the loss of radioactivity through volatility of acrolein was further inhibited. After 32 days, most of the remaining radioactivity was detected in the aqueous phase of the test system at approximately 25 % of the initial dose, while the radioactivity in the sediment phase amounted to approximately 20% of the initial dose. The decrease in radioactivity in the aqueous phase was not a result of sorption to solids but rather due to the rapid mineralization of acrolein metabolites to carbon dioxide Consequently, the carbon dioxide formed was found to be the major product in volatile traps. The mineralization of acrolein also took place in the sediment phase. Inorganic bicarbonate and carbonate anions absorbed strongly to the sediment which explains why the more non-polar solvents (e.g., acetonitrile, methanol) were not suitable for extracting sediment samples.	х
5.3	Conclusion	Results of this study indicated hydrolysis was an early step in acrolein degradation, and is supported by previous reported acrolein behaviour. Under the conditions of this study, acrolein underwent rapid hydrolysis and biodegradation in water.	
5.3.1	Reliability	1	
5.3.2	Deficiencies	No	

	Evaluat	ion by	y Co	mpete	nt Author	ities					
1	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted										
	EVALUA	EVALUATION BY RAPPORTEUR MEMBER STATE									
Date	30/11/200	7									
Materials and Methods	The Appli	icant's	versio	n is acc	eptable, noti	ng the f	ollowing;	-			
	the study	(6687)			n in the sum						
	The Appli	cant's	labora	tory, SI	ummary, 95 LI, states the rity to be use	purity t					
	characteri following	stics. T tables	These a to be i	are avai includeo	the summar lable in the s l: ediment Cha	tudy, ho	wever. The		suggests t		
	Classific ation	Sand (%)	Silt (%)	Clay (%)	Field Moisture Capacity @ 0.33 bar (%)	PH	Cation Exchange (meq/100 g)	Organic Matter (%)	Bulk Density (disturt ed) (gm/cc		
	Sandy Loam	75	19	6	16.8	6.1	18.0	0.5	1.11		
	Table 2 : 1	Kern C	ounty	Canal V	Water Chara	cteristics	s:				
	Descripti on	ti Total Alkalin ity (mg/L as CaCO ₃)		Total ardness ng/L as CaCO3)	Suspende d Solids (mg/L)	Total Solids (mg/L)	Dissolved Oxygen (mg/L)	Ph (20°C)	Specific Conductiv ty (µ MHO/cm)		
	Clear/Ye llow Tint	75		56	<0.002	0.122	10.8	8.0	184		
	3.3.6 EPA 3.3.10 No				tates that the	duratio	n of the tes	t is to be 3	30 days.		

Results and discussion	nd discussion The Applicant's version is considered to be acceptable, noting the following;					
	5.2 No half-life data have been reported in the summary. These are available in the study, however. The UK CA suggests the following table to be included:					
	Table 3: Acrolein rat	e constants and half-	life results for aerob	ic water samples:		
	No. Of Observations	Correlation Coefficient (r ²)	Rat Constant (1/hour)	Half-Life (hours)		
	12	0.994	0.021	33.7		
	Also, in the text it states '3-hydroxypropanal was then further oxidised to prod 3-hydropropionic acid'. The UK CA suggests this is changed to '3- hydroxypropanal was then further oxidised to produce 3-hydro <u>xy</u> propionic ac					
	Further in the text it is stated 'Acrylic acid was reduced to propionic and which oxidised to oxalic acid and eventually to carbon dioxide through complete mineralization.' The UK CA suggests this should read as follows: 'Acrylic acid was reduced to propionic <u>acid</u> and which oxidised to oxalic acid an eventually to carbon dioxide through complete mineralization.'					
5.2 The last paragraph states 'After 32 days, most of the remaining radioact, was detected in the aqueous phase of the test system at approximately 25% initial dose, while the radioactivity in the sediment phase amounted to approximately 20% of the initial dose. The decrease in radioactivity in the aqueous phase was not a result of sorption to solids but rather due to the radioactivation of acrolein metabolites to carbon dioxide', this is a direct contradiction of the conclusions made by the Applicant regarding adsorption/desorption (section A7.1.3).				ximately 25 % of the punted to activity in the r due to the rapid s is a direct		
Conclusion	The Applicant's version is considered acceptable.					
Reliability	2					
Acceptability	Acceptable					
	No controls were used in the study, therefore the reliability factor has been changed to 2.					
Remarks	All endpoints and data presented in the summary have been checked against the original study and are correct.			necked against the		
	COMMENTS FRO	M (specify)				
Date	Give date of comments submitted					
Materials and Methods	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state					
Results and discussion	Discuss if deviating j	from view of rapporte	eur member state			
Conclusion	Discuss if deviating from view of rapporteur member state					
Reliability	Discuss if deviating from view of rapporteur member state					
Acceptability	Discuss if deviating from view of rapporteur member state					
Remarks						
· · · · · · · · · · · · · · · · · · ·		-				

Criteria	Details			
Nature	Not specified			
Species	Not specified			
Strain	Not specified			
Source	Canal			
Sampling site	Kern County Canal, California, USA.			
Laboratory culture	No			
Method of cultivation	Not applicable			
Preparation of inoculum for exposure	Upon receipt, the sediment was stored in the dark in a soil incubator maintained at 17 $^{\circ}$ C and subsequently sieved through a 2 mm stainless steel sieve. The canal water was refrigerated upon receipt.			
Pretreatment	A daily 30 minute air purge of test systems allowed ample oxygenation yet deterred material loss.			
Initial cell concentration	Water: 9.7 x 10 ⁴ (CFU/ml)			
	Sediment: 3.1 x 10 ⁶ (CFU/ml)			

Table A7_1_2_1_2-1: Inoculum / Test organism

Table A7_1_2_1_2-2:Test system

Criteria	Details
Culturing apparatus	Glass 1000 ml Erlenmeyer flask fitted with a glass Dreschel cap containing inlet and outlet ports for air exchange.
Number of replicates/concentration	3
Measuring equipment	For each test vessel, one Tenax® trap was used to collect the volatile products in series with two sodium hydroxide traps designed to collect ¹⁴ C-carbon dioxide.
Oxidation reduction indicator	No

Table A7_1_2_1_2-3: Test conditions

Criteria	Details
Composition of medium	Not specified
Additional substrate	No
Solvent	No
Preparation of medium	Each test vessel was covered with aluminium foil and incubated in an environmental chamber.
Test temperature	25 ± 1 °C
pH	Sediment: 6.1
	Water: 8.0
Suspended solids concentration	< 0.002 mg/l
Other relevant criteria	Each sample was swirled after dosing

Section 7.1.2.2.2 Annex Point IIIA XII 2.1			
		1 REFERENCE	Official use only
1.1	Reference	Smith, A.M. (1993b), (¹⁴ C-Acrolein) - Determination of the Anaerobic Aquatic Metabolism, Springborn Laboratories, Inc. SLI Report No. 91-3-3680.	
1.2	Data protection	Yes	
1.2.1	Data owner	Baker Petrolite	
1.2.2	Criteria for data protection	Data on new a.s. for first entry to Annex I	
		2 GUIDELINES AND QUALITY ASSURANCE	
2.1	Guideline study	Yes	
1.1		US EPA FIFRA Guideline No. 162-3, 40 CFR 158.290	1
2.2	GLP	Yes	
2.3 Deviations		Yes The protocol stated that a Beckman Model LS-1801 liquid scintillation counter would be used for LSC analyses. In this study, a Beckman Model LS-5000 liquid scintillation counter was also used in addition to the Beckman Model LS-1801 liquid scintillation counter. This deviation is not expected to alter the results of this study.	
		3 METHOD	
3.1	Test material	As given in Section 2	
3.1.1	Lot/Batch number	Sample No. 5587	х
3.1.2	Specification	As given in Section 2	
3.1.3	Purity	95.06 %	х
3.1.4	Further relevant properties	Acrolein has a water solubility of 23.7% at 25°C.	
3.1.5	Composition of Product	Not applicable	
3.1.6	TS inhibitory to micro-organisms	Yes Exposure to increasing concentrations of acrolein had increasingly inhibitory effects upon the population of <i>Anabaena flos-aquae</i> . The effects of test substance on mean standing crop on Day 5, relative to control, ranged from 5.12% to 98.6% inhibition.	
3.1.7	Specific chemical analysis	None used	
3.2	Reference substance	No	
3.2.1	Initial concentration of reference substance		
3.3	Testing procedure		

Section 7.1.2.2.2 Annex Point IIIA XII 2.1		Water/sediment degradation	
3.3.1	Inoculum / test species	See Table A7_1_2_1_2-1	
3.3.2	Test system	See Table A7_1_2_1_2-2	
3.3.3	Test conditions	See Table A7_1_2_1_2-3	X
3.3.4	Method of preparation of test solution	A radiolabelled super-stock solution was prepared by quantitatively transferring the entire contents of an ampoule of radiolabelled ¹⁴ C- acrolein (100 mCi) through repetitive rinsing with Burdick and Jackson high purity acetone into a 100 ml volumetric flask and diluting to volume. This super-stock had a mean measured concentration of 4.30 mg/ml by triplicate liquid scintillation counting (LSC) analyses. 2.50 ml of the 4.30 mg/ml radiolabelled stock was combined with 64.3 mg of non-radiolabelled acrolein and diluted to a final volume of 50 ml with NANOpure® water, to obtain a dosing solution concentration of 1.50 mg/ml acrolein. 4.00 ml of this solution was added by gas-tight syringe to each 1 litre flask replicate test vessel containing sediment and 400 ml of canal water to obtain a nominal concentration of 15.0 mg/l. 1.00 ml of this solution was added to each 250 ml flask replicate test vessel containing sediment and 100 ml of canal water to obtain a nominal test concentration of 15.0 mg/l.	
3.3.5	Initial TS concentration	15.0 mg/l	
3.3.6	Duration of test	184 days	
3.3.7	Analytical parameter	Rate of metabolism and pattern of decline of ¹⁴ C-acrolein.	
3.3.8	Sampling	Four 1 litre flasks, Replicates $11 - 14$, were prepared and aqueous samples (10 ml) were drawn and analysed at Days 0, 1, 2 and 8. On Day 30 each complete 1 litre test system was collected and analysed. Ten 250 ml flasks, Replicates 1 - 10, were also prepared on Day 0 and two complete test systems were collected and both analysed at Days 93 and at Day 178. The sodium hydroxide trapping systems were replaced and analysed at Days 1, 2, 3, 4, 5, 7, 8, 11, 16, 21 and 28 for each 1 litre and 250 ml test system. Additional trap changes for the 250 ml test systems occurred on Days 36, 42, 49, 56, 63, 70, 85, 106, 119, 126, 142, 154, 168 and 178. Duplicate 250 ml test systems were collected at Days 93 and 178. (Replicates 2, 3 and 4, 5, respectively).	
		At Day 30, the entire sample (both water and sediment) was centrifuged at 100 rpm for 20 minutes. The water fraction was sampled high performance liquid chromatography (HPLC) and radiometric LSC analysis. The sediment was removed for radiometric combustion analysis, microbial biomass determination and percent moisture analysis. Sub-samples of the sediment were extracted using sodium hydroxide and analysed by HPLC-RAM and LSC techniques.	
		On Days 93 and 178, the canal water was decanted from samples of the test system and radiometric combustion analysis and percent moisture analysis was performed on the remaining sediment. Extracts were also analysed by HPLC-RAM and LSC techniques.	
		The sodium hydroxide trapping systems were analysed by LSC over the course of the study to preclude saturation. Representative traps were chosen (Replicate 2 from Days 1 through 93 and Replicate 4 from days 106 through 178) and analysed by barium hydroxide precipitation procedure to determine the presence of ¹⁴ C -carbon dioxide. In addition, Day 30 (Replicate 13) canal water and Day 93 (Replicate 2) and Day 178	

Baker Pe	etrolite
----------	----------

	n 7.1.2.2.2 Point IIIA XII 2.1	Water/sediment degradation	
		(Replicate 4) canal water and sediment were also analysed. The resulting precipitate was filtered and analysed by LSC along with the supernatant.	
		The Day 178 (Replicate 4) post extraction sediment was acidified to test for bicarbonate content.	
3.3.9	Intermediates/	Identified	
	degradation products	High performance liquid chromatography with radiometric detection (HPLC-RAM) revealed the following degradation products:	
		Day 1- oxalic acid	
		Day 2- acrylic acid, allyl alcohol and 3-hydroxypropionic acid	
		Day 8- 3-hydroxypropanal, propanol and propionic acid	
	· ·	All of these metabolites were further mineralised to carbon dioxide	
3.3.10	Controls	Not specified	Х
3.3.11	Statistics	A cumulative material balance was calculated for each 1litre replicate at each sampling interval and a final material balance was calculated on Day 30 for the 1 litre replicates and Days 93 and 178 for the 250 ml replicates. The material balance was calculated by summing the cumulative disintegrations per minute (DPM) recovered in the carbon dioxide and Tenax® traps, DPM recovered in the canal water, DPM recovered in the sediment extract, and the non-extractable DPM remaining in the sediment, and then dividing by the total DPM applied in the dose.	
4.1	Degradation of	4 RESULTS	
1.1	test substance		
4.1.1	Degradation of TS in abiotic control	Not specified	
4.1.2	Degradation	Carbon dioxide, the primary degradation product, was formed in the water phase on Day 2 and remained throughout the study. Expressed as bicarbonate ion (HCO ₃ ⁻), carbon dioxide represented greater than 60% of HPLC-RAM peak area on Days 30, 93 and 178. On the Day 8, 30, 93 and 178 sampling events, carbon dioxide was observed to be 13% (1.5 ppm acrolein equivalents), 20% (2.4 ppm acrolein equivalents) 4.4% (0.5 ppm acrolein equivalents) and 3.2% (0.4 ppm acrolein equivalents) of the initial dose, respectively.	

Baker F	etrolite
---------	----------

Section 7.1.2.2.2 Annex Point IIIA XII 2.1		Water/sediment degradation			
4.1.3	Graph	Cumulative Data from Traps Volatiles and Carbon Dioxide			
		Figure 1: Cumulative Data from Traps			
4.1.4	Other observations	None			
4.1.5	Degradation of reference substance	Not applicable			
4.1.6	Intermediates/ degradation products	See Section 5.2 Through Day 2 of the study, three products were produced in the water phase which were ephemeral in nature: acrylic acid, allyl alcohol and 3- hydropropionic acid. Through Day 8 of the study, three products were produced in the water phase which were detected at trace levels by Day 30 of the study: 3-hydroxypropanal, propanol and propionic acid. Additionally, oxalic acid was formed on Day 1 and remained throughout the study. All of these metabolites were further mineralised to carbon dioxide			
1		5 APPLICANT'S SUMMARY AND CONCLUSION			
5.1	Materials and methods	US EPA FIFRA Guideline No. 162-3 The protocol stated that a Beckman Model LS-1801 liquid scintillation counter would be used for LSC analyses. In this study, a Beckman Model LS-5000 liquid scintillation counter was also used in addition to the Beckman Model LS-1801 liquid scintillation counter. This deviation is not expected to alter the results of this study.			
5.2	Results and discussion	HPLC results of canal water samples as percent of peak area	x		
		Acrolein 3-hydroxy acrylic allyl propionic oxalic 3-hydroxy sum bi- propanal propanal acid alcohol acid acid propionic carb- acid onate Day 0			
		R11 62 7 17 15 ND ND<			
		Day 1			
		R11 ND 6 46 13 24 1 6 67 ND 7 R12 ND 4 57 13 19 2 4 74 ND 4 R13 ND 6 36 23 29 1 2 56 ND 13 R14 ND 10 30 25 25 2 4 42 ND 17			

Bal	ker	Pe	tro	lite

Section 7.1.2.2.2 Annex Point IIIA XII 2.1	Water/sediment degradation										
	Day 2							2.7	1		
	R11	ND	3	33	6	43	2	ND	87	12	3
	R12	ND	2	53	6	33	2	ND	86	3	3
	R13 R14	ND	3 2	32 23	12 14	44 50	2 2	ND	70 66	4 3	8 11
				172			-			4	36
	Day 8	ND		MD	NID	27		NUD	07	55	2
	R11 R12	ND ND	8 4	ND ND	ND ND	37 91	1	ND ND	87 92	55 5	2 2
	R13	ND	8	ND	ND	82	2	ND	89	11	1
	R14	ND	7	ND	ND	72	3	ND	88	22	2
	Day 30										
	R11 R12	ND	ND 1	ND ND	ND ND	ND 70	5	ND ND	ND 93	95 29	ND 2
	R13	ND	2	ND	ND	12	4	ND	89	82	5
	R14	ND	ND	ND	ND	ND	6	ND	ND	94	ND
	Day 93										
	R2 R3	ND ND	ND ND	ND ND	ND ND	ND ND	24 22	4 ND	ND ND	61 64	ND ND
			110	110	TID.	10	22	110	no	UT	
	Day 178						20	100		70	ND
	R4 R5	ND ND	ND ND	ND ND	ND ND	ND ND	30 27	ND ND	ND ND	70 73	ND ND
	micro		trated, a				- and the lot		ji an		
	self-o: and its study. acid v metab their a	xidatio s reduc Allyl vas fur oolites and pro	ith the h on and re- ctive pro- alcohol ther red were the oducts, c	ydrolys eduction oduct, a was the uced to en furth carbon o	sis proc n to pro llyl alc en furth propio er meta dioxide	cess. Ac oduce it ohol du ner redu onic acid abolised and ox	crolein is oxida uring th uced to d. All o d under talic ac	tive pro e early propand f these anaero id.	derwei oduct, a stages ol and transie bic cor	nt rap acryli of the acryli ent nditio	id c acid ic ns to
	self-o: and its study. acid v metab their a All m less va radioa appro. sedim Day 9 phases the aq On Da the im observ sorption metab was for acrole carbon the metab	xidation s reduce Allyl vas fur oolites and pro- etaboli oolatile etaboli oolatile etaboli oolatile etaboli oolatile etaboli oolatile etaboli oolatile etaboli oolatile ent pha 3, mos s of the ueous ay 178 itial do ved dee oon to s oolites to ound to cin also nate an oore non	ith the h on and re- ctive pro- alcohol ther red were the	ydrolys eduction oduct, a was the uced to en furth carbon of crolein. A tected i of the i unted t remain stem at mounted lioactiv in the so n radioa d also of n dioxi major p lace in t sorbed solvents	sis proc n to pro llyl alc en furth propio er meta dioxide are pol After 3 in the a nitial d o appro ing rad 20% o ed to ap ity rem edimen activity due to t de. Con product the sed strongl s (e.g.,	ess. Ac oduce it ohol du ner redu nic acid abolised and ox ar and l 0 days, queous lose, wh oximate lioactiv f initial proxim aining t was 1 in the a he rapi insequent in vola iment p y to the acetoni	erolein is oxida uring th inced to d. All of d under alic ac: highly most o phase hile the hy 22% ity was dose, ately 7 in the a 1% of aqueou d minen the the trainer hase. In sedim	also un tive pro- e early propand f these anaero id. water se of the te radioaco of the detecte while th .0% of queous the initi s phase ralization ps. The morgani ent whi	derwei oduct, a stages ol and transie bic con oluble mainin est syst ctivity initial ed in the radio the init phase al dose was a on of a a n of a ch exp	acrylin acrylin acrylin acrylin acrylin and a ag tem a in the dose. a sed oactiv tial do was concernies alizational lains	id c acid c acid ic ns to re t By iment rity in ose. 5% of c t of n rrmed ion of te and
5.3 Conclusion	self-o: and its study. acid v metab their a All m less v radioa appro- sedim Day 9 phases the aq On Da the im observ sorpti- metab was fo acrole carbon the ma suitab	xidation s reduce Allyl vas fur oolites and pro- etaboli oolatile etaboli oolatile etivity ximate ent pha 3, mos s of the ueous ay 178 itial do ved dee on to s oolites to on to s oolites to of th dation, the co	ith the h in and re- ctive pro- alcohol ther red were the oducts, of these of a than active was de by 29% ase amo- ot of the e test sy phase a dise and is crease in olids an to carboo b be the took pl tions ab- n-polar	ydrolys eduction oduct, a was the uced to en furth arbon of crolein. A tected i of the i unted t remain stem at mounted to active in radioa d also of major p lace in t sorbed solventi- ng sedin vindicar support s of this	sis processis pr	ess. Ac oduce it ohol du ner redu nic acid abolisec and ox ar and l 0 days, queous lose, wh oximate lioactiv. f initial proxima in the rapi insequent in vola iment p y to the acetoni mples.	erolein s oxida vring th uced to d. All od d under calic ac: highly most o phase nile the dy 22% ity was dose, tately 7 in the a 1% of t aqueou d minent the sedim itrile, m was an s report	also un tive pro- e early propand f these anaero id. water se of the ter radioaco of ter ter ter ter ter ter ter ter ter ter	derwei oduct, a stages ol and transie bic con oluble mainin est syst ctivity initial ed in the radio the initi phase al dose was a on of a a n of a ch exp l) were ctep in lein be	acrylin acrylin acrylin acrylin acrylin and a ag tem a in the dose. are sed boactive tial do was crolei de for alizat bona lains a not	id c acid c acid ic ns to re t By iment rity in ose. 5% of t of n rmed ion of te and why ein our.

Section 7.1.2.2.2 Annex Point IIIA XII 2.1	Water/s	edime	ent de	egrad	ation				-
5.3.2 Deficiencies	Yes See Section 2.3								
	Evaluat	ion by	Cor	npete	nt Autho	rities			
	Use separ comments					le transpa	arency as to	the	
	EVALUA	TION	BY R	APPO	RTEUR M	IEMBEF	R STATE		
Date	09/05/200	6							
Materials and Methods	The Appli	cant's v	version	n is con	nsidered acc	ceptable,	noting the f	following	;
	the study • N • F 3.1.3 The radiolabel The UKC	(6687). Non-rad Radiolat purity s led Acr A sugge	The U iolabe belled stated olein. ests po	JKCA Illed Ac Acrole in the s The ra pint 3.1	suggests this crolein, Lot cin, Lot no. summary (9	at the foll No. 668 032H922 5.06) is t Acrolein ead:	23 hat of the st purity show	ıld be incl tudy spon uld also b	luded: sored non e included
	• F (3.3.3 Ther characteri following Table 1: F	Radiolat duplicat re is no stics. Th tables t Cern Co	belled te radi inclus hese a to be in unty (Acrole lochem lion, in re avai nclude Canal S	$\sin = ~95\%$ ical purity p the summa lable in the d: dediment Cl	(Sigma C performe ry, of the study, ho naracteris	Chemicals C d at SLI) water and owever. The tics:	Company) sediment e UK CA	, and 92.2 suggests t
	• F (3.3.3 Ther characteri following	Radiolat duplicat re is no stics. Tl tables t	belled te radi inclus hese a o be in	Acrole ochem ion, in re avai ncludeo	$\sin = \sim 95\%$ ical purity j the summa lable in the d:	(Sigma C performe ry, of the study, ho naracteris PH	Chemicals C d at SLI) water and owever. The	Company) sediment	, and 92.2 suggests t Bulk Density (disturb ed)
	• F ((3.3.3 Then characteri following Table 1: K Classific	Radiolat duplicat re is no stics. Th tables t Cern Co Sand	belled te radi inclus hese a to be in unty C	Acrole ochem ion, in re avai ncludeo Canal S Clay	$\sin = \sim95\%$ ical purity f the summa lable in the d: Gediment Cl Field Moisture Capacity @	(Sigma C performe ry, of the study, ho naracteris PH	Chemicals C d at SLI) water and owever. The tics: Cation Exchange (meq/100	Company) sediment e UK CA Organic Matter	, and 92.2 suggests t Bulk Density (disturb ed)
	• F (3.3.3 They characteri following Table 1: K Classific ation Sandy Loam	Radiolab duplicat re is no stics. Th tables t Kern Co Sand (%) 75	belled te radi inclus hese a to be in unty (Silt (%) 19	Acrole tochem ion, in re avai ncluded Canal S Clay (%) 6	in = ~95% ical purity p the summa lable in the d: Gediment Cl Field Moisture Capacity @ 0.33 bar (%	(Sigma C performe ry, of the study, ho naracteris PH) 6.1	Chemicals C d at SLI) water and owever. The tics: Cation Exchange (meq/100 g) 18.0	Company) sediment e UK CA Organic Matter (%)	, and 92.2 suggests t Bulk Density (disturb ed) (gm/cc)
	• F (3.3.3 They characteri following Table 1: K Classific ation Sandy Loam	Radiolab duplicat re is no stics. Th tables t Kern Co Sand (%) 75	eelled te radii inclus hese a o be ii unty (Silt (%) 19 19 19	Acrole tochem ion, in re avai ncluded Canal S Clay (%) 6 Canal V	in = ~95% ical purity p the summa lable in the d: sediment Cl Field Moisture Capacity @ 0.33 bar (%	(Sigma C performe ry, of the study, ho naracteris PH) 6.1	Chemicals C d at SLI) water and owever. The tics: Cation Exchange (meq/100 g) 18.0	Company) sediment e UK CA Organic Matter (%)	, and 92.2 suggests t Bulk Density (disturb ed) (gm/cc)

Section 7.1.2.2.2 Annex Point IIIA XII 2.1	Water/sediment degradation				
Results and discussion	The Applicant's Version is considered acceptable, noting the following;				
	5.2 The data presented within the report demonstrates that Acrolein rapidly degraded with a half-life < 1 day (the interim report states 10.3 hours) under anaerobic aquatic conditions.				
	The interim study also concluded that the half-life in sediment, based on radioactivity, was 240 hours (10 days)				
Conclusion	The Applicant's version is considered to be acceptable				
Reliability	2				
Acceptability	Acceptable				
	No controls were specified; therefore the reliability factor has been changed to 2.				
Remarks	All endpoints and data presented in the summary have been checked against the original study and are correct.				
	COMMENTS FROM (specify)				
Date	Give date of comments submitted				
Materials and Methods	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state				
Results and discussion	Discuss if deviating from view of rapporteur member state				
Conclusion	Discuss if deviating from view of rapporteur member state				
Reliability	Discuss if deviating from view of rapporteur member state				
Acceptability	Discuss if deviating from view of rapporteur member state				
Remarks					

Table A7_1_2_1_2-1:	Inoculum / Test organism
---------------------	--------------------------

Criteria	Details
Nature	Not specified
Species	Not specified
Strain	Not specified
Source	Canal
Sampling site	Kern Island Canal, California, USA.
Laboratory culture	No
Method of cultivation	Not applicable
Preparation of inoculum for exposure	Upon receipt, the sediment was stored in the dark in a soil incubator maintained at 17 °C and subsequently sieved through a 2 mm stainless steel sieve. The canal water was refrigerated upon receipt.
Pretreatment	Test vessels containing untreated sediment and water were anaerobically incubated for approximately one month prior to dosing by daily 30 minute purging with

	nitrogen.
Initial cell concentration	Water: 2.2 x 10 ² (CFU/ml)
	Sediment: 8.3 x 10 ⁵ (CFU/ml)

Table A7_1_2_1_2-2:Test system

Criteria	Details
Culturing apparatus	Glass Erlenmeyer flask (1000 or 250 ml) fitted with a glass Dreschel cap containing inlet and outlet ports for nitrogen exchange.
Number of replicates/concentration	14
Measuring equipment	For each test vessel, one Tenax® trap was used to collect the volatile products in series with two sodium hydroxide traps designed to collect ¹⁴ C-carbon dioxide
Oxidation reduction indicator	No

Table A7_1_2_1_2-3: Test conditions

Criteria	Details
Composition of medium	To promote microbial oxygen consumption and maintain an anaerobic environment, test vessels were flooded with 400 ml (1 litre test systems) or 100 ml (250 ml test systems) of a 1% glucose/canal water solution.
Additional substrate	No
Solvent	No
Preparation of medium	Each test vessel was covered with aluminium foil and incubated in an environmental chamber kept at 25 ± 1 °C.
Test temperature	Not specified
pH	7.96
Suspended solids concentration	< 0.002 mg/l
Other relevant criteria	Each sample was swirled after dosing

Section A7.1.3 Annex Point IIA7.7		Adsorption test		
		1 REFERENCE		
1.1 Reference		Irwin, K (1988) Soil Adsorption Coefficient for Acrolein (Magnacide®Herbicide and Magnacide®B Microbiocide). SRI International. SRI Project No. 3562-2.		
1.2	Data protection	Yes		
1.2.1	Data owner	Baker Petrolite		
1.2.2	Criteria for data protection	Data on new a.s for first entry to Annex I		
		2 GUIDELINES AND QUALITY ASSURANCE		
2.1	Guideline study	Yes FIFRA No. 163-1		
2.2	GLP	Yes		
2.3	Deviations	No		
	-07.14.14	3 MATERIALS AND METHODS		
3.1	Test material	As given in Section 2	Х	
3.1.1	Lot/Batch number	NN-481-76		
3.1.2	Specification	As given in Section 2	х	
3.1.3	Purity	See 3.1.2.		
3.1.4	Further relevant properties	The test material will hydrolyse in water as well as polymerise in the presence of light. The test was conducted in 24 hours to minimise these effects	x	
3.1.5	Method of analysis	Acrolein concentration was determined by either ultraviolet absorptionspectroscopy or HPLC analysis. The absorbance was measured in a 1cmcuvette with a Beckman DU-2 spectrophotometer at 209 nm. A stocksolution of Acrolein was prepared by pippetting 100 µl of Acrolein into500 ml of argon-sparged deionised water. Serial dilutions of the stocksolutions were prepared to generate the calibration curve from absorbanceversus concentration. Dilutions of sorption samples and the calibrationsolutions were prepared in 10 ml flask to give a final concentration lessthan 5 mg per litre Acrolein. Additional samples were prepared in thesame manner using 0.01M calcium sulphate solution. The calibrationcurve was determined from single determinations at five concentrationsfor both the deionised water and calcium sulphate solutions.HPLC conditions:InstrumentMobile phase30% acetonitrile/70% water	x	
		Flow rate 1 ml/min		
		Injection size 5 µl		
		Column C18		
		Since Acrolein undergoes hydration in water, the Acrolein solutions used in the sorption experiments were analysed before and after the sorption equilibration period. Duplicate injections of the solutions gave reproducible results (<1%), therefore it was necessary to analyse the		

Section A7.1.3 Annex Point IIA7.7		Adsorption test	
		sample as soon as possible.	
3.2	Degradation products	No.	x
3.2.1	Method of analysis for degradation products		
3.3	Reference substance	None.	
3.3.1	Method of analysis for reference substance		
3.4	Soil types	see table A7_1_3-1	X
3.5	Testing procedure		
3.5.1	Test system	To prevent volatilisation of Acrolein, experiments were conducted with Turlock soil using continuous-flow frontal analysis. The soil column (4 mm i.d. stainless steel, 8 cm long) was packed with 1.6g of autoclaved Turlock soil between silanised glass wool and 5μ stainless steel frits. The column was conditioned with deionised water to remove water-soluble leachates.	х
3.5.2	Test solution and Test conditions		х
3.6	Test performance		
3.6.1	Preliminary test	No.	
3.6.2	Screening test: Adsorption	No.	
3.6.3	Screening test: Desorption		x
3.6.4	HPLC-method	A Waters LC system which includes a WISP 710B autosampler, the Programmable System Controller and Data Module, and Model 450 Variable Wavelength Detector was used. The flow rate was $1mL/min$ and injection size was $5\mu L$.	
3.6.5	Other test		
		4 RESULTS	
4.1	Preliminary test		
4.2	Screening test: Adsorption		x
4.3	Screening test: Desorption		x
4.4	Calculations		
4.4.1	Ka , Kd	.Ka 0.14 to 1.26 mL/g	
4.4.2	Ka _{oc} , Kd _{oc}	Ka _{oc} 50 to 270 mL/g	
4.5	Degradation product(s)		x

Section A7.1.3 Annex Point IIA7.7		Adsorption test .7				
		5 APPLICANT'S SUMMARY AND CONCLUSION				
5.1 Materials and methods		 The study was conducted according to FIFRA Guideline No. 163-1. The soil or sediment samples were weighed into 25 ml corex centrifuge tubes with Teflon-lined caps. The tubes were then filled to a zero headspace with six dilutions of the aqueous Acrolein solution. Appropriate soil and solution blanks at each concentration were run simultaneously with the sorption samples. The samples were equilibrated with end-over-end- mixing in a 25°C temperature-controlled air bath for four hours. Following equilibration, the samples were centrifuged at 25°C and 10,000 rpm for 20 minutes. The initial and final Acrolein concentrations in the solution phase were determined using either absorbance measurements at 209 nm, or HPLC analysis. The concentration of Acrolein on the soil or sediment was calculated from the difference between the equilibrium concentration of tubes with sorbent and the appropriate solution blank. A continuous-flow frontal analysis was used, the Acrolein solution or deionised water were percolated through the column at a constant flow rate (5.0 ml/min) with two HPLC syringe pumps connected to the column by four-way valve. The effluent flowed directly into a variable wavelength detector at 209 nm. A computer program was used to integrate the areas above the breakthrough and elution curves and to 				
5.2	Results and discussion	calculate the amounts adsorped and desorbed. Acrolein adsorption on autoclaved Turlock soil was too small to measure using batch adsorption measurements. In two sets of experiments the average changes in the aqueous concentration without soil were 22% and 14.5%, whereas in sample with soil the average changes were 21% and 13.5% respectively.	x			
5.2.1	Adsorbed a.s. [%]		X			
5.2.2	Ka	Ranging between 0.14 and 1.26 mL/g	x			
5.2.3	K _d					
5.2.4	Ka _{oc}	Ranging between 50 and 270 mL/g	X			
5.2.5	Ka/Kd					
5.2.6	Degradation products (% of a.s.)		х			
5.3	Conclusion	The higher K_{oc} values and the irreversible sorption of Acrolein suggest that Acrolein specifically interacts with substrate mineral and organic carbon functional groups. The measured Kp values are insufficient to estimate Acrolein mobility through soils. Sorption irreversibility, hydration, biotransformation and volatilization are expected to significantly retard the high infilitration rates of Acrolein estimated from these low Kp values	х			
5.3.1	Reliability	2				
5.3.2	Deficiencies	Yes. There are no desorbent values.				

Section A7.1.3 Annex Point IIA7.7	Adsorption test				
	Evaluation by Competent Authorities				
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted				
	EVALUATION BY RAPPORTEUR MEMBER STATE				
Date	21/04/2006				
	The study report provided was poorly summarised but all relevant raw data and results were presented. The Applicant's evaluation of the available data was not adequate. However, the UKCA has reproduced essential results below where relevant to demonstrate that the study provided should be considered adequate for risk assessment purposes.				
Materials and Methods	The Applicant's version is unclear, the following additional points should be noted:				
	3.1 & 3.1.2 The purity (96.17%) and specification reported in the study is very similar but not identical to that given in A2 (refers to Appendix XI Confidential data). However, the UK CA is confident that the study is valid for this endpoint.				
	3.1.4 There is no reference in the study for the statement 'It is also known that Acrolein will polymerize in the presence of light'. There is no evidence to support this statement in any of the photolytic degradation studies (DOC IIIA, 7.1.3 and 7.1.1.1.2), therefore it should be removed				
	3.2 Identification of degradation products was not performed.				
	3.4 Table A7_1_3-1 refers to 4 soils being used in the study; 1, 2, 3 and 4, which are referred to in the study as EPA-6 sediment, Turlock soil, Phoenix soil and Menlo Park soil respectively,				
	3.5.1 and 5.1 The summary information provided is unclear. This study was carrie out in 2 parts. Firstly, partition coefficients were investigated for 3 soils and 1 sediment using 25 ml centrifuge tubes (as detailed under 5.1). Then in order to investigate the impact of volatilisation on the results from the primary test, the adsorption of acrolein was investigated further using continuous-flow frontal analysis for soil 2 (Turlock soil). See point 3.5.1 in summary for further details.				
	The Applicant's summary and the study report state that the study was conducted to FIFRA Guideline No. 163-1. However, neither the study nor the summary states that the soil was aged under aerobic conditions prior to the test beginning. This is a requirement stated in EPA guideline 163-1. The soil column dimensions do not match those recommended by EPA guideline 163-1. The guideline states 'the column should be from 30 to 300 cm in height' not 8 cm as used for the continuous-flow frontal analysis. 3.6.3 No details were given in the report but results of batch desorption analysis were discussed (see 4.3 below).				

Section A7.1.3 Annex Point IIA7.7	Adsorption test					
1	 3.5.2 Details of test conditions are provided below; a) Batch adsorption analysis The experiment was carried out using end-over mixing at 25°C for 4 hours. 					
		Nur	mber of plicates	Mean sorbent	Acrolein conc.	
	Sample	Soil	No soil	conc. (±SD) (g/ml)	(initial min – max range)	
	Soil 1 (EPA-6 sedin	nent) 10	12	0.18 (±0.003)	48 - 241	
	Soil 2 (Turlock soil)) 9	7	0.33 (±0.01)	64 - 250	
	Soil 3 (Phoenix soil)) 6	6	0.38 (±0.02)	2.8 - 97	
	Soil 4 (Menlo Park	soil)	11	0.22 (±0.13)	4.22 - 96.5	
	b) Continuous	flow sorption e	experiment	with soil 2 (Tu	rlock soil)	
	Experimen	ntal Condition	s			
	Temperatu			25°C 1.6257 g		
	Mass of so					
	Column di	imensions	4 m	m (internal dia long	am.), 8 cm	
	Solute			0.002 M Ca	SO ₄	
	Flow rate			0.5 mL/m		
	Detector		Wate	ers model 450	at 209 nm	
Results and discussion	 The Applicant's version is unacceptable and should be replaced by the follo UK CA evaluation of available data; 4.3 The study report states that in batch desorption studies no acrolein was desorbed from the soil. 4.2, 5.2, 5.2.1, 5.2.2 & 5.2.4 The mean percentage adsorption/loss estimated from the difference between initial and final acrol concentrations both with and without (blanks) the influence of soil have bee calculated by the UK CA and are presented in the following Table; 					

Section A7.1.3	Adsorption test					
Annex Point IIA7.7						
	Sample	%	Adsorptio	on/loss (±SD) No soil		ll mean % orption
		\$	Soil	(blank)		ed for blank ffects]
	Soil 1 (EPA-6 sediment)) 22.6	5 (±4.5)	13.6 (±3.9)		9.0
	Soil 2 (Turlock soil)	17.2	2 (±5.3)	17.7 (±4.8)	-	0.5*
	Soil 3 (Phoenix soil)	26.2	2 (±3.8)	2.84 (±2.0)	2	.3.35
	Soil 4 (Menlo Park soil) * - Turlock soil, greater losses we		(±13.3)	9.9 (±11.0)		19.0
	Acrolein adsorption on aut batch adsorption measurem concentration without soil soil. For the remaining 3 so the with and without soil (calculated. The following to batch adsorption isotherms	nents an (blanks) oils ther blank) sa table pre	d the mea) were not e were sn amples ar	in changes in t t significantly hall but signified and adsorption of	he aqueous a different fro cant differer coefficients	acrolein m those with nces between were
	Sample	K _p (slope)	±SD	Corr. Coeff.	% OC	K _{oc}
	Soil 1 (EPA-6 sediment)	0.93	0.05	0.99	0.72	130
	Soil 3 (Phoenix soil)	0.73	0.03	0.99	0.27	270
	Soil 4 (Menlo Park soil)	1.26	0.1	0.94	2.67	51
	 For the additional experim flow sorption technique, th 0.03) mL/g and 52 mL/g. 4.5 and 5.2.6 From the ava degradation products were too small for quantification of the applied parent comp 	ne K _p and ailable H detected n. There	d K _{oc} for a PLC anal d (additio fore, these	acrolein were o lysis data it wo nal peaks to ac e metabolites	estimated to ould suggest crolein) the l would be les	be 0.14 (± that where levels were s than 10 %
Conclusion	The Applicant's version is 5.3 There was no evidence substrate mineral and carbs study and Applicant's sum values being higher than th However, the data presente is a main route of removal does not suggest that there Therefore, volatilisation of dismissed as supported by technique for soil 2.	e present onyl fun imary wa nose prec ed for th for acro e are sigr f acrolein	ed to supp ctional gr as centrect dicted, an e range o lein. In ac hificant qu n or its m	port that the A oups under the l on the fact the d no desorption f soils tested d ddition, the av uantities of sol etabolites from	crolein inter e conditions at the exper- n could be c o not sugges ailable analy uble metabo n the system	tested. The imental Kp letected. st adsorption vtical data lites formed. cannot be
	Document II	IIA				

Section A7.1.3	Adsorption test
Annex Point IIA7.7	
	The UK CA has concluded from the data presented in the study report that acrolein has a strong tendency to remain in the aquatic phase, removal from which is likely to be predominantly via volatilisation or biodegradation.
Reliability	2
Acceptability	Acceptable
Remarks	All endpoints addressed in the summary have been checked against those in the study.
	Although the information was poorly presented both in the original study and the Applicant's summary (e.g. tables A7_1 _3-2, A7_1 _3-3 and A7_1 _3-4 included, but not completed), the available raw data in the study has enabled the UK CA to evaluate this endpoint thoroughly. The UK CA has concluded that the overall endpoint is sufficiently robust for the risk assessment of acrolein considering its use is limited as a slimicide for offshore oil drilling. However, should acrolein be proposed for use where direct application/release to soil is expected, additional data to address soil mobility would be required.
	COMMENTS FROM
Date	Give date of comments submitted
Materials and Methods	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state
Results and discussion	Discuss if deviating from view of rapporteur member state
Conclusion	Discuss if deviating from view of rapporteur member state
Reliability	Discuss if deviating from view of rapporteur member state
Acceptability	Discuss if deviating from view of rapporteur member state
Remarks	

	Soil 1	Soil 2	Soil 3	Soil 4
Soil order				
Soil series				
Classification				
Location				
Horizon				
Sand [%]	0.2	87.7	61.4	46
Silt [%]	31.2	7.8	24.6	31.8
Clay [%]	68.6	4.5	14	22.2
Organic carbon [%]	0.72	0.27	0.27	2.7
Carbonate as calcium carbonate				
Insoluble carbonates [%]				
pH (1:1 water)	7.83	7.3	7.9	5.9
Cation exchange capacity (MEQ/100 g)	33.1	2.8	9.1	21.5
Extractable cations (MEQ/100 g)				
Calcium				
Magnesium				
Sodium				
Potassium				
Hydrogen				
Special chemical/mineralogical features				
Clay fraction mineralogy				

Table A7_1_3-1: Classification and physico-chemical properties of soils used as adsorbents

Table A7_1 _3-2: Results of preliminary test:

Test substance	
Sample purity	
Weighed soil	
Volume of calcium chloride solution	
Nominal concentration of a.s. final solution	
Analytical concentration final of a.s. solution	
Concentration of the test solution (show calculation)	
Details of the analytical method used:	
Method	
Recovery rate	
Detection limit	

	Soil 1	Soil 2	Soil 3
Concentration of test material [mg/l]			
After contact ofhours with soil			
Correction for blank with soil			
Correction for blank without soil			
Final corrected concentration [mg/l]			
Initial concentration of test solution [mg/l]			
Decrease in concentration [mg/l]			
Quantity adsorbed [µg]			
Quantity of soil [g of oven-dried equivalent]			
Quantity adsorbed [µg] per gram of soil			
Test material adsorbed [%]			
Temperature [°C]			
Volume of solution recovered after centrifugation [ml]			
Volume of solution not recovered [ml]			
Corresponding quantity of test substance [mg]			

Table A7_1 _3-3: Results of screening test - adsorption:

Table A7_1 _3-4:	Results of screening test - desorption:
------------------	--

	Soil 1		Soil 2		Soil 3	
Temperature [°C]						
Concentration in combined washings [mg/l]						
Corresponding quantity of test material [mg]						
Quantity desorbed [µg]						
[%] of adsorbed test material, which is desorbed						
[%] of adsorbed test material, which is not desorbed						

ACROLEIN

December 2005

Section A7.1.3 Annex Point IIA VII.7.7	Adsorption/desorption screening test	
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only
Other existing data [X]	Technically not feasible [] Scientifically unjustified []	
Limited exposure []	Other justification []	_
Detailed justification:	A screening study is not required as a determination of absorption in soil has been performed. See section IIIA7.3.1.	
Undertaking of intended data submission []		
	Evaluation by Competent Authorities	-
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted	
	EVALUATION BY RAPPORTEUR MEMBER STATE	
Date	EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006	
Evaluation of applicant's		
Evaluation of applicant's justification	18/05/2006	
Evaluation of applicant's justification Conclusion	18/05/2006 The Applicant's justification is acceptable	
Evaluation of applicant's justification Conclusion	18/05/2006 The Applicant's justification is acceptable	
Evaluation of applicant's	18/05/2006 The Applicant's justification is acceptable Acceptable	
Evaluation of applicant's justification Conclusion Remarks	18/05/2006 The Applicant's justification is acceptable Acceptable COMMENTS FROM OTHER MEMBER STATE (specify)	
Evaluation of applicant's justification Conclusion Remarks Date Evaluation of applicant's	18/05/2006 The Applicant's justification is acceptable Acceptable COMMENTS FROM OTHER MEMBER STATE (specify) Give date of comments submitted	

	on A7.1.3 2 Point IIA7.7	Adsorption test		
		1 REFERENCE		Official use only
1.1	Reference		otion Coefficient for Acrolein Magnacide®B Microbiocide). SRI o. 3562-2.	
1.2	Data protection	Yes		
1.2.1	Data owner	Baker Petrolite		
1.2.2	Criteria for data protection	Data on new a.s for first ent	ry to Annex I	
		2 GUIDELINES AN	ND QUALITY ASSURANCE	
2.1	Guideline study	Yes FIFRA No. 163-1		
2.2	GLP	Yes		
2.3	Deviations	No		
1		3 MATERIALS AN	D METHODS	
3.1	Test material	As given in Section 2		х
3.1.1	Lot/Batch number	NN-481-76		
3.1.2	Specification	As given in Section 2		х
3.1.3	Purity	See 3.1.2.		
3.1.4	Further relevant properties		lyse in water as well as polymerise in the was conducted in 24 hours to minimise these	x
3.1.5	Method of analysis	spectroscopy or HPLC analy cuvette with a Beckman DU solution of Acrolein was pre- 500 ml of argon-sparged de solutions were prepared to g versus concentration. Diluti solutions were prepared in D than 5 mg per litre Acrolein same manner using 0.01M c curve was determined from for both the deionised water HPLC conditions:	determined by either ultraviolet absorption ysis. The absorbance was measured in a 1cm I-2 spectrophotometer at 209 nm. A stock epared by pippetting 100 µl of Acrolein into ionised water. Serial dilutions of the stock generate the calibration curve from absorbance ons of sorption samples and the calibration .0 ml flask to give a final concentration less . Additional samples were prepared in the calcium sulphate solution. The calibration single determinations at five concentrations and calcium sulphate solutions.	x
		Instrument Wa	ters model 6000A liquid chromatograph	
		and the second	% acetonitrile/70% water	
			nl/min	
		Injection size 5 µ		
		Column Cl		
		in the sorption experiments equilibration period. Duplic	ydration in water, the Acrolein solutions used were analysed before and after the sorption ate injections of the solutions gave therefore it was necessary to analyse the	

	on A7.1.3 2 Point IIA7.7	Adsorption test	
		sample as soon as possible.	-
3.2	Degradation products	No.	x
3.2.1	Method of analysis for degradation products		
3.3	Reference substance	None.	
3.3.1	Method of analysis for reference substance		
3.4	Soil types	see table A7_1 _3-1	X
3.5	Testing procedure		
3.5.1	Test system	To prevent volatilisation of Acrolein, experiments were conducted with Turlock soil using continuous-flow frontal analysis. The soil column (4 mm i.d. stainless steel, 8 cm long) was packed with 1.6g of autoclaved Turlock soil between silanised glass wool and 5μ stainless steel frits. The column was conditioned with deionised water to remove water-soluble leachates.	X
3.5.2	Test solution and Test conditions		х
3.6	Test performance		
3.6.1	Preliminary test	No.	
3.6.2	Screening test: Adsorption	No.	
3.6.3	Screening test: Desorption		х
3.6.4	HPLC-method	A Waters LC system which includes a WISP 710B autosampler, the Programmable System Controller and Data Module, and Model 450 Variable Wavelength Detector was used. The flow rate was $1mL/min$ and injection size was $5\mu L$.	
3.6.5	Other test		
1.7		4 RESULTS	
4.1	Preliminary test		
4.2	Screening test: Adsorption		х
4.3	Screening test: Desorption		x
4.4	Calculations		
4.4.1	Ka , Kd	.Ka 0.14 to 1.26 mL/g	
4.4.2	Ka _{oc} , Kd _{oc}	Ka _{oc} 50 to 270 mL/g	
4.5	Degradation product(s)		х

	on A7.1.3 : Point IIA7.7	Adsorption test	
		5 APPLICANT'S SUMMARY AND CONCLUSION	
5.1	Materials and methods	The study was conducted according to FIFRA Guideline No. 163-1. The soil or sediment samples were weighed into 25 ml corex centrifuge tubes with Teflon-lined caps. The tubes were then filled to a zero headspace with six dilutions of the aqueous Acrolein solution. Appropriate soil and solution blanks at each concentration were run simultaneously with the sorption samples. The samples were equilibrated with end-over-end- mixing in a 25°C temperature-controlled air bath for four hours. Following equilibration, the samples were centrifuged at 25°C and 10,000 rpm for 20 minutes. The initial and final Acrolein concentrations in the solution phase were determined using either absorbance measurements at 209 nm, or HPLC analysis. The concentration of Acrolein on the soil or sediment was calculated from the difference between the equilibrium concentration of tubes with sorbent and the appropriate solution blank. A continuous-flow frontal analysis was used, the Acrolein solution or deionised water were percolated through the column at a constant flow rate (5.0 ml/min) with two HPLC syringe pumps connected to the column by four-way valve. The effluent flowed directly into a variable wavelength detector at 209 nm. A computer program was used to integrate the areas above the breakthrough and elution curves and to	x
5.2	Results and discussion	calculate the amounts adsorped and desorbed. Acrolein adsorption on autoclaved Turlock soil was too small to measure using batch adsorption measurements. In two sets of experiments the average changes in the aqueous concentration without soil were 22% and 14.5%, whereas in sample with soil the average changes were 21% and 13.5% respectively.	x
5.2.1	Adsorbed a.s. [%]		x
5.2.2	Ka	Ranging between 0.14 and 1.26 mL/g	x
5.2.3	K _d		
5.2.4	Ka _{oc}	Ranging between 50 and 270 mL/g	x
5.2.5	Ka/Kd		
5.2.6	Degradation products (% of a.s.)		x
5.3	Conclusion	The higher K_{oc} values and the irreversible sorption of Acrolein suggest that Acrolein specifically interacts with substrate mineral and organic carbon functional groups. The measured Kp values are insufficient to estimate Acrolein mobility through soils. Sorption irreversibility, hydration, biotransformation and volatilization are expected to significantly retard the high infilitration rates of Acrolein estimated from these low Kp values	х
5.3.1	Reliability	2	
5.3.2	Deficiencies	Yes. There are no desorbent values.	

Section A7.1.3 Annex Point IIA7.7	Adsorption test
	Evaluation by Competent Authorities
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted
	EVALUATION BY RAPPORTEUR MEMBER STATE
Date	21/04/2006
	The study report provided was poorly summarised but all relevant raw data and results were presented. The Applicant's evaluation of the available data was not adequate. However, the UKCA has reproduced essential results below where relevant to demonstrate that the study provided should be considered adequate for risk assessment purposes.
Materials and Methods	The Applicant's version is unclear, the following additional points should be note
	3.1 & 3.1.2 The purity (96.17 %) and specification reported in the study is very similar but not identical to that given in A2 (refers to Appendix XI Confidential data). However, the UK CA is confident that the study is valid for this endpoint.
	3.1.4 There is no reference in the study for the statement 'It is also known that Acrolein will polymerize in the presence of light'. There is no evidence to support this statement in any of the photolytic degradation studies (DOC IIIA, 7.1.3 and 7.1.1.1.2), therefore it should be removed
	3.2 Identification of degradation products was not performed.
	3.4 Table A7_1_3-1 refers to 4 soils being used in the study; 1, 2, 3 and 4, which are referred to in the study as EPA-6 sediment, Turlock soil, Phoenix soil and Menlo Park soil respectively,
	3.5.1 and 5.1 The summary information provided is unclear. This study was carried out in 2 parts. Firstly, partition coefficients were investigated for 3 soils and 1 sediment using 25 ml centrifuge tubes (as detailed under 5.1). Then in order to investigate the impact of volatilisation on the results from the primary test, the adsorption of acrolein was investigated further using continuous-flow frontal analysis for soil 2 (Turlock soil). See point 3.5.1 in summary for further details.
	The Applicant's summary and the study report state that the study was conducted to FIFRA Guideline No. 163-1. However, neither the study nor the summary state that the soil was aged under aerobic conditions prior to the test beginning. This is requirement stated in EPA guideline 163-1. The soil column dimensions do not match those recommended by EPA guideline 163-1. The guideline states 'the column should be from 30 to 300 cm in height' not 8 cm as used for the continuous-flow frontal analysis. 3.6.3 No details were given in the report but results of batch desorption analysis were discussed (see 4.3 below).

Adsorp	Adsorption test					
a)	Batch adsorption a	nalysis			25°C for 4 hour	
	-	replicates		Mean sorbent	Acrolein conc. (initial min	
	Sample	Soil	No soil	(±SD) (g/ml)	(initial initi – max range)	
		10	12	0.18 (±0.003)	48 - 241	
		9	7	0.33 (±0.01)	64 - 250	
		6	6	0.38 (±0.02)	2.8 - 97	
		11	11	0.22 (±0.13)	4.22 - 96.5	
b)	Continuous flow so	orption e	xperiment	with soil 2 (Tu	rlock soil)	
	Experimental Co	ondition	s			
	Temperature			25°C		
	Mass of soil			1.6257 g		
	Column dimensio	ons	4 m	m (internal dia long	m.), 8 cm	
	Solute					
	Flow rate					
	Detector		Wate	ers model 450	at 209 nm	
				ould be replace	ed by the followi	
desorbed adsorptio concentra	from the soil. 4.2 , on/loss estimated from the soil with and	5.2, 5.2. om the d d withou	1, 5.2.2 & s ifference be it (blanks) t	5.2.4 The mean etween initial a he influence of	n percentage and final acroleir f soil have been	
	3.5.2 Det a) The Se (H Se (I) S SE (Se (I) SE (Se (I) SE (SE SE (SE SE (SE SE (SE SE (SE SE (SE SE S	3.5.2 Details of test conditional and the experiment was can be considered as a second structure of the solid structure of the so	3.5.2 Details of test conditions are p a) Batch adsorption analysis The experiment was carried out Sample Nurrep Soil Nurrep Soil Soil Soil 1 10 (EPA-6 sediment) 10 Soil 2 9 (Turlock soil) 9 Soil 3 6 (Phoenix soil) 6 Soil 4 11 b) Continuous flow sorption e Experimental Conditions Temperature Mass of soil Column dimensions Solute Flow rate Detector The Applicant's version is unaccepta UK CA evaluation of available datast 4.3 The study report states that in bad desorbed from the soil. 4.2, 5.2, 5.2, adsorption/loss estimated from the dot concentrations both with and without	3.5.2 Details of test conditions are provided bel a) Batch adsorption analysis The experiment was carried out using end- Number of replicates Sample Soil No soil Soil 1 (EPA-6 sediment) 10 12 Soil 2 9 7 (Turlock soil) 9 7 Soil 3 6 6 6 Soil 4 (Phoenix soil) 11 11 b) Continuous flow sorption experiment with the soil of t	3.5.2 Details of test conditions are provided below; a) Batch adsorption analysis The experiment was carried out using end-over mixing at Sample Number of replicates Mean sorbent conc. (±SD) (g/ml) Soil 1 10 12 0.18 (±0.003) Soil 2 9 7 0.33 (±0.01) Soil 3 6 6 0.38 (±0.01) Soil 4 11 11 0.22 (±0.13) b) Continuous flow sorption experiment with soil 2 (Tu Experimental Conditions Temperature 25°C Mass of soil 1.6257 g 0.002 M Ca3 Solute 0.002 M Ca3 10 long Solute Solute 0.5 mL/mi 0.5 mL/mi Detector Waters model 450	

Annex Point IIA7.7						
		% A	Adsorpti	on/loss (±SD)		l mean %
	Sample	:	Soil	No soil (blank)	[adjuste	orption d for blank fects]
	Soil 1 (EPA-6 sediment	:) 22.6	5 (±4.5)	13.6 (±3.9))	9.0
	Soil 2 (Turlock soil)	17.2	2 (±5.3)	17.7 (±4.8)) -(0.5*
	Soil 3 (Phoenix soil)	26.2	2 (±3.8)	2.84 (±2.0)) 22	3.35
	Soil 4 (Menlo Park soil)) 29.0	(±13.3)	9.9 (±11.0)) 1	9.0
	Acrolein adsorption on au batch adsorption measurer concentration without soil soil. For the remaining 3 s the with and without soil (calculated. The following batch adsorption isotherm	ments an l (blanks) soils ther (blank) sa table pre	d the mea) were no e were sn amples ar	n changes in t significantly nall but signif nd adsorption	the aqueous a different from icant differen coefficients y	acrolein m those w ces betwe were
	Sample	K _p (slope)	±SD	Corr. Coeff.	% OC	K _{oc}
	Soil 1 (EPA-6 sediment)	0.93	0.05	0.99	0.72	130
	Soil 3 (Phoenix soil)	0.73	0.03	0.99	0.27	270
	Soil 4 (Menlo Park soil)	1.26	0.1	0.94	2.67	51
	 For the additional experim flow sorption technique, the 0.03 mL/g and 52 mL/g. 4.5 and 5.2.6 From the available degradation products were too small for quantificatio of the applied parent complete the parent complete technical structure. 	he K _p and ailable H e detecteo n. There	l K _{oc} for a PLC ana d (addition fore, thes	acrolein were lysis data it w nal peaks to a e metabolites	estimated to could suggest acrolein) the la would be less	be 0.14 (= that wher evels wer s than 10
onclusion	The Applicant's version is 5.3 There was no evidence substrate mineral and carb study and Applicant's sun values being higher than t However, the data present is a main route of removal does not suggest that there Therefore, volatilisation o dismissed as supported by technique for soil 2.	e present bonyl fun nmary wa hose pred ted for th l for acro e are sigr f acroleit	ed to sup ctional gi as centred dicted, an e range o lein. In a hificant qu n or its m	port that the A coups under the l on the fact the d no desorption f soils tested of ddition, the availantities of so etabolites from	Acrolein inter- ne conditions hat the experi- on could be d do not sugges vailable analy luble metabo m the system	tested. The mental K etected. t adsorpti- tical data lites form cannot be

Section A7.1.3	Adsorption test
Annex Point IIA7.7	
	The UK CA has concluded from the data presented in the study report that acrolein has a strong tendency to remain in the aquatic phase, removal from which is likely to be predominantly via volatilisation or biodegradation.
Reliability	2
Acceptability	Acceptable
Remarks	All endpoints addressed in the summary have been checked against those in the study.
	Although the information was poorly presented both in the original study and the Applicant's summary, the available raw data in the study has enabled the UK CA to evaluate this endpoint thoroughly. The UK CA has concluded that the overall endpoint is sufficiently robust for the risk assessment of acrolein considering its use is limited as a slimicide for offshore oil drilling. However, should acrolein be proposed for use where direct application/release to soil is expected, additional data to address soil mobility would be required.
	COMMENTS FROM
Date	Give date of comments submitted
Materials and Methods	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state
Results and discussion	Discuss if deviating from view of rapporteur member state
Conclusion	Discuss if deviating from view of rapporteur member state
Reliability	Discuss if deviating from view of rapporteur member state
Acceptability	Discuss if deviating from view of rapporteur member state
Remarks	

	Soil 1	Soil 2	Soil 3	Soil 4
Soil order				
Soil series				
Classification				
Location				
Horizon				
Sand [%]	0.2	87.7	61.4	46
Silt [%]	31.2	7.8	24.6	31.8
Clay [%]	68.6	4.5	14	22.2
Organic carbon [%]	0.72	0.27	0.27	2.7
Carbonate as calcium carbonate				
Insoluble carbonates [%]				
pH (1:1 water)	7.83	7.3	7.9	5.9
Cation exchange capacity (MEQ/100 g)	33.1	2.8	9.1	21.5
Extractable cations (MEQ/100 g)				
Calcium				
Magnesium				
Sodium				
Potassium				
Hydrogen				
Special chemical/mineralogical features				
Clay fraction mineralogy				

Table A7_1 _3-1: Classification and physico-chemical properties of soils used as adsorbents

Table A7_1 _3-2: Results of preliminary test:

Test substance	
Sample purity	
Weighed soil	
Volume of calcium chloride solution	
Nominal concentration of a.s. final solution	
Analytical concentration final of a.s. solution	
Concentration of the test solution (show calculation)	
Details of the analytical method used:	
Method	
Recovery rate	
Detection limit	

	Soil 1	L	Soi	12	Soi	il 3
Concentration of test material [mg/l]						
After contact ofhours with soil						
Correction for blank with soil						
Correction for blank without soil						
Final corrected concentration [mg/l]						
Initial concentration of test solution [mg/l]						
Decrease in concentration [mg/l]						
Quantity adsorbed [µg]						
Quantity of soil [g of oven-dried equivalent]						
Quantity adsorbed [µg] per gram of soil						
Test material adsorbed [%]						
Temperature [°C]						
Volume of solution recovered after centrifugation [ml]						
Volume of solution not recovered [ml]						
Corresponding quantity of test substance [mg]						

Table A7_1 _3-3: Results of screening test - adsorption:

Table A7_1 _3-4: Results of screening test - desorption:

	So	il 1	So	il 2	So	il 3
Temperature [°C]						
Concentration in combined washings [mg/l]						
Corresponding quantity of test material [mg]						
Quantity desorbed [µg]						
[%] of adsorbed test material, which is desorbed						
[%] of adsorbed test material, which is not desorbed						

XII.2.2	Further studies on adsorption and desorption in water/sediment systems and, where relevant, on the adsorption and desorption of metabolites and degradation products where the preliminary risk assessment indicates that it is necessary	
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only
Other existing data []	Technically not feasible [] Scientifically unjustified [X]	
Limited exposure []	Other justification []	
Detailed justification:	Radiolabelled studies on the degradation of the active substance and its metabolites in water and sediment have been performed with absorption/desorption studies in sediment (Section IIIA7.1.2.1.1, IIIA7.1.2.1.2). Further studies on adsorption and desorption in water/sediment systems and on the adsorption and desorption of metabolites and degradation products, are not considered to be necessary.	
Undertaking of intended data submission []		
	Evaluation by Compotent Authorities	
	Evaluation by Competent Authorities	
	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted	
	Use separate "evaluation boxes" to provide transparency as to the	
Date	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted	
Date Evaluation of applicant's justification	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE	
Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006	
Evaluation of applicant's justification	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable	
Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable	
Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable Acceptable	
Evaluation of applicant's justification Conclusion Remarks	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable Acceptable COMMENTS FROM OTHER MEMBER STATE (specify)	

Annex Point IIIA XII.2.1	Field study on accumulation in the sediment	
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only
Other existing data []	Technically not feasible [] Scientifically unjustified [X]	-
Limited exposure []	Other justification []	
Detailed justification:	Further studies on accumulation in the sediment are not considered necessary as the active substance has been shown to be easily dissimilated in a ready biodegradation study (Section A7.1.1.2.1, Annex Point IIA, VII.7.6.1.1.). In addition the active substance has been shown to undergo rapid degradation by physico-chemical processes including rapid volatilisation (A7.2.1) and photodegradation (A7.1.1.1.2) and microbial degradation in water (anaerobic and aerobic freshwater- sediment radio-labelled studies, A7.1.2.1.1 and A7.1.2.1.2) transforming the active substance to CO2.	
Undentabing of intended		
Undertaking of intended data submission []	Evaluation by Competent Authorities	
	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted	
	Use separate "evaluation boxes" to provide transparency as to the	
data submission []	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted	
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE	
data submission [] Date Evaluation of applicant's justification	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006	
data submission [] Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable	
data submission [] Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable	
data submission [] Date Evaluation of applicant's justification Conclusion Remarks	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable Acceptable	
data submission [] Date Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable Acceptable COMMENTS FROM OTHER MEMBER STATE (specify)	
data submission [] Date Evaluation of applicant's justification Conclusion Remarks Date Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable Acceptable COMMENTS FROM OTHER MEMBER STATE (specify) Give date of comments submitted	

1.50	on A7.2.1 A Point IIA7.4, 7.1.1	Fate and behaviour in soil: aerobic degradation in soil	
U		1 REFERENCE	Official use only
1.1	Reference	Chou, T-W. & Spanggord, R.J. (1990) Estimation of the Aerobic Biotransformation Rates for Acrolein (Magnacide®H Herbicide, Magnacide®B Microbiocide) in Soil. SRI International. SRI Project No. 2562-4.	
1.2	Data protection	Yes	
1.2.1	Data owner	Baker Petrolite	
1.2.2	Criteria for data protection	Data on new a.s. for first entry to Annex I	
		2 GUIDELINES AND QUALITY ASSURANCE	
2.1	Guideline study	Yes FIFRA 162-1	
2.2	GLP	No No GLP statement	x
2.3	Deviations	No	
		3 MATERIALS AND METHODS	
3.1	Test material	As given in Section 2	
3.1.1	Lot/Batch number	NN-481-76	
3.1.2	Specification	As given in Section 2	
		Deviating from specification given in section 2 as follows Radiolabelled at the 2 and 3 positions (acrolein-2,3- ¹⁴ C)	
3.1.3	Purity	See 3.1.2	
3.1.4	Further relevant properties		
3.1.5	Method of analysis		
3.2	Degradation products	Degradation products tested: Yes/No	x
3.2.1	Method of analysis for degradation products	At various time points, three tubes (one sterile and two non-sterile) were used, 9.0 ml of acetonitrile (Burdick & Jackson, HPLC grade) added, and the suspension was vigorously shaken by hand for five minutes. The tubes were centrifuged at 2500 rpm for 10 minutes and the acetonitrile (plus 1.2 ml water originally added) was pipetted into a vial and capped. The soil was transferred to a sintered glass funnel, washed with acetone, filtered, and air-dried. The acetonitrile extracts were analysed by high- performance liquid chromatography (HPLC) using the following conditions:	
		Instrument: Spectra-Physics Model 8000 Liquid Chromatograph	
		Column: Regis Hi-Chrom ODS-II column, 4.7 x 250 mm	

	on A7.2.1 Point IIA7.4, 7.1.1	Fate and behaviour in soil: aerobic degradation in soil	
		Solvent: Water/Acetonitrile (80/20)	
		Flow rate: 1.0 ml/minute	
		Detectors: UV at 210 nm in series with a Raytest solid-state radioactivity detector	
		Quantitation was achieved using the external standard method relation peak area to parts per million (ppm) of acrolein injected as determined from standard calibration curves. Total radioactivity in the extract was determined by direct counting of a 50 μ l aliquot diluted in Aquasol scintillation counting liquid.	
		The soil samples were oxidised using a Packard Model 306 Oxidizer where the sample is combusted and the ¹⁴ C-carbon is converted to ¹⁴ C-carbon dioxide and trapped. The trapped activity is counted in a scintillation counter.	
3.3	Reference substance	No	
3.3.1	Method of analysis for reference substance	Not applicable	
3.4	Soil types	See table A7_2_1-1	
3.5	Testing procedure		
3.5.1	Test system	Studies were performed in 20 x 150 mm Pyrex glass tubes capped with Teflon liners. 36 tubes were prepared by weighing 10.0 g of Phoenix soil into each tube. 0.8ml of deionised water (67% of field capacity) was added to each tube, and the contents were thoroughly mixed with a metal spatula. The tubes were allowed to stand at room temperature (20 - 22°C) for seven days to activate microbial populations. 12 tubes were autoclaved for one hour on each of three consecutive days to serve as sterile controls. 0.5 ml of sterile water was added to each sterile tube after autoclaving to re supply the water lost on heating.	
3.5.2	Test solution and	Biotransformation rate studies:	
	Test conditions	A stock solution of ¹⁴ C-acrolein in water was prepared by adding 0.37 ml of the solution (3.3 mCi in 0.5 ml of dimethylformamide, further diluted to 1.0 ml with acetonitrile) to 29.6 ml of sterilised water (total volume = 30 ml). 0.4 ml of this solution was added to the sterile and non-sterile tubes containing 10g of soil, to yield a 10 ppm acrolein spike with respect to the soil [(56 mg/8.9 mCi) x (3.3 mCi x 0.37 ml/30 ml) x 0.4 ml] = 0.10 mg/10 g soil]. This aqueous addition brought the total soil moisture content up to 75% of field capacity. The soil was mixed with a spatula and capped to minimise volatisation.	
		One sterile and two non-sterile tubes were removed for extraction and analysis at times 0, 2, 4, 8, 48 and 115 hours after application. The study was conducted at 20 - 23°C.	
		Mineralisation studies:	
		Conducted in three 250 ml Bartha biometer flasks. 50 g of soil was added to each flask (three Phoenix soil flasks) and 4.0 ml of deionised water. The soils were thoroughly mixed and allowed to acclimate for seven	

Section A7.2.1 Annex Point IIA7.4, 7.1.1		Fate and behaviour in soil: aerobic degradation in soil
		days. One flask was autoclaved for one hour each on three consecutive days to serve as a sterile control. To each flask side arm was added 10 ml 0.2M potassium hydroxide solution to trap evolved carbon dioxide. 2.0 ml of the aqueous acrolein stock solution was added to each flask and the contents thoroughly mixed. The potassium hydroxide solution was replaced with fresh solution at Days 2, 6, 13, 20, 27, and 34. A 50 μ l aliquot of the potassium hydroxide solution was mixed with 10 ml of Aquasol counting solution for scintillation counting. A 5.0 ml aliquot was mixed with 5.0 ml of 0.2M barium chloride solution to precipitate carbon dioxide. After centrifuging the precipitate, a 100 μ l aliquot was mixed with the counting solution for scintillation counting. The difference between the potassium hydroxide and barium chloride solution counts was attributed to ¹⁴ C-carbon dioxide.
3.6	Test performance	
3.6.1	Identification of products	Products were identified by their co-chromatography with authentic standards or as derivatised products. Two derivatisation procedures were used; One procedure involved the conversion of aldehydes to their pentafluorophenylhydrazones by reaction with pentafluorophenylhydrazine. The derivatives were then analysed be HPLC as described in section 3.2.1 with the exception that gradient program was used starting from acetonitrile/water (20/80) for 5 minutes programmed to 100% acetonitrile in five minutes (six minute hold). The column was re-equilibrated for five minutes with the starting solvent composition. The components, 3-hydroxypropanal pentafluorophenylhydrazone and acrolein pentafluorophenylhydrazone eluted at 12.5 and 14.5 minutes respectively. To confirm, identifications were performed by gas chromatography/mass spectroscopy using a Ribermag R-10-10 GC/MS and a 30 m DB-5 fused silica capillary temperature programmed from 50 - 200°C
3.6.2	Analysis of Data	The loss of acrolein from soil was assumed to a following a first-order reaction shown in Equation 1:
		Equation 1
3.6.2		$-d[A]/dt = k_b[A]$
		Where:
		[A] = Concentration of acrolein
		k_b = First-order biotransformation rate constant
		t = time.
		Integration of Equation 1 yields Equation 2
		Equation 2
		$\ln \left[A_{o}\right] / \left[A_{t}\right] = k_{b} t$
		Where:
		[A _o] = Concentration of acrolein at time zero
		$[A_t] = Concentration at time t.$
		Other loss processes (irreversible sorption, hydrolysis and volatilization) are occurring to acrolein on soil besides biotransformation. The half life

Section A7.2.1 Annex Point IIA7.4, 7.1.1		Fate and behaviour in soil: aerobic degradation in soil	
-		of acrolein in soil due to biotransformation :	
		$t\frac{1}{2} = \ln 2/k_b$	
3.6.3	Screening test: Desorption	Not performed	
3.6.4	HPLC-method	According to (a)" OECD-HPLC-method": Yes/No	X
		4 RESULTS	
4.1	Preliminary test	The extraction of acrolein from low moisture field capacity (unsaturated) soils was poor, with only 75 - 77% recovered after the initial mixing. This is due to both water and acrolein competing for available binding sites on the soil. As the water is adsorbed, acrolein is volatilised due to its increased concentration in the aqueous phase, the high soil surface area to liquid ratio, and the mixing of the tube contents.	
4.2	Biotransformatio n Rate	Acrolein was found to be rapidly lost from both the sterile and non-sterile Phoenix soil reaction tubes. Acrolein was completely gone from the acetonitrile extracts within 8 hours in the non-sterile soils and within 115 hours in the sterile soils. The non-sterile soils followed first-order kinetics. The average rate constant was 0.431 ± 0.08 hr ⁻¹ . The sterile soil did not show first-order behaviour, it mimicked that observed for reversible first-order processes up to 48 hours. The average first-order rate constant for the sterile soils was 0.264 hr ⁻¹ . The rate constant for the aerobic soil biotransformation was 0.167 hr ⁻¹ , thus the aerobic soil biotransformation half-life was 4.2 hours. The uncorrected half-life of acrolein in soil is approximately 1.4 hours.	
4.3	Products	 Two products were identified; Acrylic acid: - CH₂=CH-COOH, formed in sterile soil, but there was approximately twice the amount in the non-sterile soil. The disappearance rate is similar for both types of soil. This was totally removed after 115 hours in sterile soil. 3-hydroxypropionic acid: - HO-CH₂-CH₂-COOH, disappears rapidly in the non-sterile soils to where it is non-detectable after 	

Section A7.2.1 Annex Point IIA7.4, 7.1.1		Fate and beha	viour in soil: aerobic d	egradation in soil
		shows a r In the sterile contr	ioxide: – formed rapidly with nore gradual release up till th ol soil, 3-hydroxypropanal w crolein. This was not presen	he termination of the study. yas present as a result from
4.4 Material balance	Code Sector Sector and alle	balance was 98.3%. The data vity found in material balance		
		Sample	Activity found (x 10 ⁻⁶ dpm)	% of Total
		Soil extract	12.5	43.1
		Plug extract	2.87	9.9
		Soil	5.66	19.5
		Plug	7.98	27.5
		8 hours followed b bound to the soil a acrolein adding ba The sterile soil sho	the binding of acrolein and by an observed loss of activit fter 8 hours represents 109% ck to the soil) of the total act by the soil binding of act ity appeared to remain constant	y with time. The activity 6 (due to volatilised tivity added. tivity than the non-sterile
4.5.1	Conversion of soil bound products	acrolein bound to the activity trapped precipitating the ¹⁴ the solution. The majority of th approximately 50% days, the released follow a zero-orde Between zero and are trapped in 0.2M indicates that the i	nerated from acrolein, acrole soil was followed as a functi d in 0.2M potassium hydroxi C-carbon dioxide with bariu e activity was released within 6 of the released activity was activity was entirely carbon r release rate upto the end of six days, acrolein and other M potassium hydroxide are re- reversibly bound acrolein pr d this transformation is biotic	on of time by measuring ide solution and by m chloride and recounting n several days and s carbon dioxide. After six dioxide and appeared to f the study. volatile metabolites that eleased from soil. This roducts are converted to
		5 APPLIC	ANT'S SUMMARY AND	CONCLUSION
5.1	Materials and methods	Soil biotransforma glass tubes capped weighing 10.0 g of (67% of field capa	nducted in accordance to FIF tion rate study were perform with Teflon liners. 36 tubes f Phoenix soil into each tube city) was added to each tube with a metal spatula. The tul	ned in 20 x 150 mm Pyrex were prepared by . 0.8 ml of deionised water e, and the contents were

Baker Petrolite

Section A7.2.1 Annex Point IIA7.4, 7.1.1		Fate and behaviour in soil: aerobic degradation in soil	
		at room temperature (20 - 22°C) for seven days to activate microbial populations. 12 tubes were autoclaved for one hour on each of three consecutive days to serve as sterile controls. 0.5 ml of sterile water was added to each sterile tube after autoclaving to re supply the water lost on heating.	
5.2	Results and discussion	Acrolein is shot-lived when added to unsaturated soils and its fate will be controlled by biotransformation, volatilisation and irreversible binding to soil processes.	x
		Free acrolein in soil is readily biotransformed with a half-life of 4.2 hours. Acrylic acid and 3-hydroxypropionic acid are also readily biotransformed and are presumably converted to carbon dioxide with a half-life of 29 days.	
		Acrolein products that are irreversibly bound to soil are mineralised to carbon dioxide with an estimated half-life of 410 days. The bound products are not readily extracted from soil since they are not even solubilised by 0.2M sodium hydroxide.	
		The transformations of acrolein in soil produce polar products that are rapidly consumed (within 48 hours) but at a slower rate than acrolein.	
		The mechanism by which acrolein irreversibly binds to soil in inconclusive, since even the normal procedure for removing fulvic and humic acids from soil failed to significantly remove the majority of bound radioactivity. The bound materials are biodegradable and can be mineralised to carbon dioxide.	
5.3	Conclusion	Biotransformation of acrolein and its abiotic transformation products will occur readily in aerobic soil eventually leading to carbon dioxide. Based on the rapid evolution of carbon dioxide, it appears that soil microbes adapt easily to concentrations above any expected field exposure value. Thus, microbes will play an important role in the overall persistence of acrolein in soil.	
5.3.1	Reliability	1	
5.3.2	Deficiencies	No	
		Evaluation by Competent Authorities	
		Use separate "evaluation boxes" to provide transparency as to the comments and views submitted	
		EVALUATION BY RAPPORTEUR MEMBER STATE	
Date		16/07/2007The Applicant's version is considered acceptable, noting the following;2.2 There is no certificate of GLP, which has been noted by the applicant.	
Materials and Methods		The Applicant's version is considered acceptable, noting the following; 3.2 Should read 'Degradation products tested: Yes' 3.6.4 Should read 'According to (a) "OECD-HPLC-method": Yes'	

Section A7.2.1	Fate and behaviour in soil: aerobic degradation in soil		
Annex Point IIA7.4, 7.1.1			
Results and discussion	The Applicant's version is considered acceptable, noting the following:		
	5.2 The first line states: 'Acrolein is shot -lived when added', this is a spelling error and should be replaced with 'Acrolein is short -lived when added'.		
	The Applicant has not discussed the issue of volatilisation from the initial soil samples. Data presented in the study show that approximately 50 % of the applied radioactivity (AR) was recovered in the NaOH traps but that only 35 % of this was CO ₂ . Data available in the study also suggests that the bound fraction within the soil was approximately 30 % radioactive residues by the end of the study (115 h).		
	Although the Applicant identified 2 main metabolites, these were not quantified. Acrylic acid exceeded 10 % of the AR after 4 hours with a mean peak of 14.7 % AR recorded at 48 hours in non-sterile soil. By 115 hours no acrylic acid was detected in either the sterile or non-sterile soils tested. The second degradation product discussed by the applicant, 3-hydroxypropionic acid did not exceed a mean of 10 % AR under non-sterile soil with a maximum peak value of 9.4 % AR reported after 2 hours, which declined to zero by 48 hours. This is therefore not a substance for concern in the risk assessment.		
Conclusion	The Applicant's version is considered acceptable.		
Reliability	2		
Acceptability	Acceptable		
	The reliability factor has been changed to 2 because there is no certificate of GLP (This has been noted by the Applicant). However, it should be noted that the study was started in 1989, which is the year in which GLP use began, hence GLP certification may not have been readily available at this time. The UKCA believes that the data reported in the study are sufficiently robust for risk assessment.		
Remarks	All endpoints and data presented in the summary have been checked against the original study and are correct.		
	The UK CA notes that the Applicant has included uncompleted tables within the study summary (A7_2 _1-3, A7_2 _1-4, A7_2 _1-2). This will not affect the reliability factor of the study.		
	COMMENTS FROM		
Date	Give date of comments submitted		
Materials and Methods	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state		
Results and discussion	Discuss if deviating from view of rapporteur member state		
Conclusion	Discuss if deviating from view of rapporteur member state		
Reliability	Discuss if deviating from view of rapporteur member state		
Acceptability	Discuss if deviating from view of rapporteur member state		
Remarks			

Table A7_2 _1-1:	Classification and physico-chemical properties of soils used as
adsorbents	

	Soil 1
Soil identification	Pheonix
Classification	Sandy loam
Location	Cotton field located at S.32 nd Street in Phoenix, Arizona, USA
Sand [%]	61.4
Silt [%]	24.6
Clay [%]	14.0
Organic matter [%]	0.4
pH (1:1 H ₂ O)	7.9
Cation exchange capacity (MEQ/100 g)	9.1

Table A7_2 _1-2: Results of preliminary test:

Test substance	
Sample purity	
Weighed soil	
Volume of CaCl ₂ solution	
Nominal concentration of a.s. final solution	
Analytical concentration final of a.s. solution	
Concentration of the test solution (show calculation)	
Details of the analytical method used:	
Method	
Recovery rate	
Detection limit	

	Soil 1
Concentration of test material [mg/l]	
After contact ofhours with soil	
Correction for blank with soil	
Correction for blank without soil	
Final corrected concentration [mg/l]	
Initial concentration of test solution [mg/l]	
Decrease in concentration [mg/l]	
Quantity adsorbed [µg]	
Quantity of soil [g of oven-dried equivalent]	
Quantity adsorbed [µg] per gram of soil	
Test material adsorbed [%]	
Temperature [°C]	
Volume of solution recovered after centrifugation [ml]	
Volume of solution not recovered [ml]	
Corresponding quantity of test substance [mg]	

Table A7_2 _1-3: Results of screening test - adsorption:

 Table A7_2 _1-4:
 Results of screening test - desorption:

	So	il 1
Temperature [°C]		
Concentration in combined washings [mg/l]		
Corresponding quantity of test material [mg]		
Quantity desorbed [µg]		
[%] of adsorbed test material, which is desorbed		
[%] of adsorbed test material, which is not desorbed		

Annex Point IIIA VII.4, XII.1.1, XII.1.4	The rate and route of degradation including identification of the process involved and identification of any metabolites and degradation products in at least three soil types under appropriate conditions		
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only	
Other existing data []	Technically not feasible [] Scientifically unjustified [X]	_	
Limited exposure [X]	Other justification []		
Detailed justification:	The use pattern of acrolein would lead to negligible exposure to soil. The rate and route of degradation in soil has already been elucidated in studies on the estimation of the aerobic biotransformation rates for acrolein (Magnacide®H Herbicide, Magnacide®B Microbiocide) in soil (Section A7.2.1, Annex Point IIIA, VII.4., Ann. IIIA, XII.1.1.) and the soil adsorption coefficient for acrolein (Magnacide®Herbicide and Magnacide®B Microbiocide) study (Section A7.1.3, Annex Point IIIA, XII.2.2.) Therefore, in view of the low exposure potential in soil from use and the existing data further studies are considered not to be necessary.		
	Evaluation by Competent Authorities		
Undertaking of intended data submission []	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted		
	Use separate "evaluation boxes" to provide transparency as to the		
data submission []	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted		
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE		
data submission [] Date Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006		
data submission [] Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable		
data submission [] Date Evaluation of applicant's justification	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable		
data submission [] Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable Acceptable		
data submission [] Date Evaluation of applicant's justification Conclusion Remarks	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable Acceptable COMMENTS FROM OTHER MEMBER STATE (specify)		

Annex Point IIIA XII.1.1, Annex VI, para 85	Field soil dissipation and accumulation		
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only	
Other existing data []	Technically not feasible [] Scientifically unjustified [X]	-	
Limited exposure [X]	Other justification []		
Detailed justification:	The use pattern of acrolein would lead to negligible exposure to soil. The rate and route of degradation in soil has already been elucidated in studies on the estimation of the aerobic biotransformation rates for acrolein (Magnacide®H Herbicide, Magnacide®B Microbiocide) in soil (Section A7.2.1, Annex Point IIIA, VII.4., Ann. IIIA, XII.1.1.) and the soil adsorption coefficient for acrolein (Magnacide®Herbicide and Magnacide®B Microbiocide) study (Section A7.1.3, Annex Point IIIA, XII.2.2.) Therefore, in view of the low exposure potential in soil from use and the existing data further studies are considered not to be necessary		
	Evaluation by Competent Authorities		
Undertaking of intended data submission []	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted		
	Use separate "evaluation boxes" to provide transparency as to the		
data submission []	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted		
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE		
data submission [] Date Evaluation of applicant's justification	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006		
data submission [] Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable.		
data submission [] Date Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable.		
data submission [] Date Evaluation of applicant's justification Conclusion Remarks	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable. Acceptable		
data submission [] Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable. Acceptable COMMENTS FROM OTHER MEMBER STATE (specify)		

Section A7.2.2.3 Annex Point IIIA XII.1.4	Extent and nature of bound residues		
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Officia use only	
Other existing data []	Technically not feasible [] Scientifically unjustified [X]		
Limited exposure [X]	Other justification []		
Detailed justification:	The use pattern of acrolein would lead to negligible exposure to soil. The rate and route of degradation in soil has already been elucidated in studies on the estimation of the aerobic biotransformation rates for acrolein (Magnacide®H Herbicide, Magnacide®B Microbiocide) in soil (Section A7.2.1, Annex Point IIIA, VII.4., Ann. IIIA, XII.1.1.) and the soil adsorption coefficient for acrolein (Magnacide®Herbicide and Magnacide®B Microbiocide) study (Section A7.1.3, Annex Point IIIA, XII.2.2.) Therefore, in view of the low exposure potential in soil from use and the existing data further studies are considered not to be necessary		
Undertaking of intended data submission []	Evaluation by Computer that haviting		
	Evaluation by Competent Authorities		
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted		
	EVALUATION BY RAPPORTEUR MEMBER STATE		
Date	18/05/2006		
Evaluation of applicant's justification	The Applicant's justification is acceptable.		
Conclusion	Acceptable		
Remarks			
	COMMENTS FROM OTHER MEMBER STATE (specify)		
Date	Give date of comments submitted		
Evaluation of applicant's justification	Discuss if deviating from view of rapporteur member state		
Conclusion	Discuss if deviating from view of rapporteur member state		
Remarks			
Section A7.2.2.3 Annex Point IIIA	Extent and nature of bound residues		
XII.1.4			

Section A7.2.2.3 Extent and nature of bound residues Annex Point IIIA XII.1.4		
Other existing data []	Technically not feasible [] Scientifically unjustified [X]	
Limited exposure [X]	Other justification []	
Detailed justification:	The use pattern of acrolein would lead to negligible exposure to soil. The rate and route of degradation in soil has already been elucidated in studies on the estimation of the aerobic biotransformation rates for acrolein (Magnacide®H Herbicide, Magnacide®B Microbiocide) in soil (Section A7.2.1, Annex Point IIIA, VII.4., Ann. IIIA, XII.1.1.) and the soil adsorption coefficient for acrolein (Magnacide®Herbicide and Magnacide®B Microbiocide) study (Section A7.1.3, Annex Point IIIA, XII.2.2.) Therefore, in view of the low exposure potential in soil from use and the existing data further studies are considered not to be necessary	
Undertaking of intended		
data submission []	Evaluation by Competent Authorities	
data submission []	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted	
data submission []	• •	
data submission []	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted	
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE	
Date Evaluation of applicant's justification	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE Give date of action	
Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE Give date of action Discuss applicant's justification and, if applicable, deviating view Indicate whether applicant's justification is acceptable or not. If unacceptable because of the reasons discussed above, indicate which action will be required,	
Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE Give date of action Discuss applicant's justification and, if applicable, deviating view Indicate whether applicant's justification is acceptable or not. If unacceptable because of the reasons discussed above, indicate which action will be required,	
Date Evaluation of applicant's justification Conclusion Remarks	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE Give date of action Discuss applicant's justification and, if applicable, deviating view Indicate whether applicant's justification is acceptable or not. If unacceptable because of the reasons discussed above, indicate which action will be required, e.g. submission of specific test/study data	
Date Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE Give date of action Discuss applicant's justification and, if applicable, deviating view Indicate whether applicant's justification is acceptable or not. If unacceptable because of the reasons discussed above, indicate which action will be required, e.g. submission of specific test/study data COMMENTS FROM OTHER MEMBER STATE (specify)	

Section A7.2.2.4 Annex Point IIA7.2.2.4		Fate and behaviour in soil: anaerobic degradation in soil	
		1 REFERENCE	Official use only
Biotransformation Rates Magnacide®B Biocide)		Chou, T-W. & Spanggord, R.J. (1991) Estimation of the Anaerobic Biotransformation Rates for Acrolein (Magnacide®H Herbicide, Magnacide®B Biocide) in Soil-Water Mixture. SRI International. SRI Project No. 3562-4.	
1.2	Data protection	Yes	
1.2.1	Data owner	Baker Petrolite	
1.2.2	Criteria for data protection	Data on new a.s. for first entry to Annex I	
		2 GUIDELINES AND QUALITY ASSURANCE	
2.1	Guideline study	Yes FIFRA 162-2 and 162-3	х
2.2	GLP	No No GLP statement provided	
2.3	Deviations	No	
		3 MATERIALS AND METHODS	
3.1	Test material	As given in Section 2	
3.1.1	Lot/Batch number	NN-481-76	
3.1.2	Specification	As given in Section 2 Deviating from specification given in section 2 as follows Radiolabelled at the 2 and 3 positions (acrolein-2,3- ¹⁴ C)	
3.1.3	Purity	See 3.1.2	
3.1.4	Further relevant properties		x
3.1.5	Method of analysis		x
3.2	Degradation products	Degradation products tested: Yes	
3.2.1	Method of analysis for degradation products	At various time points, aliquots from the six flasks (two sterile and four non-sterile) were removed and placed in amber glass vials. The vials were centrifuged at 2500 rpm for 10 minutes and the acetonitrile (plus 1.2 ml water originally added) was carefully pipetted into a vial and capped. The aqueous supernatants were analysed by high-performance liquid chromatography (HPLC) using the following conditions:	
		Instrument: Spectra-Physics Model 8000 Liquid Chromatograph	
		Column: Regis Hi-Chrom ODS-II column, 4.6 x 250 mm	
		Solvent: Water/Acetonitrile (80/20)	
		Flow rate: 1.0 ml/minute Detectors: UV at 210 nm in series with a Raytest solid-state radioactivity detector	

Section A7.2.2.4 Annex Point IIA7.2.2.4		Fate and behaviour in soil: anaerobic degradation in soil		
		Quantitation was achieved using the external standard method relating peak area to parts per million (ppm) of acrolein injected as determined from standard calibration curves. Total radioactivity in the aqueous phase was determined by direct counting of a 100 μ l in 10 ml of Aquasol scintillation counting liquid. The soil samples were oxidised using a Packard Model 306 Oxidizer where the sample is combusted and the ¹⁴ C-carbon is converted to ¹⁴ C- carbon dioxide and trapped. The trapped activity is counted in a		
_		scintillation counter.		
3.3	Reference substance	No		
3.3.1	Method of analysis for reference substance	Not applicable		
3.4	Soil types	See Table A7_2_2_4-1		
3.5	Testing procedure			
3.5.1	Test system	Soil biotransformation rate studies were performed in 125 ml Erlenmeyer flasks. Each flask was equipped with an internal carbon dioxide trap containing 10ml of a 0.2M potassium hydroxide solution, and a pressure relief valve to allow nitrogen to enter the flask through a sterilised filter when the flask was being sampled.		
		Six flasks were prepared by weighing 6.0 g of Phoenix soil into three flasks and 6.0 g Menlo Park soil into the other three flasks. One flask containing each soil and 60 ml of Milli-Q water was autoclaved for one hour, then the water level was brought to 120 ml with sterilised water. To each non-sterile flask was added 120 ml of deionised water followed by 1.0 ml of a 0.5 ml/l filter sterilised resazurin solution as an oxidation- reduction indicator. The contents were thoroughly mixed with a stir-bar and the flasks were incubated at room temperature $(20 \pm 3^{\circ}C)$ for 30 days. During the incubation, aerobic bacteria grew initially, consumed the dissolved oxygen, and reduced the water to an anaerobic condition. This effect was noted by a change in the resazurin dye which progressed from a blue-violet to pink to colourless solution. To accelerate the utilisation of oxygen in the Phoenix soil-water flasks, 10 ppm of Difco nutrient broth was added.		
3.5.2	Test solution and Test conditions	A stock solution of ¹⁴ C-acrolein in water was prepared by adding 0.37 ml of the test material solution to 29.6 ml of sterilised water. 2.0 ml of this solution was added to the sterile and non-sterile flasks while flushing with nitrogen, to yield a 4.2 ppm acrolein spike to the soil-water. The water-soil-containing flasks were capped to minimise volatilization and stirred with the magnetic-stir bar for 10 minutes. For sample analysis, 1.0 ml aliquots were removed by syringe, placed in a capped vial, and centrifuged at 2500 rpm for 10 minutes.		
		Sampling and analysis were performed on Days 0, 2, 7, 14, 21, 28, 35, 42 and 56 after application.		
3.6	Test performance			
3.6.1	Identification of products	Products were identified by their co-chromatography with authentic standards or as derivatised products. Two derivatisation procedures were used. One procedure involved the conversion of aldehydes to their pentafluorophenylhydrazones by reaction with		

Baker Petrolite	Bak	er P	etro	lite
------------------------	-----	------	------	------

Section A7.2.2.4 Annex Point IIA7.2.2.4		Fate and behaviour in soil: anaerobic degradation in soil		
		pentafluorophenylhydrazine. The derivatives were then analysed by HPLC as described in section 3.2.1 with the exception that the gradient programme was used, starting from acetonitrile/water (20/80) for five minutes programmed to 100% acetonitrile in five minutes (six minute hold). The column was re-equilibrated for five minutes with the starting solvent composition. The components, 3-hydroxypropanal pentafluorophenylhydrazone and acrolein pentafluorophenylhydrazone eluted at 12.5 and 14.5 minutes respectively. To confirm, identifications were performed by gas chromatography/mass spectroscopy using a Ribermag R-10-10 GC/MS and a 30 m DB-5 fused silica capillary temperature programmed from 50 - 200°C		
3.6.2	Analysis of Data	The loss of acrolein from soil was assumed to a following a first-order reaction as shown in Equation 1:		
		Equation 1		
		$-d[A]/dt = k_b [A]$		
		Where		
		[A] is the concentration of acrolein		
		\mathbf{k}_{b} is the first-order biotransformation rate constant		
		t is time.		
		Integration of equation 1 yields equation 2		
		Equation 2		
		$\ln \left[A_{o}\right] / \left[A_{t}\right] = k_{b}t$		
		Where		
		[A _o] is the concentration of acrolein at time zero		
		[At] is the concentration at time t.		
		Other loss processes (irreversible sorption, hydrolysis and volatilization) are occurring to acrolein on soil besides biotransformation. The half life of acrolein in soil due to biotransformation :		
		$t^{1/2} = \ln 2/k_b$		
3.6.3	Screening test: Desorption	Not performed		
3.6.4 HPLC-method According to OECD-HPLC-method: Yes		According to OECD-HPLC-method: Yes		
		4 RESULTS		
4.1	Biotransformatio n Rate	Acrolein was found to be rapidly lost from both the sterile and non-sterile Phoenix and Menlo Park soil-water reaction flasks. Acrolein was completely gone from the aqueous phase within 14 days in both types of non-sterile soils. The sterile soil-water mixtures showed the presence of acrolein up to Day 56. The first-order rate constant for the Phoenix soil- water was averaged to 0.192/day. The first-order rate constant for the sterile control was 0.154/day.		
		The first-order rate constant for the Menlo Park soil-water mixtures were averaged to be 0.239/day for the non-sterile soil-water, and 0.147/day for the sterile samples.		
		The average half-life in the Phoenix soil was 3.6 days, while the half-life		

December 20

Baker Pe	trolite
----------	---------

Section A7.2.2.4	Fate and behaviour in soil: anaerobic degradation in soil	
Annex Point IIA7.2.2.4		
	in the sterile control was 4.5 days.	
	In Menlo Park soil, the half-life was 2.9 days and half-life of the sterile control was 4.9 days. For both of the sterile soils, the average rate constant was calculated to be 0.151/day.	
	The difference between the averaged non-sterile and sterile rate constants is 0.038/day in Phoenix soil-water and 0.092/day in Menlo Park soil- water from which an average anaerobic biotransformation half-life was 11 days.	
4.2 Products	Two products were identified;	Х
	1. 2-hydroxypropanal Acrylic acid –	
	2. 3-hydroxypropanal	
	These products remained in the sterile controls with in equilibrium with acrolein up to Day 56. In the non-sterile samples, compound was transformed to 1,3-propanediol. Small amounts of 3-hydroxypropionic acid was also found.	
	Carbon dioxide was identified as the final product resulting from acrolein biotransformation. This was continuously released between days 14 till the end of the study. The sterile controls showed minimal carbon dioxide production.	
4.3 Material balance	In the sterile Menlo Park soil, the majority of the activity was found in the aqueous phase and potassium hydroxide trap. Approximately 4% of the activity was bound to the soil at the end of the study.	
	In the non-sterile soil, the bound activity was slightly higher (6.7 - 6.9%) and the bound activity was being converted to carbon dioxide. Minimal activity was found bound to the Phoenix soil and the total recovery averaged 90%.	
	5 APPLICANT'S SUMMARY AND CONCLUSION	
5.1 Materials and	This study was conducted in accordance to FIFRA guidelines No. 162-2.	
methods	Six flasks were prepared by weighing 6.0 g of Phoenix soil into three flasks and 6.0 g Menlo Park soil into the other three flasks. One flask containing each soil and 60 ml of Milli-Q water was autoclaved for one hour, then the water level was brought to 120 ml with sterilised water. To each non-sterile flask was added 120 ml of deionised water followed by 1.0 ml of a 0.5 ml/l filter sterilised resazurin solution as an oxidation- reduction indicator. The contents were thoroughly mixed with a stir-bar and the flasks were incubated at room temperature $(20 \pm 3^{\circ}C)$ for 30 days. During the incubation, aerobic bacteria grew initially, consumed the dissolved oxygen, and reduced the water to an anaerobic condition. This effect was noted by a change in the resazurin dye which progressed from a blue-violet to pink to colourless solution. To accelerate the utilisation of oxygen in the phoenix soil-water flasks, 10 ppm of difco nutrient broth was added.	
	To sterile and non-sterile flasks was added 2.0 ml of test material while flushing with nitrogen to yield a 4.2 ppm acrolein spike to the soil-water. The water-soil containing flasks were capped to minimise volatilization and stirred with the magnetic-stir bar for 10 minutes. For sample analysis, 1.0 ml aliquots were removed by syringe, placed in a capped vial, and centrifuged at 2500 rpm for 10 minutes.	

Section A7.2.2.4 Annex Point IIA7.2.2.4		Fate and behaviour in soil: anaerobic degradation in soil		
		Sampling and analysis was performed on Days 0, 2, 7, 14, 21, 28, 35, 42 and 56 after application.		
5.2	Results and discussion	Acrolein undergoes bio-transformation in anaerobic soil-water compartments. The half life was determined to be 2.9 and 3.6 days in Menlo Park and Phoenix soil-water mixtures. When corrected for sterile control, the half life was estimated to be 11 days.	х	
		3-hydroxypropanal is the hydrolytic product of acrolein, which is at it's maximum concentration after 7 days after which it is converted to 1,3-propandiol. This reaches maximum concentration after 14 days and is further transformed to 3-hydroxypropionic acid . Further oxidation possibly leads to malonyl derivatives (acid and aldehyde) and acetate.		
		1,3-propanediol and 3-hydroxypropionic acid are also readily biotransformed and are presumably converted to carbon dioxide with a half-life between 80 and 110 days.		
		Acrolein products that are bound to soil are mineralised to carbon dioxide.		
5.3 Conclusion		Biotransformation of acrolein and its abiotic transformation products will occur readily in an-aerobic soil-water eventually leading to carbon dioxide. Based on the rapid evolution of carbon dioxide, it appears that anaerobic soil-water microbes adapt easily to concentrations above any expected field exposure value. Thus, microbes will play an important role in the overall persistence of acrolein in anaerobic soil-water environments.		
5.3.1	Reliability	1		
5.3.2	Deficiencies	No		
		Evaluation by Competent Authorities		
1		Use separate "evaluation boxes" to provide transparency as to the comments and views submitted		
		EVALUATION BY RAPPORTEUR MEMBER STATE		
Date		17/07/2007		
		The Applicant's version is acceptable, noting the following;		
		2.1 FIFRA guideline 162-2 was followed for this study. Guideline 162-3 refers to 'Anaerobic Aquatic Metabolism Studies' and is therefore non-applicable.		
		2.2 There is no certification of GLP (see remarks)		
Mater	rials and Methods	The Applicant's version is considered acceptable, noting the following:		
		3.1.4 The UK CA believes that the water solubility figure should be given $(237,628mg/l \pm 2856 mg/l at 25^{\circ}C)$.		
		3.1.5 The method of analysis should be stated (HPLC and Scintillation Counting)		

Section A7.2.2.4	Fate and behaviour in soil: anaerobic degradation in soil			
Annex Point IIA7.2.2.4				
Results and discussion	The Applicant's version is considered acceptable, with the following additional comments;4.2 The UK CA believes that the study summary is incorrect with respect to the following statement:			
	Two products were identified;			
	1. 2-hydroxypropanal Acrylic acid			
	2. 3-hydroxypropanal			
	Although this is a direct interpretation of what is stated in the study report, the UK CA believes that the report incorrectly states that one of the products is '2- <i>hydroxypropanal Acrylic acid</i> '. The two products identified where 3-hydroxypropanal and the hydrated 3-hydroxypropanal. Therefore, section 4.2 should read as follows:			
	Two products were identified;			
	1. 3-hydroxypropanal			
	2. hydrated 3-hydroxypropanal			
	5.2 The UK CA suggest that the wording below is used:			
	3-hydroxypropanal is the hydrolytic product of acrolein, which is at it's maximum concentration (67.2 % AR) after 7 days, and is then converted to 1,3-propandiol, whis reaches maximum concentration (53.2 % AR) after 14 days and is further transformed to 3-hydroxypropionic acid, which has a maximum concentration of 51.3 % AR after 28 days . Further oxidation possibly leads to malonyl derivatives (acid and aldehyde) and acetate.			
	Using zero order kinetics, it is estimated that complete mineralization to CO_2 will yield a half-life of 80 - 110 days.			
	Acrolein products that are bound to soil are mineralised to carbon dioxide. The total recovery at termination of the study was approximately 90 %. This therefore illustrates that the potential maximum amount of bound residues remaining is ≤ 10 %.			
Conclusion	The Applicant's version is considered acceptable.			
Reliability				
Acceptability	Acceptable			
	The reliability factor has been changed to 2 because there is no certificate of GLP. However, it should be noted that the study was started prior to 1989, which is the year in which GLP use begun, hence GLP certification may not have been readily available at this time. The UK CA believes that the data reported in the study are considered sufficiently robust for risk assessment.			
Remarks	All endpoints and data presented in the summary have been checked against the original study and are correct.			
	The UK CA notes that the Applicant has included uncompleted tables within the study summary $(A7_2_2_4-2, A7_2_2_4-3, and A7_2_2_4-4)$. This will not affect the reliability factor of the study.			

Section A7.2.2.4 Fate and behaviour in soil: anaerobic degradation in s		
Annex Point IIA7.2.2.4		
	COMMENTS FROM	
Date	Give date of comments submitted	
Materials and Methods	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state	
Results and discussion	Discuss if deviating from view of rapporteur member state	
Conclusion	Discuss if deviating from view of rapporteur member state	
Reliability	Discuss if deviating from view of rapporteur member state	
Acceptability	Discuss if deviating from view of rapporteur member state	
Remarks		

	Soil 1	Soil 2
Soil identification	Phoenix	Menlo Park
Classification	Sandy loam	Loam
Location	S.32 nd Street, Phoenix, Arizona, USA	S.32 nd Street, Phoenix, Arizona, USA
Sand [%]	61.4	46.0
Silt [%]	24.6	31.8
Clay [%]	14.0	22.2
Organic matter [%]	0.4	4.0
pH (1:1 H ₂ O)	7.9	5.9
Cation exchange capacity (MEQ/100 g)	9.1	21.5

Table A7_2_2_4-1: Classification and physico-chemical properties of soils used as adsorbents

Table A7_2_2_4-2:	Results of preliminary test:
-------------------	-------------------------------------

Test substance	
Sample purity	
Weighed soil	
Volume of calcium chloride solution	
Nominal concentration of a.s. final solution	
Analytical concentration final of a.s. solution	
Concentration of the test solution (show calculation)	
Details of the analytical method used:	
Method	
Recovery rate	
Detection limit	

	Soil 1	Soil 2
Concentration of test material [mg/l]		
After contact ofhours with soil		
Correction for blank with soil		
Correction for blank without soil		
Final corrected concentration [mg/l]		
Initial concentration of test solution [mg/l]		
Decrease in concentration [mg/l]		
Quantity adsorbed [µg]		
Quantity of soil [g of oven-dried equivalent]		
Quantity adsorbed [µg] per gram of soil		
Test material adsorbed [%]		
Temperature [°C]		
Volume of solution recovered after centrifugation [ml]		
Volume of solution not recovered [ml]		
Corresponding quantity of test substance [mg]		

 Table A7_2_2_4-4:
 Results of screening test - desorption:

	Soil 1		Soil 2	
Temperature [°C]				
Concentration in combined washings [mg/l]				
Corresponding quantity of test material [mg]				
Quantity desorbed [µg]				
[%] of adsorbed test material, which is desorbed				
[%] of adsorbed test material, which is not desorbed				

ACROLEIN

Annex Point IIIA.XII.1.23	Adsorption and mobility in soil, further studies		
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only	
Other existing data []	Technically not feasible [] Scientifically unjustified [X]		
Limited exposure []	Other justification []		
Detailed justification:	The use pattern of acrolein would lead to negligible exposure to soil. The mobility in soil has already been elucidated in studies on the estimation of the aerobic biotransformation rates for acrolein (Magnacide®H Herbicide, Magnacide®B Microbiocide) in soil (Section A7.2.1, Annex Point IIIA, VII.4., Ann. IIIA, XII.1.1.) and the soil adsorption coefficient for acrolein (Magnacide®Herbicide and Magnacide®B Microbiocide) study (Section A7.1.3, Annex Point IIIA, XII.2.2.) Therefore, in view of the low exposure potential in soil from use and the existing data further studies are considered not to be necessary		
Undertaking of intended			
	Evaluation by Competent Authorities		
Undertaking of intended data submission []	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted		
	Use separate "evaluation boxes" to provide transparency as to the		
data submission []	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted		
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE		
data submission [] Date Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006		
data submission [] Date Evaluation of applicant's justification	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable.		
data submission [] Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable.		
data submission [] Date Evaluation of applicant's justification Conclusion Remarks	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable. Acceptable		
data submission [] Date Evaluation of applicant's justification Conclusion	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable. Acceptable COMMENTS FROM OTHER MEMBER STATE (specify)		
data submission [] Date Evaluation of applicant's justification Conclusion Remarks Date Evaluation of applicant's	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted EVALUATION BY RAPPORTEUR MEMBER STATE 18/05/2006 The Applicant's justification is acceptable. Acceptable COMMENTS FROM OTHER MEMBER STATE (specify) Give date of comments submitted		

December 2005

Section A7.2.3.1 Annex Point IIIA XII.1.2	Adsorption and desorption accordance with the new test guideline EC C18 or the corresponding OECD 106 and, where relevant, adsorption and desorption of metabolites and degradation products		
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only	
Other existing data []	Technically not feasible [] Scientifically unjustified [X]	1	
Limited exposure [X]	Other justification []		
Detailed justification:	A full OECD study in 5 soils is not required as a determination of absorption in soil has been performed. See section IIIA7.1.3.		
	The substance and product will be used in a marine environment only and therefore there will be no terrestrial exposure.		
Undertaking of intended data submission []			
	Evaluation by Competent Authorities		
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted		
	EVALUATION BY RAPPORTEUR MEMBER STATE		
Date	18/05/2006		
	The Applicant's justification is acceptable.		
	The ripplicant's fusitivation is acceptione.		
	Acceptable		
justification Conclusion			
justification Conclusion			
justification Conclusion Remarks	Acceptable		
Evaluation of applicant's justification Conclusion Remarks Date Evaluation of applicant's justification	Acceptable COMMENTS FROM OTHER MEMBER STATE (specify)		
justification Conclusion Remarks Date Evaluation of applicant's	Acceptable COMMENTS FROM OTHER MEMBER STATE (specify) Give date of comments submitted		

	on A7.3.1(1) : Point IIIA VII.5	Phototransformation in air including identity of transformation products	
		1 REFERENCE	Official use only
1.1	Reference	Haag, W.R. et al. (1988b) Estimation of Photolysis Rate Constants for Acrolein (Magnacide®H Herbicide and Magnacide®B Microbiocide) in the Environment, SRI International, SRI Project No. 3562-3.	
1.2	Data protection	Yes	
1.2.1	Data owner	Baker Petrolite	
1.2.2	Criteria for data protection	Data on new a.s. for first entry to Annex I	
		2 GUIDELINES AND QUALITY ASSURANCE	
2.1	Guideline study	Yes FR 796.3780 and Pesticide Assessment Guidelines, Subdivision N, 161-3	Х
2.2	GLP	Yes	
2.3	Deviations	No	x
		3 METHOD	
3.1	Test material	As given in Section 2	
3.1.1	Lot/Batch number	NN-481-76	
3.1.2	Specification	As given in Section 2	
3.1.3	Purity	96.2 %	
3.1.4	Radiolabelling	Not used	
3.1.5	UV/VIS absorption spectra and absorbance value	Extinction coefficients were estimated relative to the maximum of 11,800 M ⁻¹ cm ⁻¹ at 210 nm using the respective attenuations	
3.1.6	Further relevant properties	None	
3.2	Reference substance	No	
3.2.1	Initial concentration of reference substance		
3.3	Test solution	See Table A7_3_1-1	1
3.4	Testing procedure		
3.4.1	Test system	Sunlight irridation was performed in a 51 Pyrex bulk equipped with a stopclock and a septum-capped side port. The bulb was purged with nitrogen gas at 100 ml/min for 30 minutes, then with synthetic air at 50 ml/min for 50 minutes. Acrolein ($60 \mu g/l$) and methylene chloride ($57.7 \mu g/l$) were added by injection to give final concentrations of 180 μ M each. The bulb was clamped above a grey surface on the roof of the SRI Physical Sciences building in Menlo Park, California, USA and exposed for 11 cloudless days from 17 July 1987 to 27 July 1987. An identically	x

Section A7.3.1(1) Annex Point IIIA VII.5		Phototransformation in air including identity of transformation products	
		prepared bulb kept in the laboratory in the dark served as the control. The temperature was ambient, approximately 25 to 30°C during daylight.	
		Analyses were performed at regular time intervals by removing a 10 μ l sample (after three syringe rinses) through the septum using a pressure lock syringe and injecting into a Varian 3700 gas chromatograph equipped with a flame ionisation detector	
3.4.2	Properties of light source	See Table A7_3_1-2	х
3.4.3	Determination of irradiance	A sunlight actinometer was used for kinetic studies. The solution contained 10 μ M p-nitroacetophenone and 20 mM pyridine.	
3.4.4	Temperature	25 ± 5 °C	х
3.4.5	pH	7	
3.4.6	Duration of test	11 days	
3.4.7	Number of replicates	Not specified	
3.4.8	Sampling	Samples were taken at 0, 1.0, 3.7, 7.0, 8.1 (run 2 only) and 11.0 hours.	
3.4.9	Analytical methods	Analyses were performed at regular time intervals by removing a 10 μlsample (after three syringe rinses) through the septum using a pressurelock syringe and injecting into a Varian 3700 gas chromatographequipped with a flame ionisation detector. Conditions were as follows:Column:0.32 mm i.d. x 30 m DB-5Nitrogen flow rate:0.5 ml/minAir/hydrogen (2:1) flow rate):30 ml/minA gas phase UV spectrum of acrolein was obtained by injection of 0.1 μlof acrolein from a 1.0 μl syringe into a 28.3 ml, 10 cm quartz cell(acrolein = 0.96 torr) and recording the spectrum on an HP 8450 diodearray sprectrophotometer.	
3.5	Transformation products	Yes	
3.5.1	Method of analysis for transformation products	3-hydroxypropanal was analysed by HPLC following derivatisation with PFPH.	
		4 RESULTS	
4.1	Screening test	Not performed	
4.2	Actinometer data		
4.3	Controls		
4.4	Photolysis data		
4.4.1	Concentration values		
4.4.2	Mass balance		
4.4.3	k ^c _p	0.090 d ⁻¹	

Section A7.3.1(1) Annex Point IIIA VII.5		Phototransformation in air including identity of transformation products	
4.4.4	Kinetic order		
4.4.5	k_{p}^{c}/k_{p}^{a}		
4.4.6	Reaction quantum yield (ϕ^{c}_{E})		
4.4.7	k _{pE}		
4.4.8	Half-life (t _{1/2E})	7.7 days	
		5 APPLICANT'S SUMMARY AND CONCLUSION	
5.1	Materials and methods	The study was performed according to the protocols in Federal Register 796.3780 and Pesticide Assessment Guidelines, Subdivision N, 161-3. Sunlight irradiations were performed on the acrolein/methylene chloride samples on 11 consecutive cloudless days. Sampling occurred at 0, 1.0, 3.7, 7.0, 8.1 (run 2 only) and 11.0 hours. Photolyses were run at ambient temperature ($25 \pm 5^{\circ}$ C) During analysis, acrolein levels were determined by gas chromatography, with a gas UV spectrum of acrolein obtained by a HP 8450 diode array spectrophotometer.	X
5.2	Results and discussion	There was a small, rapid initial loss, but it was not thought to be due to direct photolysis. Possible explanations include incomplete mixing when the zero time point was taken, adsorption of acrolein onto the walls of the bulb, or incomplete removal by purging with synthetic air of nitrogen oxides and other hydroxide radical precursors, which were rapidly consumed in the initial part of the reaction. Acrolein may be lost from the troposphere by sensitised photo-oxidation. The most important photo-oxidant in the troposphere is the hydroxy radical, present in average concentrations of approximately 5E+5 molecules/cm ³ . Using a rate constant of 1.9E-11 cm ³ /molecule/s for reaction of acrolein with the hydroxy radical, a first order rate constant of $1.9E-05 \text{ s}^{-1}$ or a half life of 29 hours for tropospheric consumption of acrolein by hydroxy radicals, which is nearly 10 times faster than the measured direct photolysis rate. Ozone may oxidise acrolein. Assuming an average ozone concentration of 1E+22 molecules/cm ³ and a rate constant of $2.8E-07 \text{ s}^{-1}$ or half life of 41 days is calculated. Therefore, ozone reactions will be negligible and hydroxy radical reactions will control the tropospheric transformation rate of acrolein. The report states that the products from direct photolysis of acrolein under atmospheric conditions are carbon monoxide (75%), carbon dioxide (29%), glyoxal (31%), ethylene (27%), methanol (5%), formaldehyde (6%) and methane (1%). Hydroxy attack on acrolein will occur primarily at the aldehydic hydrogen, probably yielding acrylic acid after several steps. Acrolin and acrylic acid can both add hydroxy radicals to the double bond to form a variety of polar products.	x
5.2.1	k ^c _p		
5.2.2	K _{pE}	0.090 d ⁻¹	
5.2.3	φ ^c _E		
5.2.4	t _{1/2E}	7.7 days	

Section A7.3.1(1) Annex Point IIIA VII.5		Phototransformation in air including identity of transformation products
5.3	Conclusion	The observed rate constant for the gas phase photolysis of acrolein was measured at 0.063 d^{-1} yielding a half-life of 10.9 days. The calculated rate constant was 0.090 d^{-1} or a half-life of 7.7 days. Estimation of half-lives from other atmospheric oxidation processes indicated reactions with hydroxy radicals (HO) would be rapid (half-life = 29 hours) and reactions with ozone much slower. (Half-life = 41 days).
5.3.1	Reliability	2
5.3.2	Deficiencies	Yes
		The report states that the products from direct photolysis of acrolein under atmospheric conditions are carbon monoxide (75%), carbon dioxide (29%), glyoxal (31%), ethylene (27%), methanol (5%), formaldehyde (6%) and methane (1%). These values added together give a total of 174 %. Unfortunately, it is not readily possible to explain the origin of the disproportionate percentage results cited by Haag <i>et al</i> . These results are claimed to originate from an EPA report by Gardner <i>et al</i> (Gardner, Sperry and Calver, Primary Photochemical Processes of Acrolein, EPA, 1986).
	Peter Fisk Associates (PFA), experts in Environmental Chemistry have reviewed both reports and although they have explored some realistic conversions, there is no obvious way that these percentages could have been calculated from the results that are presented in the Gardner <i>et al</i> report. PFA's comments have been provided as an appendix to this robust summary and a robust summary has been written on the EPA report (see Document IIIA Section 7.3.1(2)).	
	The disproportionate percentages do not affect the validity of the report, since the general findings are supported by the Gardner <i>et al</i> report. This report states that the order of abundance of phototransformation products of acrolein are:	
		$\label{eq:carbon monoxide} Carbon monoxide > ethylene > formaldehyde \approx hydrogen > glyoxal > carbon dioxide > methanol \approx methane.$
		The report also states that degradation of acrolein via direct photolysis is much slower than degradation via reaction with hydroxyl radicals (half lives of > 5 days and 14.6 hours, respectively). Hence indirect photolysis is the major and more important route of degradation.
		Evaluation by Competent Authorities
		Use separate "evaluation boxes" to provide transparency as to the comments and views submitted
		EVALUATION BY RAPPORTEUR MEMBER STATE
Date	_	13/07/2007

Section A7.3.1(1)	Phototransformation in air including identity of transformation products
Annex Point IIIA VII.5	transformation products
Materials and Methods	The Applicant's version is considered acceptable with the following exceptions:
	2.1 The guideline stated by the applicant, <i>Pesticide Assessment Guidelines</i> , <i>Subdivision N, 161-3</i> , is for 'Photodegradation Studies in Soil'. The applicant has actually followed the correct guideline, '161-4: Photodegradation studies in Air'.
	2.2 No data on hours of daylight, See point 3.4.2.
	3.4.1 The units used for Acrolein and Methylene Chloride, $\mu g l^{-1}$, are incorrect. The study states that the units are μl . This will not affect the endpoint from the study.
	3.4.2 Table A7_3_1-2: Description of test system.
	Hours of daylight are not included in the table. This is a requirement of guideline 161-4. This will not affect the endpoint from the study.
	3.4.4 The guideline, 161-4, states that the temperature should be maintained as closely to 30 °C as possible. This will not affect the endpoint from the study.
	5.1 see point 2.1
	5.2 The figure given in the summary for average ozone concentration is incorrect. The study states this figure should be 1×10^{12} . This will not affect the endpoint from the study.
Results and discussion	The Applicant's version is considered to be acceptable.
Conclusion	The Applicant's version is considered to be acceptable.
Reliability	2
Acceptability	Acceptable
Remarks	All endpoints and data presented in the summary have been checked against the original study and are correct (with the exceptions of those noted above).
	COMMENTS FROM (specify)
Date	Give date of comments submitted
Materials and Methods	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state
Results and discussion	Discuss if deviating from view of rapporteur member state
Conclusion	Discuss if deviating from view of rapporteur member state
Reliability	Discuss if deviating from view of rapporteur member state
Acceptability	Discuss if deviating from view of rapporteur member state
Remarks	

Criteria	Details
Purity of water	Unbuffered Milli-Q water
Preparation of test chemical solution	Solutions of 10 ppm acrolein in 10 mg/l humic acid prepared by diluting 0.5 ml of 1000 ppm acrolein stock, 5 ml of 100 mg/l humic acid stock and 1.0 ml of 0.5M pH 7 phosphate buffer to 50 ml.
Test concentrations (mg a.s./l)	Initial concentration: 10 ppm acrolein.
Temperature (°C)	Ambient $25^{\circ}C \pm 5^{\circ}C$
Preparation of a.s. solution	Not applicable
Controls	Identical to test solution, but kept in the laboratory in the dark
Identity and concentration of co-solvent	No co-solvent used

Table A7 3	_1-1: Description	of test solution	and controls
		01 0000 0010000	

Table A7_3_1-2: Description of test system

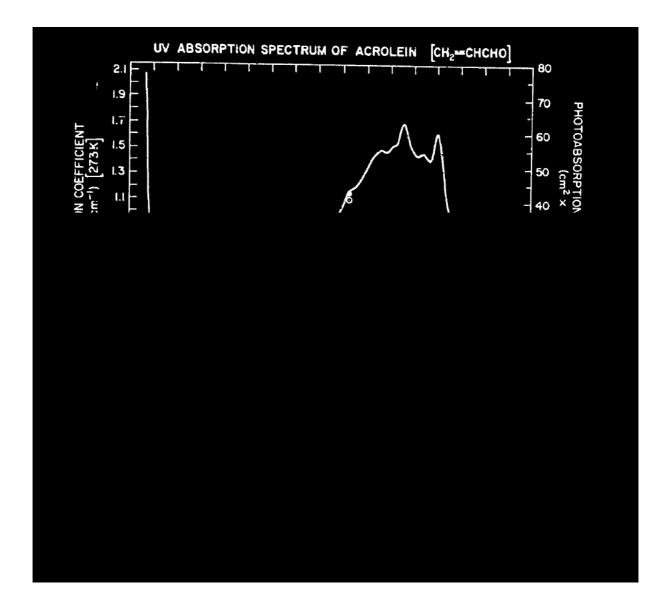
Criteria	Details
Laboratory equipment	5 l Pyrex bulb with stopcock and septum-capped side port.
	GC: Varian 3700 equipped with flame ionisation detector
	Spectrometer: HP 8450 diode array spectrophotometer
	Give details on the type and geometry of the reaction vessels (test tubes, material, size, type of absorption cell, pathlength); describe applicability in relationship to the applied wavelength.
	Report the name and the model of the spectrometer used.
Test apparatus	e.g. sunlight actinometer; describe details
Properties of artificial light source:	No artificial light source used.
Properties of natural sunlight:	Natural sunlight used
Latitude	40°N
Hours of daylight	Not stated
Time of year	Summer (17 - 27 July 1987)
Light intensity	Not stated
Solar irradiance (L_{λ})	Not stated

Baker Petrolite	er Petroli	te
------------------------	------------	----

Section A7.3.1(2) Annex Point IIIA VII.5		Phototransformation in air including identity of transformation products	
		1 REFERENCE	Official use only
1.1	Reference	Gardner, E.P., Sperry, P.D. and Calvert, J.G. (1986). The Primary Photochemical Processes of Acrolein. EPA Report EPA/600/3-86/005. US EPA Research, Triangle Park, NC. 93 pp.	
1.2	Data protection	No.	
		Report marked Unclassified: Release to Public	
1.2.1	Data owner	N/A	
1.2.2	Criteria for data protection	No data protection claimed	
		2 GUIDELINES AND QUALITY ASSURANCE	
2.1	Guideline study	Yes	
		No formalised EU standard guideline is available. Methods and experimental equipment used were largely compliant with OECD monograph 61 (1993) section 3.4: Methods to Determine the Rate of Direct Photo-transformation.	
		There are some deviations (see 5.3.2) and some aspects of the OECD method, if carried out in this study, are not reported (e.g. preliminary experiments across a range of time periods).	
2.2	GLP	No	
2.3	Deviations	Yes	
		See 5.3.2	
		3 METHOD	
3.1	Test material	Acrolein	
3.1.1	Lot/Batch number	Not reported.	
3.1.2	Specification	Acrolein was obtained from Sigma Aldrich	
3.1.3	Purity	Acrolein as obtained: 97% pure in water; 200 ppm hydroquinone present	0
		Sample was further purified prior to the experiment; final purity estimated as 99.9% (refer to table A7_3_1-1)	
3.1.4	Radiolabelling	None	1
3.1.5	UV/VIS absorption spectra and absorbance value	Absorbance at 313 nm. At this wavelength, in the test system used, only acrolein is absorbing. Please see figure 1 for the UV absorption spectrum of acrolein.	
3.1.6	Further relevant properties	None	
3.2	Reference substance	None	

Section A7.3.1(2) Annex Point IIIA VII.5		Phototransformation in air including identity of transformation products
3.2.1	Initial concentration of reference substance	N/A
3.3	Test atmosphere	See Table A7_3_1-1
3.4	Testing procedure	
3.4.1	Test system	See Table A7_3_1-2
3.4.2	Properties of light source	See Table A7_3_1-2
3.4.3	Determination of irradiance	Light exiting the reaction cell passes into a photomultiplier tube (model 8575 RCA), with narrow band and neutral density filters, then into a Hewlett Packard 5201L scaler timer, digital pulse height analyser to obtain a measure of integrated light intensity.
3.4.4	Temperature	24.08°C (run 7F) 22.3 – 25.8°C across 11 experimental runs
3.4.5	Duration of test	Run time 1620 minutes = 27 hours (Run #7F). 1620 – 2770 minutes across 11 experimental runs
3.4.6	Number of replicates	Eleven experimental runs in total. Quantum yields are presented for all runs but results discussed in the report relate only to one run (7F).
3.4.7	Sampling	After photolysis, the reaction mixture flows into a reservoir/sample chamber, which incorporates a Dewar trap. The mixture passes into a sample loop.
3.4.8	Analytical methods	From the sample loop the products are passed via Carle valves for analysis using a gas chromatograph fitted with flame ionisation detector (GC-FID) and thermal conductivity detector (GC-TCD). GC-mass spectrometry was used for primary identification of unknown products.
3.5	Transformation products	Yes

Section A7.3.1(2) Annex Point IIIA VII.5		Phototransformation in air including identity of transformation products	
3.5.1	Method of analysis for transformation products	r transformation identified in Table A7_3_1-3, in which CAS numbers and full chemical	
		The report clearly states the finding that the order of abundance of phototransformation products of acrolein are:	
		CO (Carbon monoxide) $> C_2H_4$ (Ethylene) $>$ HCHO (Formaldehyde) \approx H ₂ (Hydrogen) $>$ HCOCHO (Glyoxal) $>$ CO ₂ (Carbon dioxide) $>$ CH ₃ OH (Methanol) \approx CH ₄ (Methane)	
		Trace amounts of acetaldehyde, acetylene and acetic acid were also detected.	
		Notes:	
		It is not made clear how 'abundance' has been calculated and this sequence does not correlate exactly with molar ratios/ number of molecules or the equivalent by weight or the quantum yields.	
		There is very extensive reporting in this source of transformation mechanisms occurring at 313 nm. Over 20 separate reaction mechanisms are defined. It is not necessary to reproduce these here.	
		4 RESULTS	
4.1	Screening test	Not reported	
4.2	Actinometer data	Two actinometers used, azomethane (CH ₃ CN=NCH ₃) and acetone (O ₂ - free). Products are N ₂ and CO respectively.	
		Actinometer data are not presented in report. It is reported that the data indicate accuracy to within 10% and reproducibility better than \pm 5% for the acrolein experiment.	
4.3	Controls	None	
4.4	Photolysis data		
4.4.1	Concentration values	Molar ratios of the products are presented in Table A7_3_1_3.	
4.4.2	Mass balance	As shown in Table A7_3_1_3, a mass balance (based on carbon atoms) of 2.69 moles C in products : 3.00 moles C in acrolein lost in the test system is achieved.	
		This is equivalent to 90%, not including non-carbon products (hydrogen, water).	
		The transformation processes and products are discussed in detail in the report, though this is not reproduced here.	
		The small quantum yield of acrolein loss indicates efficient deactivation processes occurring. This is thought to be due to collisional transfer of vibrational energy to oxygen.	
4.4.3	k° _p	Many pathways of decomposition are identified in the report and no single overall value of k ^e is defined.	
		It is of interest to consider the varying values of the first-order rate coefficient (J) presented in the report. J varies in accordance with solar zenith angle from $2.8E-06 \text{ s}^{-1}$ at 0° , $2.3E-06 \text{ s}^{-1}$ at 40° , to $0.08E-06 \text{ s}^{-1}$ at 86°	


Section A7.3.1(2) Annex Point IIIA VII.5		Phototransformation in air including identity of transformation products	
4.4.4	Kinetic order	First order	
4.4.5	$\mathbf{k_{p}^{c}}/\mathbf{k_{p}^{a}}$	See section 4.4.3	
4.4.6	Reaction quantum yield (ϕ^{c}_{E})	Quantum yields are reported for specific products. These results are presented in Table A7_3_1_3.	
		The perfect quantum yield would be 1. In this study, quantum yields are derived for loss of acrolein and also generation of products. The sum of the yields for products is more than the yield from loss of acrolein because they are smaller molecules resulting from fragmentation.	
		Quantum yields are shown in the study to be strongly affected by pressure, with much lower quantum yields at higher pressures. This indicates that reaction will be fastest at higher altitudes.	
4.4.7	k _{pE}	See section 4.4.3	
4.4.8	Half-life (t _{1/2E})	Half-life for direct photolysis under atmospheric conditions, is reported in this study as >5 days.	
		Note:	
		The authors point out in the concluding discussions that photodegradation by hydroxyl radicals will be a much more significant degradation process for acrolein than direct photolysis. A half-life for the hydroxyl radical process of 14.6 hours is reported.	
4.5	Transformation products results	See Table A7_3_1-3 for transformation products, abundance data and quantum yields.	
		5 APPLICANT'S SUMMARY AND CONCLUSION	
5.1	Materials and methods	Direct photolysis of acrolein was studied. The study used a highly purified sample of acrolein (99.9% pure), a wavelength 313 nm, in a synthetic atmosphere comprising ca. 20% O ₂ and 80% N ₂ .	
		The test system comprised a vacuum line connected to the reaction cell, with direct outflow to a Varian model 2700 gas chromatograph.	
		The vacuum line was comprised of five sections: storage, high vacuum/reference, measurement, calibration/mixture preparation, and distillation.	
		Light passed from a UV light source (high pressure mercury arc lamp), via shutter and monochromator, through a window into a reaction cell. The reaction cell was connected to the vacuum system and featured photomultiplier tube, sampling reservoir, gas piston and outlet to GC analysis. Detection/analysis is by a gas chromatograph equipped with flame ionisation detector and thermal conductivity detector.	
		It is reported that actinometer data indicate accuracy to within 10% and reproducibility better than \pm 5% for the acrolein experiment.	

Bal	ker	Pe	trol	lite

Section A7.3.1(2) Annex Point IIIA VII.5		Phototransformation in air including identity of transformation products		
5.2 Results and discussion		Eight transformation products were identified by GC-MS. The report clearly states the finding that the order of abundance of phototransformation products of acrolein are:		
		$\begin{array}{l} \text{CO} \; (\text{Carbon monoxide}) > \text{C}_2\text{H}_4 \; (\text{Ethylene}) > \text{HCHO} \; (\text{Formaldehyde}) \approx \\ \text{H}_2 \; (\text{Hydrogen}) > \text{HCOCHO} \; (\text{Glyoxal}) > \text{CO}_2 \; (\text{Carbon dioxide}) > \\ \text{CH}_3\text{OH} \; (\text{Methanol}) \approx \text{CH}_4 \; (\text{Methane}) \end{array}$		
		Trace amounts of acetaldehyde, acetylene and acetic acid were also detected.		
		Notes:		
		It is not made clear how 'abundance' has been calculated and this sequence does not correlate exactly with molar ratios/ number of molecules or the equivalent by weight or the quantum yields.		
		There is very extensive reporting in this source of transformation mechanisms occurring at 313 nm. Over 20 separate reaction mechanisms are defined. It is not necessary to reproduce these here.		
5.2.1	k° _p	Many pathways of decomposition are identified in the report and no single overall value of k ^c is defined.		
5.2.2	K _{pE}	See section 5.2.1		
5.2.3	φ ^c _E	Quantum yields are reported for specific products. These results are presented in Table A7_3_1_3.		
		Quantum yields are shown in the study to be strongly affected by pressure, with much lower quantum yields at higher pressures. This indicates that reaction will be fastest at higher altitudes.		
5.2.4	t _{1/2E}	Half-life for direct photolysis under atmospheric conditions, is reported in this study as >5 days.		
		Note:		
		The authors point out in the concluding discussions that photodegradation by hydroxyl radicals will be a much more significant degradation process for acrolein than direct photolysis. A half-life for the hydroxyl radical process of 14.6 hours is reported.		
5.3	Conclusion	The authors' conclusions with regard to half-life are accepted.		
5.3.1	Reliability	(2)		
ľ		Study conducted in accordance with generally accepted scientific principles, possibly with incomplete reporting or methodological deficiencies, which do not affect the quality of relevant results		
5.3.2	Deficiencies	Yes		
		Only one absorbing frequency was used in the test. OECD Monograph 61 recommends the use of two separate frequencies/wavelengths in separate tests to ensure the quantum yield is not frequency-dependent.		
		The report acknowledges this as a potential weakness but indicates that it is not improbable that the results will be independent of wavelength.		
		The high level of accuracy and reproducibility of the results means that the result is still reliable and useful in itself.		

Baker Petrolite

Section A7.3.1(2) Annex Point IIIA VII.5	Phototransformation in air including identity of transformation products		
	Evaluation by Competent Authorities		
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted		
	EVALUATION BY RAPPORTEUR MEMBER STATE		
Date	16/07/2007		
Materials and Methods	The Applicant's version is considered acceptable.		
Results and discussion	The Applicant's version is considered acceptable.		
Conclusion	The Applicant's version is considered acceptable.		
Reliability	3 See remarks section below		
Acceptability	The Applicant's version is considered acceptable.		
Remarks	The UK CA believes that the study and summary are acceptable as supporting evidence only as although the degradation products have been identified there is no quantification of them. Therefore the reliability factor has been reduced to 3. The study was not carried out to a specific guideline, but did follow an OECD Environmental Monograph 61 and is scientifically justified. The study is used as supporting evidence to Doc IIIA, A7.3.1 (1), with respect to the transformation products of acrolein during photolysis in air. The study summarised in Doc IIIA, A7.3.1 (1) states an acrolein half-life of 10.9 d, under experimental conditions. This study supports the transformation pathway only and therefore, for the environmental risk assessment, a full evaluation is not required.		
COMMENTS FROM (specify)			
Date	Give date of comments submitted		
Materials and Methods	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state		
Results and discussion	Discuss if deviating from view of rapporteur member state		
Conclusion	Discuss if deviating from view of rapporteur member state		
Reliability	Discuss if deviating from view of rapporteur member state		
Acceptability	Discuss if deviating from view of rapporteur member state		
Remarks			

Figure 1: UV absorption spectrum of acrolein

Criteria	Details			
Purity of atmosphere	Oxygen and nitrogen obtained from Linde (Union Carbide Corp.) at 99.99% and 99.998% purity respectively.			
Preparation of test chemicals	Acrolein purified by repeat distillation on the vacuum line and further purification by GC. Aliquots analysed by FID-GC (Porapak P/Q) showed no impurity detected. Minimum purity estimated 99.9%			
Test concentrations (mg a.s./m ³)	1.39% acrolein in synthetic air (% by volume or weight not stated)			
Temperature (°C)	Temperatures 22.3-25.8°C across 11 experimental runs			
Pressure (Pa)	For all experimental runs, acrolein was tested at a pressure of 0.355 Torr (ca. 50 Pa) acrolein in a synthetic air, comprising ca. 20% O_2 and 80% N_2			
	The main experiment (Run 7F) conducted at 25.607 Torr (3414 Pa).			
Preparation of a.s. test atmosphere	Atmosphere preparation not described in report.			
Controls	None.			
Actinometer	Two actinometers used, azomethane (CH ₃ CN=NCH ₃) and acetone (O ₂ -free). Products are N_2 and CO respectively.			
	Actinometer data are not presented in report. It is reported that the data indicate accuracy to within 10% and reproducibility better than \pm 5% for the acrolein experiment.			
Internal standard	Argon was used as internal standard, to establish normalised molar ratios of products.			
	Mole fraction Argon in run 7F: 1.3982E-03			

Table A7_3_1-1: Description of test atmosphere and controls

Criteria	Details			
Laboratory equipment	The internal optical path of the reaction cell was 155.8 cm with Suprasil windows fitted at the two ends. The windows were fitted so as to protrude inside the reaction cell, precluding any temperature disparity between the windows and the interior.			
Test apparatus	The test system comprised a vacuum line connected to the reaction cell, with direct outflow to a Varian model 2700 gas chromatograph.			
	The vacuum line was comprised of five sections: storage, high vacuum/reference, measurement, calibration/mixture preparation, distillation.			
	Light passed from a UV light source (see below), via shutter and monochromator, through a window into a reaction cell. The reaction cell was connected to the vacuum system and featured photomultiplier tube, sampling reservoir, gas piston and outlet to GC analysis.			
	The sample chamber was sealed from the reaction cell and its contents cryogenically fractionated and/or expanded into the gas piston, a spiral tube 118 cm long and 2.5 cm in diameter. Helium gas at greater than 1 atmosphere pressure was introduced and the sample is compressed into a 'plug' which enters the sample loop.			
	The sample loop was re-evacuated using Carle sampling valves, controlled by Hewlett Packard 3390A computer/recorder.			
	Detection/analysis was by gas chromatography equipped with flame ionisation detector and thermal conductivity detector. The carrier gas is Helium (99.99% pure). Column conditions are described in the report but it is not necessary to reproduce the details here.			
Properties of artificial light source:	High pressure mercury arc lamp (OSRAM HBO 500 W/2) enclosed in Oriel C-60-51 lamp housing with quartz collimating lens.			
	A narrow band interference filter (313 nm) enclosed in metal housing is introduced into the optical train to isolate initiating wavelength. Alternatively a Jarrell-Ash grating monochromator is inserted between the lamp housing and photolysis cell.			
	A spectrum of the mercury arc lamp taken using a Varian/Cary 219 grating spectrophotometer is presented in the report. This is not reproduced here.			

Table A7_3_1-2: Description of test system

CAS- Number	CAS and/or IUPAC Chemical Name(s)	Normalised mean molar ratio	Number of molecules from normalised mean molar ratio	Molar ratios normalised wrt. acrolein lost ¹	Molar ratios in terms of carbon atoms, normalised wrt. acrolein lost ¹	Quantum yields
630-08-0	Carbon Monoxide (CO)	1.630	8.936 E+18	0.857	0.857	0.0674
124-38-9	Carbon dioxide (CO ₂)	0.244	1.338 E+18	0.128	0.128	0.0101
74-85-1	Ethylene <i>or</i> Ethene (C ₂ H ₄)	1.260	6.908 E+18	0.663	1.326	0.0521
50-00-0	Formaldehyde or Methanal (HCHO)	0.3417	1.873 E+18	0.180	0.180	0.0141
7732-18-5	Water (HOH)	1.494	8.190 E+18	0.786	-	0.0618
67-56-1	Methanol (CH ₃ OH)	0.1011	5.543 E+17	0.053	0.053	0.00418
107-22-2	Glyoxal <i>or</i> 1,2- ethanedione (HCOCHO)	0.1357	7.439 E+17	0.071	0.143	0.00561
1333-74-0	Hydrogen (H ₂)	0.2156	1.182 E+18	0.113	-	0.00891
	Acrolein (loss)	1.901	1.042 E+19	1.000	3.000	0.0786
	Argon	1.0				

Note:

1 – Product molar ratios normalised with respect to Acrolein loss: figures calculated by reviewer. Normalised mean molar ratios, number of molecules and quantum yield figures copied directly from Gardner *et al.*, 1986.

	Fate and behaviour in air, further studies				
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only			
Other existing data []	Technically not feasible [] Scientifically unjustified [X]	x			
Limited exposure [X]	Other justification []				
Detailed justification:	Acrolein is a highly volatile active substance (VP = 31920 Pa at 25°C) and undergoes volatilisation readily in water (A7.2.1) and therefore would be released to air under general use conditions. However, the active substance is applied via a closed system from sealed containers. If there was any release to the environment it would be via the aqueous environment where the substance undergoes rapid degradation by physico-chemical processes including rapid volatilisation (A7.2.1) and photodegradation (A7.1.1.1.2) and microbial degradation in water (anaerobic and aerobic freshwater-sediment radio-labelled studies, A7.1.2.1.1 and A7.1.2.1.2) transforming the active substance to CO2. The application system and containers are neutralised by purging with nitrogen gas followed by flushing of the system with methanol before opening to prevent vapour release (A2.10.1.2 Confidential information). The use pattern would lead to negligible exposure to air, therefore it is considered that studies in addition to the estimation of photolysis rate in air and the identification of the degradation products (Section A7.3.1, Annex Point IIIA, VII.5), are not necessary.				
Undertaking of intended data submission []	Evaluation by Competent Authorities				
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted				
	EVALUATION BY RAPPORTEUR MEMBER STATE				
Date	19/05/2006				
	The Applicant's version is acceptable noting the following;				
Evaluation of applicant's	 X: The UKCA considers the justification to be acceptable due to limited exposure only. It is not considered to be scientifically unjustified. This issue is addressed in Doc IIC. 				
	only. It is not considered to be scientifically unjustified. This issue is addr				
justification	only. It is not considered to be scientifically unjustified. This issue is addr				
justification Conclusion	only. It is not considered to be scientifically unjustified. This issue is addr Doc IIC.				
justification Conclusion	only. It is not considered to be scientifically unjustified. This issue is addr Doc IIC.				
justification Conclusion Remarks	only. It is not considered to be scientifically unjustified. This issue is addr Doc IIC. Acceptable				
Evaluation of applicant's justification Conclusion Remarks Date Evaluation of applicant's justification	only. It is not considered to be scientifically unjustified. This issue is addr Doc IIC. Acceptable COMMENTS FROM OTHER MEMBER STATE (specify)				

Document IIIA

ACROLEIN

Section A7.3.2 Annex Point IIIA XII.3	Fate and behaviour in air, further studies
Remarks	