Regulation (EU) No 528/2012 concerning the making available on the market and use of biocidal products

PRODUCT ASSESSMENT REPORT OF A BIOCIDAL PRODUCT FAMILY FOR NATIONAL AUTHORISATION APPLICATIONS

(submitted by the evaluating Competent Authority)

BOCHEMIT FORTE PROFI family

Product type 8 (Wood preservatives)

Active substances:

Copper(II) carbonate-copper (II) hydroxide (1:1), Propiconazole, Tebuconazole

Case Number in R4BP: BC-MB003424-65

Evaluating Competent Authority: Czech Republic

Date: 08/06/2017

Table of Contents

1	Conclusi	on	5
2	Assessm	ent report	6
	2.1 Sur	nmary of the product assessment	6
	2.1.1	Administrative information	6
	2.1.2	Product family composition and formulation	7
	2.1.3	Hazard and precautionary statements	9
	2.1.4	Authorised uses	11
	2.1.5	General directions for use	12
	2.1.6	Other information	13
	2.1.7	Packaging of the biocidal product	13
	2.1.8	Documentation	14
	2.2 Ass	essment of the biocidal product family	15
	2.2.1	Intended uses as applied for by the applicant	15
	2.2.2	Physical, chemical and technical properties	15
	2.2.3	Physical hazards and respective characteristics	20
	2.2.4	Methods for detection and identification	21
	2.2.5	Efficacy against target organisms	22
	2.2.6	Risk assessment for human health	29
	2.2.7	Risk assessment for animal health	53
	2.2.8	Risk assessment for the environment	54
	2.2.9	Measures to protect man, animals and the environment	85
	2.2.10	Assessment of a combination of biocidal products	85
3	annexes		86
	3.1 List	of studies for the biocidal product family	86
	3.2 Out	tput tables from exposure assessment tools	90

3.3	New information on the active substance	
3.4	Residue behaviour	
3.5	Summaries of the efficacy studies (B.5.10.1-xx)	
3.6	Confidential annex I	
3.6.	.1 Product family composition and formulation	
	.2 Qualitative and quantitative information on the compo- cidal product family	
3.6.	.3 Information on the substance(s) of concern	
3.7	Other	

Document revision

Application type	refMS	Case number in the refMS	Decision date	Assessment carried out (i.e. first authorisation / amendment /renewal)	Section
NA-APP	CZ	BC-AN013595-40	9.6.2017	Initial assessment	
NA-AAT	CZ	BC-VS033128-14 BC-GE033269-49 BC-TV041053-19	14.7.2017	Change of expiry date from 9.6.2027 to 9.6.2022. Reason: Mistake correction.	2.1.1.2

1 CONCLUSION

The CZ CA proposes the authorisation of the Bochemit Forte Profi product family as a wood preservative (PT 8) for preventative treatment in Use classes 1, 2, 3 and 4a. The conditions of use and other details about the authorisation are specified in the Summary of the product assessment.

2 ASSESSMENT REPORT

2.1 Summary of the product assessment

2.1.1 Administrative information

2.1.1.1 Identifier of the product family

Identifier	Country
BOCHEMIT FORTE PROFI	Czech Republic
family	

2.1.1.2 Authorisation holder

Name and address of the	Name	Bochemie a.s.
authorisation holder	Address	Lidická 326, 735 81 Bohumín
		Czech Republic
Authorisation number	CZ-0003961-0000	
Date of the authorisation	09/06/2017	
Expiry date of the	09/06/2022	
authorisation		

2.1.1.3 Manufacturer of the products of the family

Name of manufacturer	Bochemie a.s.
Address of manufacturer	Lidická 326, 735 81 Bohumín
	Czech Republic
Location of manufacturing	Lidická 326, 735 81 Bohumín
sites	Czech Republic

2.1.1.4 Manufacturers of the active substances

Active substance	Copper(II)	Propiconazole	Tebuconazole
	carbonate-copper(II)		
	hydroxide (1:1)		
Name and address of active	Spiess-Urania	Lanxess	Lanxess
substance source	Chemicals GmbH	Deutschland GmbH	Deutschland GmbH
	Frankenstraβe 18b	Kennedyplatz 1	Kennedyplatz 1
	20097 Hamburg	50569 Köln	50569 Köln
	Germany	Germany	Germany
Name and address of	Spiess-Urania	Syngenta Crop	Bayer
manufacturing site	Chemicals GmbH	Protection AG	CropScience
	c/o AURUBIS AG	Schwarzwaldalle	Corp.
	Hovestrasse 50	215	P.O. box 4913
	20539 Hamburg	CH 4002 Basel	Hawthorn Road
	Germany	Switzerland	MO 64120-0013
			Kansas City
			United States

2.1.2 Product family composition and formulation

NB: The full composition of the product according to Annex III Title 1 is provided in the confidential annex.

Does the product have the same identity and composition as the product evaluated in connection with the approval for listing of the active substance(s) on the Union list of approved active substances under Regulation No. 528/2012?

Yes 🗌 No 🛛

	Main	constituents	
ISO name	Copper carbonate, basic	Propiconazole	Tebuconazole
IUPAC name	Copper(II) carbonate- copper(II) hydroxide (1:1)	1-[[2-(2,4- dichlorophenyl)-4- propyl-1,3-dioxolan-2- yl]methyl]-1H-1,2,4- triazole	(RS)-1-(4- chlorophenyl)-4,4- dimethyl-3-(1H-1,2,4- triazol-1-ylmethyl)- pentan-3-ol
EC number	235-113-6	262-104-4	403-640-2
CAS number	12069-69-1	60207-90-1	107534-96-3
Index number in Annex VI of CLP	n.a.	613-205-00-0	603-197-00-7
Minimum purity / content	957 g/kg	930 g/kg	950 g/kg
Structural formula			CI NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2.1.2.2 Candidates for substitution

Propiconazole and tebuconazole are suspected from having endocrine disrupting properties. The Assessment Report for propiconazole states the following (p. 21): "When Member States are authorizing products containing propiconazole the potential of propiconazole to cause endocrine disruption must be considered. This is because propiconazole may have the potential to cause endocrine disruption based on suspected properties for the azole group and that there is not sufficient data." An analogous statement is found in the AR of tebuconazole (p. 22).

However, since the scientific criteria for the determination of endocrine-disrupting properties referred to in Article 5 Paragraph 3 of BPR have not been adopted yet, no definitive conclusion regarding propiconazole and tebuconazole as candidates for substitution can currently be reached.

2.1.2.3 Qualitative and quantitative information on the composition of the biocidal product family

Bochemit Forte Profi product family comprises two products:

- Bochemit Forte Profi
- Bochemit Forte Profi brown

The composition of these products differs only in the presence of a dye compensated for by difference in water content. This difference in composition does not lead to any difference in classification, physico-chemical properties (except for colour), analytical methods, efficacy, risk to human health or risk to the environment.

Common name	IUPAC name	Function	CAS number	EC number	Content (%)
Basic copper carbonate	Copper(II) carbonate- copper(II) hydroxide (1:1)	Active substance	12069-69-1	235-113-6	20
Propicona- zole	1-[[2-(2,4- dichlorophenyl)- 4-propyl-1,3- dioxolan-2- yl]methyl]-1H- 1,2,4-triazole	Active substance	60207-90-1	262-104-4	0.3
Tebucona- zole	(RS)-1-(4- chlorophenyl)- 4,4-dimethyl-3- (1H-1,2,4-triazol- 1-ylmethyl)- pentan-3-ol	Active substance	107534-96-3	403-640-2	0.3
Monoetha- nolamine	2-aminoethanol	Non-active substance	141-43-5	205-483-3	35

2.1.2.4 Information on technical equivalence

The suppliers of the active substances are identical to the applicants in the active substance approval process under the Directive 98/8/EC. Therefore the CZ CA considers the active substances as technically equivalent to the active substances listed in Annex I to Dir. 98/8/EC.

2.1.2.5 Information on the substances of concern

Please see the confidential annex for further details.

2.1.2.6 Type of formulation

Water-based concentrate

2.1.3 Hazard and precautionary statements

Classification and labelling of the products of the family according to the Regulation (EC) 1272/2008

Classification				
Hazard categories and Acute Tox. 4 (H332)				
the corresponding	Skin Corr. 1B (H314)			
hazard statements	Eye Dam. 1 (H318)	r)		
	STOT SE 3 (H335)			
	Aquatic Chronic 1 (F	4410)		
		1410)		
Labelling				
Signal word	Danger			
Hazard pictograms		¥2		
Hazard statements	H332 Harmful if ir	haled.		
	H314 Causes seve	ere skin burns and eye damage.		
	H335 May cause r	espiratory irritation.		
	•	aquatic life with long lasting effects.		
Precautionary	P260	Do not breathe mist/vapours.		
statements	P273	Avoid release to the environment.		
	P280	Wear protective gloves/protective		
		clothing/eye protection/face protection.		
	P301+P330+P331	IF SWALLOWED: rinse mouth. Do NOT		
		induce vomiting.		
	P303+P361+P353	IF ON SKIN (or hair): Take off		
		immediately all contaminated clothing.		
		Rinse skin with water/shower.		
	P305+P351+P338	IF IN EYES: Rinse cautiously with water		
		for several minutes. Remove contact		
	lenses, if present and easy to do.			
		Continue rinsing.		
	P310	Immediately call a doctor.		
Additional labelling	g EUH208 Contains propiconazole. May produce an allergic			
requirements	reaction			

The recommended maximum number of P statements of six (CLP, Article 28) has been exceeded. However, all the P statements listed in the table are considered important by the CZ CA to be included in the label. The following precautionary statements triggered by the classification have been omitted from the label: P261, P264, P271, P304+P340, P312, P363, P321, P391, P403+P233, P405, P501.

The omitted P statements P264, P271, P304+P340, P363, P391, P403+P233, P405 and P501 are included in the instructions given in subsection 2.1.4. The statements P261, P312 and P321 are considered redundant or irrelevant.

Bochemit Forte Profi brown contains a dye, which itself is not classified, but similar reactive dyes may cause sensitization by inhalation (according to the information in the SDS of the dye). In accordance with the precautionary principle, the CZ CA proposes to include appropriate instructions (e.g. the statement P342+P311) on the product label of Bochemit Forte Profi brown.

The classification of the application solution (containing up to 4% of the concentrate) is the following: Skin Irrit. 2 (H315), Eye Irrit. 2 (H319), Aquatic Chronic 2 (H411). The corresponding P statements are the following: P264, P273, P280, P302+P352, P305+P351+P338, P321, P332+P313, P337+P313, P362+P364, P391 and P501. The relevant P statements are included in the instructions given in subsection 2.1.4.

Substance	Classification	Conc. in the product (%)	Toxicity estimate
	Acute Tox. 4 (H302)		LD_{50} 1350 mg/kg bw (oral)
Basic copper	Acute Tox. 4 (H332)	20	$LC_{50} > 1.03 \text{ mg/L air (inhal.)}$
carbonate	Aquatic Acute 1 (H400)	Cu: 11.5	-
	Aquatic Chronic 1 (H410)		NOEC 2.2 µg/L (Cu), M=10
	Acute Tox. 4 (H302)		LD ₅₀ 1500 mg/kg bw (oral)
Broniconazolo	Skin Sens. 1 (H317)	0.3	-
Propiconazole	Aquatic Acute 1 (H400)	0.5	ErC ₅₀ 0.058 mg/L, M=10
	Aquatic Chronic 1 (H410)		NOEC 0.016 mg/L, M=1
	H302 (Acute Tox. 4)		LD ₅₀ 1700 mg/kg _{bw} (oral)
Tebuconazole	H361d*** (Repr. 2)	0.3	-
Tebuconazoie	H400 (Aquatic Acute 1)	0.5	M=1
	H410 (Aquatic Chronic 1)		M=10
	Acute Tox. 4 (H302)		LD ₅₀ 1515 mg/kg bw (oral)
Monoetha-	Acute Tox. 4 (H312)		LD ₅₀ 2504 mg/kg bw (dermal)
	Acute Tox. 4 (H332)	35	$LC_{50} > 1.3 \text{ mg/L air (inhal.)}$
nolamine	Skin Corr. 1B (H314)		-
	STOT SE 3 (H335): C≥ 5%		-

Classification of the active substances and substances of concern

2.1.4 Authorised uses

2.1.4.1 Use # 1 - Preventive timber treatment

Use description

Product type	PT08 – Wood preservatives			
Where relevant, an exact	Preventive timber treatment			
description of the				
authorised use				
Target organism (including	Wood-rotting fungi, hyphae			
development stage)	Wood-boring beetles, larvae			
Field of use	Use class 1, 2, 3 and 4a (according to EN 335-1),			
	softwood			
Application method(s)	Pressure process / vacuum pressure treatment			
Application rate(s) and	Use class 1: 5.4 kg/m ³			
frequency	Use classes 2 and 3: 7.4 kg/m ³			
	Use class 4a: 14 kg/m ³			
	Applied once			
Category(ies) of users	Industrial			
Pack sizes and packaging	Please see the relevant section			
material				

Use specific instructions for use

See the general instructions for use

Use specific risk mitigation measures

See the general risk mitigation measures

Where specific to the use, the particulars of likely direct or indirect effects, first aid instructions and emergency measures to protect the environment

See the general first aid instructions and emergency measures to protect the environment

Where specific to the use, the instructions for safe disposal of the product and its packaging

See the general instructions for disposal

Where specific to the use, the conditions of storage and shelf-life of the product under normal conditions of storage

See the general conditions of storage

2.1.5 General directions for use

Instructions for use

The product is diluted before use; a 1% to 4% solution is prepared depending on the use class and properties of the timber.

Risk mitigation measures

Use appropriate PPE: protective gloves, protective clothing, eye protection and, when handling the undiluted product, a face shield.

Ensure sufficient ventilation of the workplace. Do not breathe aerosol.

Do not eat, drink or smoke when handling the preparation.

Wash hands thoroughly after handling.

Wash contaminated clothing before use.

The application shall be conducted within a contained area or on impermeable hard standing with building and that freshly treated timber shall be stored after treatment under shelter or on impermeable hard standing or both to prevent direct loss to soil, sewer or water, and any losses off the product shall be collected for reuse or disposal. Treated wood should not be used in places near or above water.

Do not use for wood in direct contact with food, feeding stuffs and drinking water.

Particulars of likely direct or indirect effects, first aid instructions and emergency measures to protect the environment

First aid measures:

<u>Inhalation</u>: If inhaled, remove person to fresh air and keep comfortable for breathing. *Bochemit Forte Profi brown:* If experiencing allergic respiratory symptoms, call a doctor. Skin contamination:

Undiluted product: Take off immediately all contaminated clothing. Rinse skin with water. In case of skin burns, seek medical attention.

Application solution: Wash skin with plenty of water.

<u>Eye contamination</u>: Rinse cautiously with water for several minutes, holding eyelids apart to ensure flushing of the entire surface. Remove contact lenses, if present and easy to do. Continue rinsing. Seek medical attention without delay (undiluted product) or if eye irritation persists (application solution).

<u>Ingestion</u>: Rinse mouth. Do NOT induce vomiting. Seek medical aid immediately and show the container label.

Emergency measures to protect the environment in case of an accident

Contain and collect spillage with a suitable absorbent and put into a labelled lockable container for disposal as hazardous waste. Wear appropriate personal protective equipment. Avoid an accidental discharge into sewers, surface water or soil. Soil contaminated by the undiluted product should be treated as hazardous waste.

In case of an accidental discharge of a large amount of the concentrated product to surface water, groundwater or sewer inform the appropriate authorities according to local regulations.

Instructions for safe disposal of the product and its packaging

The product, empty containers and used sorbents must be treated as hazardous waste.

The product and the application solution must not be released to the environment or to any kind of sewer.

Conditions of storage and shelf-life of the product under normal conditions of storage

Shelf-life: 2 years
Store in a well-ventilated place. Keep container tightly closed.
Store at temperature from -15 to +30 °C.
Protect against direct sunlight.
Keep away from food, beverages, drinking water and feed.
Prevent unauthorised access.
Provide means for cleaning of the area (absorbents) and water supply for first aid in case of skin/eye contamination.

2.1.6 Other information

Application codes

2.1.7 Packaging of the biocidal product

Type of packaging	Size/volume of the packaging	Material of the packaging	Type and material of closure(s)	Intended user (e.g. professional, non- professional)	Compatibility of the product with the proposed packaging materials (Yes/No)
IBC	1200 kg	HDPE	Central screw cap, venting with synterised PE tap	Industrial	Yes
IBC	600 kg	HDPE	Central screw cap, venting with synterised PE tap	Industrial	Yes
Drum	60 kg	HDPE	Cap K63 with outlet faucet	Industrial	Yes

2.1.8 Documentation

2.1.8.1 Data submitted in relation to product application

No new data on the active substances and substances of concern have been submitted. The studies on the product, submitted for the purpose of product authorisation, are listed in Annex 3.1.

2.1.8.2 Access to documentation

The applicant has submitted the following letters of access:

Spiess-Urania Chemicals GmbH grants the right to refer to the dossier pertaining to Basic Copper Carbonate which Spiess-Urania Chemicals GmbH submitted under Directive 98/8/EC, product type 08.

LANXESS Deutschland GmbH grants the right to refer to the dossier of Propiconazole submitted under Directive 98/8/EC.

LANXESS Deutschland GmbH grants the right to refer to the dossier of Tebuconazole submitted under Directive 98/8/EC.

EURO-Šarm spol. s r.o., Šenov, CZ, as the supplier of 2-aminoethanol used in Bochemit Forte Profi, grants the right to refer to the data contained in their Safety Data Sheet for Monoetanolamin 99% (product code 314014801000), issued on 30 April 2013.

2.2 Assessment of the biocidal product family

2.2.1 Intended uses as applied for by the applicant

Product type	PT08 – Wood preservatives
Where relevant, an exact	Preventive timber treatment
description of the authorised	
use	
Target organism (including	Wood-rotting fungi, hyphae
development stage)	Wood-boring beetles, larvae
Field of use	Use class 1, 2, 3 and 4a (according to EN 335-1),
	softwood
Application method(s)	Pressure process / vacuum pressure treatment
Application rate(s) and	Use class 1: 5.4 kg/m ³
frequency	Use classes 2 and 3: 7.4 kg/m ³
	Use class 4a: 14 kg/m ³
	Applied once
Category(ies) of users	Industrial
Pack sizes and packaging	1200 kg IBC (HDPE)
material	600 kg IBC (HDPE)
	60 kg drum (HDPE)

Table 1. Intended use # 1 – Preventive timber treatment

2.2.2 Physical, chemical and technical properties

Property	Guideline and Method	Results	Reference	
Physical state at 20 °C	-	Liquid	SDS	
and 101.3 kPa				
Colour at 20 °C and	-	Blue or brown (according to	SDS	
101.3 kPa		the colour modification of		
		the product)		
Odour at 20 °C and	-	Ammonia-like	SDS	
101.3 kPa				
Acidity / alkalinity	OECD 122	11.7 (undiluted product) at	Štreit and	
		19.8°C	Plodíková,	
		Alkalinity (as NaOH) 22.4 %	2013a	
		(w/w) at ca. 20°C		
Relative density / bulk	OECD 109;	1.240 at 20°C	Štreit and	
density	A.3 (Reg. EC		Plodíková,	
	440/2008)		2013b	

Property	Guideline and Method	Results	Reference
Storage stability test – accelerated storage	CIPAC MT 46.3	Pre-storage concentrations: Copper 11.2% Propiconazole 0.30% Tebuconazole 0.30%	Navrátilová, 2009
		Container: 1 L HDPE bottle	
		After 2 weeks at 54 °C Copper 10.7% Propiconazole 0.28% Tebuconazole 0.30% No change in appearance No reactivity towards container material	
		After 6 months at 40°C Copper 10.7% Propiconazole 0.27% Tebuconazole 0.28% No change in appearance No reactivity towards container material	
Storage stability test – long term storage at ambient temperature	Guidance on the storage stability by BPU (HSE) ¹ , p. 5	Pre-storage concentrations: Copper 11.2% Propiconazole 0.30% Tebuconazole 0.30% Container: 1 L HDPE bottle After 2 years at 20-25 °C Copper 11.1% Propiconazole 0.27%	Navrátilová, 2009
		Tebuconazole 0.29% No change in appearance No reactivity towards container material	

¹ Guidance on the storage stability. Data requirements for non-agricultural pesticide products. BPU (HSE), 2004.

Property	Guideline and Method	Results	Reference
Storage stability test – low temperature stability test for liquids	CIPAC MT 39.3	Pre-storage concentrations: Copper 11.2% Propiconazole 0.30% Tebuconazole 0.30%	Navrátilová, 2009
		Container: 1 L HDPE bottle	
		After 6 months at 1 °C Copper 11.3% Propiconazole 0.30% Tebuconazole 0.28% No change in appearance No reactivity towards container material	
		After 6 months at -18 °C Copper 11.3% Propiconazole 0.30% Tebuconazole 0.30% No change in appearance No reactivity towards container material	
Effects on content of the	-	Protected from light by the	-
active substance and		packaging. Should be	
technical characteristics		protected from direct	
of the biocidal product –		sunlight. None of the a.s. is	
light		subject to photolysis	
		according to the respective Assessment Reports.	
Effects on content of the	CIPAC MT	Stability at elevated and	Navrátilová,
active substance and	46.3	decreased temperatures	2009
technical characteristics	CIPAC MT	confirmed by the respective	
of the biocidal product –	39.3	storage stability test. Should	
temperature and		be stored at temperature	
humidity		from -15 °C to $+30$ °C.	
		Humidity does not affect the	
		properties of the product as	
		the product is water-based.	
Effects on content of the	-	No reactivity towards	Navrátilová,
active substance and		container material was	2009
technical characteristics		observed in the storage	
of the biocidal product –		stability studies.	
reactivity towards container material			
Wettability		Not applicable (the product	
wellability		is a liquid)	_

Reference

_

_

Property	Guideline and Method	Results
Suspensibility,	-	Not applicable (the product
spontaneity and		is a liquid solution)
dispersion stability		
Wet sieve analysis and	-	Not applicable (the product
dry sieve test		is a liquid solution)
Emulsifiability, re-	-	Not applicable (the product
emulsifiability and		is a liquid solution)
emulsion stability		
Disintegration time	-	Not applicable (the product
		is a liquid)
Particle size distribution,	-	Not applicable (the product
content of dust/fines,		is a liquid)
attuition fuisbility		

emulsion stability			
Disintegration time	-	Not applicable (the product is a liquid)	-
Particle size distribution, content of dust/fines, attrition, friability	-	Not applicable (the product is a liquid)	-
Persistent foaming	CIPAC MT 47 (deviation: thickness of the foam measured instead of volume)	Thickness of the foam: 24 mm (corresponds to foam volume of approximately 30 ml); constant for 12 minutes. The test performed only with the lowest concentration. The result is considered acceptable by the CZ CA. ²	Štreit and Plodíková, 2013c
Flowability / Pourability / Dustability	-	Not applicable (the product is a liquid solution)	-
Burning rate – smoke generators	-	Not applicable	-
Burning completeness – smoke generators	-	Not applicable	-
Composition of smoke – smoke generators	-	Not applicable	-
Spraying pattern – aerosols	-	Not applicable	-

² According to the BPR Guidance Vol. IA (p. 99), 'the level of foam generated under the conditions of CIPAC method 47.2 should not exceed 60 ml after 1 minute'. The measurement was performed in a 100ml calibration cylinder, the diameter of which is not specified in the study report. A typical diameter of a 100ml calibration cylinder is up to 4 cm. In a cylinder of 4 cm in diameter, foam thickness of 24 mm corresponds to foam volume of 30 ml.

Another requirement is that the test is performed at both the highest and lowest in use concentrations recommended for use (BPR Guidance Vol. IA, p. 99). The test was performed only at the lowest concentration. However, even if foam volume exceeded 60 ml at the highest application concentration, it should be taken into account that the long-term experience with the product has shown no risk resulting from foam formation during application via vacuum pressure treatment. Therefore no other study is required by the CZ CA.

Property	Guideline and Method	Results	Reference
Physical compatibility	-	Not applicable. Use with other products is not intended.	-
Chemical compatibility	-	Not applicable. Use with other products is not intended.	-
Degree of dissolution and dilution stability	_	Not applicable (the product is a liquid solution)	_
Surface tension		Not required. According to TNsG on Product Evaluation (p. 30), surface tension data are to be supplied in order to ensure that the product is classified correctly with regard to aspiration hazard. According to CLP (Annex I, 3.10.3.3), aspiration hazard has only to be considered in case of hydrocarbon content $\geq 10\%$. The product is used in a closed system. The long-term experience with the product has not shown any risk resulting from low/high surface tension.	
Viscosity		Not required. According to TNsG on Product Evaluation (p. 30), viscosity data are to be supplied in order to ensure that the product is classified correctly with regard to aspiration hazard. According to CLP (Annex I, 3.10.3.3), aspiration hazard has only to be considered in case of hydrocarbon content ≥10%. The product is used in a closed system. The long-term experience with the product has not shown any risk resulting from low viscosity.	

Conclusion on the physical, chemical and technical properties of the product

The applicant submitted all required data on the physical, chemical and technical properties of the product except for surface tension and viscosity. The data on surface tension and viscosity are not required by the CZ CA as no increased risk related to these properties has been identified during the long-term use of the product.

The storage stability study confirmed the product shelf-life of 2 years in HDPE packaging. The product is also temporarily stable at elevated and decreased temperatures.

2.2.3 Physical hazards and respective characteristics

Property	Guideline and Method	Results	Reference
Explosives	-	Not explosive.	-
		There are no chemical	
		groups associated with	
		explosive properties.	
Flammable gases	-	Not applicable	-
Flammable aerosols	-	Not applicable	-
Oxidising gases	-	Not applicable	-
Gases under pressure	-	Not applicable	-
Flammable liquids	-	Not flammable.	-
		None of the ingredients	
		classified as flammable.	
Flammable solids	-	Not applicable	-
Self-reactive substances	-	Not self-reactive.	-
and mixtures		There are no chemical	
		groups associated with self-	
		reactive properties.	
Pyrophoric liquids	-	Not pyrophoric.	-
		Not flammable. Experience	
		in manufacture and handling	
		shows no pyrophoric	
		properties.	
Pyrophoric solids	-	Not applicable	-
Self-heating substances	-	Not applicable (the product	-
and mixtures		is a liquid)	
Substances and mixtures	-	Not applicable (the product	-
which in contact with		is water-based)	
water emit flammable			
gases			
Oxidising liquids	-	Not oxidizing.	-
		None of the ingredients	
		classified as oxidizing.	
Oxidising solids	_	Not applicable	-
Organic peroxides	-	Not applicable	-

Property	Guideline and Method	Results	Reference
Corrosive to metals	-	None of the ingredients is	-
		classified as corrosive to	
		metals. In addition, the	
		long-term experience with	
		the product does not show	
		any problems related to	
		corrosion of metals.	
		Therefore no testing is	
		required by the CZ CA.	
Auto-ignition	-	Data not available.	-
temperatures of products		Not flammable. Experience	
(liquids and gases)		in manufacture and handling	
		shows no risk associated	
		with autoflammability.	
Relative self-ignition	-	Not applicable	-
temperature for solids			
Dust explosion hazard	-	Not applicable	_

Conclusion on the physical hazards and respective characteristics of the product No risk from physical hazards is anticipated under the normal conditions of use.

2.2.4 Methods for detection and identification

Formulation analysis

Copper content in the products is determined by complexometric titration with the volumetric solution of disodium EDTA, using murexide as an indicator. Propiconazole and tebuconazole are determined by a HPLC-UV method. Monoethanolamine is determined by titration with hydrochloric acid solution in a potentiometric titrator. The methods are described in detail in Hantlová, 2008a and 2008b.

The methods fulfil the criteria for recovery, repeatability, linearity, and specificity set in BPR Guidance Vol. IA (p. 106) and in CIPAC Guidelines on method validation³ (p. 4, 8) except for low recovery of monoethanolamine (95.5%; at least 98% required). The decreased monoethanolamine recovery is not regarded as significant by the CZ CA as monoethanolamine is not an active substance.

³ Guidelines on method validation to be performed in support of analytical methods for agrochemical formulations. CIPAC, 2003.

	Analytical methods for the analysis of the product							
Analyte (type of	Analyti- cal	Linearity	Specificity	Recovery rate (%)		SpecificityRecovery rateRepeata-(%)bility	-	Reference
analyte e.g. active substance)	method			Range	Mean			
Copper (active substance)	Comple- xometric titration	-	No interferants	99.1 – 99.5 (3 samples)	99.4	RSD 0.21% (10 deter- minations)	Hantlová, 2008a; Navrátilová, 2006a	
Propiconazo- le (active substance)	HPLC-UV	Based on 5 concentra- tions Range: 0.052 - 0.156 mg/ml $R^2 = 0.998$ (R = 0.999)	No interferants	98.3 – 102.9 (3 samples)	100.2	RSD 0.68% (5 deter- minations)	Hantlová, 2008a; Navrátilová, 2006b	
Tebuconazo- le (active substance)	HPLC-UV	Based on 5 concentra- tions Range: 0.052 - 0.155 mg/ml $R^2 = 0.998$ (R = 0.999)	No interferants	98.4 – 102.4 (3 samples)	100.1	RSD 0.28% (5 deter- minations)	Hantlová, 2008a; Navrátilová, 2006b	
Monoetha- nolamine (substance of concern)	Acid-base titration	-	No interferants	95.4 – 95.5 (3 samples)	95.5	RSD 0.19% (8 deter- minations)	Hantlová, 2008b; Navrátilová, 2006c	

Residue analysis

For the methods of active substance residue analysis please refer to the respective sections of the CARs.

Conclusion on the methods for detection and identification

The CZ CA considers the analytical methods submitted as sufficient for the purpose of product authorisation.

2.2.5 Efficacy against target organisms

2.2.5.1 Function and field of use

Bochemit Forte Profi is a wood preservative for preventive timber treatment for use classes 1, 2, 3 and 4a. The product is applied via vacuum pressure treatment.

2.2.5.2 Organisms to be controlled and products, organisms or objects to be protected

The target organisms are wood rotting fungi and wood boring beetles.

The object to be protected is timber intended for use in wooden elements indoors and outdoors.

2.2.5.3 Effects on target organisms, including unacceptable suffering

The product is lethal to larvae of wood boring beetles upon ingestion. In fungi, the product hinders spore germination and inhibits cell growth.

2.2.5.4 Mode of action, including time delay

Basic copper carbonate releases the Cu^{2+} ion. Upon contact with the fungicide, the spores passively take up copper II cations which hinder germination. In insects, copper II cations cause, amongst others, unspecific denaturation of proteins and enzymes.

The mode of action of propiconazole and tebuconazole consists in interfering with the biosynthesis of sterols, lipids essentials for structure and function of the cell membrane of fungi. The final result is inhibition of cell growth.

As the product is used for preventive action, the time delay is not critical.

Experime	Experimental data on the efficacy of the biocidal product against target organism(s)				
Field of use	Test organism(s)	Test method	Test system / concentrations applied / exposure time	Test results: effects	Reference
Use class 1	Hylotrupes bajulus	EN 47 + EN 73	Wood: <i>Pinus</i> <i>sylvestris</i> , sapwood Retentions: 4.49, 5.18, 5.60, 6.03, 7.17 kg/m ³	Toxic value: 5.4 kg/m ³	Fennert and Doblinski, 2007a
			Concentrations: 0.72, 0.79, 0.86, 0.90, 1.05% Exposure time: 12 weeks		

2.2.5.5 Efficacy data

Experimental data on the efficacy of the biocidal product against target organism(s)					
Field of use	Test organism(s)	Test method	Test system / concentrations applied / exposure time	Test results: effects	Reference
Use class 2 (and 4)	<i>Gloeophyllum trabeum, Coriolus versicolor</i>	EN 113 + EN 73	Wood (<i>G. trabeum</i>): <i>Pinus sylvestris</i> Wood (<i>C. versicolor</i>): <i>Fagus sylvatica</i> Retentions (<i>G.</i> <i>trabeum</i>): 4.80, 4.90, 5.48, 6.05, 7.26 kg/m ³	Toxic value (<i>G.</i> trabeum): <4.8 kg/m ³ Toxic value (<i>C.</i> versicolor): <4.9 kg/m ³	Fennert and Wessely, 2007a
			Concentrations (<i>G. trabeum</i>): 0.61, 0.65, 0.72, 0.79, 0.95%		
			Retentions (<i>C.</i> <i>versicolor</i>): 4.86, 5.39, 5.56, 5.99, 7.22 kg/m ³		
			Concentrations (<i>C. versicolor</i>): 0.73, 0.80, 0.81, 0.89, 1.07%		
			Exposure time: 16 weeks		
Use class 2	Coniophora puteana	EN 113 + EN 73	Wood: <i>Pinus sylvestris</i> Retentions: 7.24, 9.14, 12.13, 15.36, 20.57 kg/m ³ Concentrations: 0.95,	Toxic value: <7.2 kg/m ³	Fennert and Wessely, 2008
			1.20, 1.60, 2.00, 2.70%		
			Exposure time: 16 weeks		
Use class 2	Poria placenta	EN 113 + EN 73	Wood: <i>Pinus</i> <i>sylvestris</i> , sapwood Retentions: 5.2, 7.4, 8.9, 14.8, 20.3 kg/m ³	Toxic value: 7.4 kg/m ³	Součková, 2009
			Concentrations: 0.68, 0.95, 1.2, 2.0, 2.7% Exposure time: 16 weeks		

	ntal data on the	efficacy of	the biocidal product a		anism(s)
Field of use	Test organism(s)	Test method	Test system / concentrations applied / exposure time	Test results: effects	Reference
Use class 3 (and 4)	<i>Gloeophyllum trabeum, Coriolus versicolor</i>	EN 113 + EN 84	Wood (<i>G. trabeum</i>): <i>Pinus sylvestris</i> Wood (<i>C. versicolor</i>): <i>Fagus sylvatica</i> Retentions: (<i>G.</i> <i>trabeum</i>): 4.69, 4.92, 6.21, 6.72, 8.24 kg/m ³	Toxic value (<i>G.</i> trabeum): <4.7 kg/m ³ Toxic value (<i>C.</i> versicolor): <6.7 kg/m ³	Fennert and Wessely, 2007b
			Concentrations (<i>G. trabeum</i>): 0.61, 0.65, 0.81, 0.87, 1.09%		
			Retentions (<i>C.</i> <i>versicolor</i>): 6.66, 7.21, 8.43, 8.59, 9.51 kg/m ³		
			Concentrations (<i>C. versicolor</i>): 0.98, 1.07, 1.25, 1.30, 1.43%		
			Exposure time: 16 weeks		
Use class 3	Coniophora puteana, Poria placenta	EN 113 + EN 84	Wood: <i>Pinus sylvestris</i> Retentions (<i>C. puteana</i>): 4.74, 5.79, 7.89, 9.43, 12.57 kg/m ³ Concentrations (<i>C. puteana</i>): 0.61, 0.74,	Toxic value (<i>C. puteana</i>): <4.7 kg/m ³ Toxic value (<i>P. placenta</i>): 6.85 kg/m ³	Fennert and Wessely, 2010
			1.01, 1.21, 1.62% Retentions (<i>P. placenta</i>): 4.79, 5.70, 7.99, 9.42, 12.66 kg/m ³		
			Concentrations (<i>P. placenta</i>): 0.61, 0.74, 1.01, 1.21, 1.62%		
			Exposure time: 16 weeks		

Experime	Experimental data on the efficacy of the biocidal product against target organism(s)				
Field of use	Test organism(s)	Test method	Test system / concentrations applied / exposure time	Test results: effects	Reference
Use class 3	<i>Coniophora puteana, Gloeophyllum trabeum</i>	EN 113 + EN 84	Wood: <i>Pinus sylvestris</i> Retentions (<i>C. puteana</i>): 2.17, 4.66, 7.87, 11.38 kg/m ³ Retentions (<i>G. trabeum</i>): 2.20, 4.37, 7.72, 11.29 Concentrations (<i>C. puteana</i> and <i>G. trabeum</i>): 0.5, 1.0, 1.75, 2.5% Exposure time: 16 weeks	Toxic value (<i>C.puteana</i>): 3.4 kg/m ³ Toxic value (<i>G. trabeum</i>): 3.3 kg/m ³	Reinprecht , 2005
Use class 3	Hylotrupes bajulus	EN 47 + EN 84	Wood: <i>Pinus</i> <i>sylvestris</i> , sapwood Retentions: 4.69, 5.28, 6.01, 7.14, 7.82 kg/m ³ Concentrations: 0.72, 0.79, 0.90, 1.05, 1.15% Exposure time: 12 weeks	Toxic value: 6.6 kg/m ³	Fennert and Doblinski, 2007b
Use class 4	Soft rot micro- fungi	ENV 807	Retentions (Scots pine): 9.0, 11.2, 13.5, 16.7, 18.8 kg/m ³ Concentrations (Scots pine): 1.20, 1.50, 1.80, 2.20, 2.50% Retentions (beech): 15.3, 19.9, 25.3, 30.6, 35.3 kg/m ³ Concentrations (beech): 2.30, 3.00, 3.80, 4.60, 5.30% CC-reference Exposure time: 32 weeks	Toxic value (Scots pine): <37.9 kg/m ³ Toxic value (beech): <45.0 kg/m ³	Fennert and Wessely, 2007c

Experime	Experimental data on the efficacy of the biocidal product against target organism(s)				
Field of use	Test organism(s)	Test method	Test system / concentrations applied / exposure time	Test results: effects	Reference
Use class 4	Soft rot micro- fungi	EN 252	Wood: <i>Pinus</i> <i>sylvestris</i> , sapwood Retentions: 11.0, 13.2, 18.1, 23.0, 26.5 kg/m ³ CC-reference and CCA-reference Exposure time: 5 years	Toxic value (CC-reference): 11.7 kg/m ³ Toxic value (CCA- reference): 14.7 kg/m ³	Erdmann and Schumach er, 2014
Use class 4	Soft rot micro- fungi	EN 252	Wood: <i>Pinus</i> <i>sylvestris</i> , sapwood Retentions: 11.0, 13.0, 18.0, 23.1, 26.6 kg/m ³ Exposure time: 5 years	The test is ongoing as after 5 years no degradation has occurred in CCA reference stakes	Klamer and Venås, 2014

For Use class 4, the study according to ENV 807 yielded unreasonably high application rates. Therefore two field studies according to EN 252 were initiated in 2009, one of which (Klamer and Venås, 2014) is still ongoing. The results of a field study can be used as a substitute for the results of a study according to ENV 807 if it is confirmed that the wood rot was caused by soft rot and that the rotting of the control stakes cannot be ascribed to *Basidiomycetes* (EN 599-1, 6.4). In the study report of Erdmann and Schumacher (2014) it is stated: "brown rot and soft rot are the dominating forms of rot with white rot occurring as well but less frequently." The activity of soft rot on untreated stakes was confirmed by microscopy.

Regarding the study results of Erdmann and Schumacher (2014) the applicant submitted an expert opinion on efficacy evaluation for UC 4. According to this expert opinion (Ptáček, 2015), the minimum application rate for UC 4 ensuring the required efficacy is 14 kg/m³. The CZ CA accepted this conclusion.

Efficacy tests were mostly performed on softwood (Scots pine). It is known that wood preservatives may have lower efficacy against fungi when applied on hardwood compared to softwood. Therefore the application rates listed below apply only to softwood.

Conclusion on the efficacy of the product
The efficacy data submitted result in the following recommended application rates (in accordance with EN 599-1) for softwood:
Use class 1: 5.4 kg/m ³
Use class 2: 7.4 kg/m ³
Use class 3: 7.4 kg/m ³
Use class 4a: 14 kg/m ³

2.2.5.6 Occurrence of resistance and resistance management

According to the AR for basic copper carbonate, no development of resistance from the target fungi has been reported. There are strains of some species of wood destroying fungi that exhibit tolerance to copper. The growth of these strains is prevented by propiconazole and tebuconazole.

There is no evidence of insects being naturally tolerant or being able to develop resistance to copper at the level of copper used for biocidal purposes in wood preservation.

Development of resistance to triazole fungicides has been reported from agricultural, but not from biocidal use. It is recommended to pay attention to prevention of the evolution of tolerant fungal strains and report to Competent Authorities any new information on development of fungal resistance.

2.2.5.7 Known limitations

For resistance, see the previous subsection. No undesirable or unintended side effects have been reported.

2.2.5.8 Evaluation of the label claims

For use class 1, the following label claim is justified: "against wood boring beetles". For use classes 2, 3 and 4a, the following label claim is justified: "against wood rotting fungi and wood boring beetles".

The recommended minimum application rates apply only to softwood.

The respective minimum application rates are specified in subsection 2.2.5.5.

2.2.5.9 Relevant information if the product is intended to be authorised for use with other biocidal product(s)

The products of Bochemit Forte Profi product family are not intended for use with other biocidal products.

2.2.6 Risk assessment for human health

2.2.6.1 Assessment of effects on human health

Skin corrosion and irritation

Data waiving	
Information	Skin corrosion / irritation
requirement	
Justification	According to the BPR (Annex III), testing on the product does not need to be conducted if there are valid data available on each of the components in the mixture sufficient to allow classification of the mixture according to the rules laid down in Reg. (EU) 1272/2008, and synergistic effects between any of the components are not expected. As the classification of the ingredients is sufficient for derivation of product classification, no testing on the product on this endpoint is required.

Conclusion used i	Conclusion used in risk assessment – Skin corrosion and irritation		
Value/conclusion	Corrosive to skin		
Justification for	The product contains monoethanolamine (35% w/w), which is		
the	classified with Skin Corr. 1B. That results in the classification of the		
value/conclusion	product with Skin Corr. 1B.		
	The product further contains a substance which is a skin irritant,		
	but at a concentration insufficient to trigger the product		
	classification.		
Classification of	Skin Corr. 1B (H314)		
the product			
according to CLP			

Eye irritation

Data waiving	
Information	Eye irritation
requirement	
Justification	According to the BPR (Annex III), testing on the product does not need to be conducted if there are valid data available on each of the components in the mixture sufficient to allow classification of the mixture according to the rules laid down in Reg. (EU) 1272/2008, and synergistic effects between any of the components are not expected. As the classification of the ingredients is sufficient for derivation of product classification, no testing on the product on this endpoint is required.

Conclusion used i	Conclusion used in risk assessment – Eye irritation			
Value/conclusion	Causes serious eye damage			
Justification for	The product contains monoethanolamine (35% w/w), which is			
the	classified as Skin Corr. 1B. That results in the classification of the			
value/conclusion	product as Eye Dam. 1.			
	In addition, the product contains a substance classified as Eye Dam.			
	1 at a concentration that would trigger classification of the product			
	as Eye Irrit. 2. However, this substance is not considered a			
	substance of concern since due to the presence of			
	monoethanolamine it has no impact on product classification.			
Classification of	Eye Dam. 1 (H318)			
the product				
according to CLP				

Respiratory tract irritation

Data waiving	
Information	Respiratory tract irritation
requirement	
Justification	Testing on the product is not considered necessary if there are valid data available on each of the components in the mixture sufficient to allow classification of the mixture according to the rules laid down in Reg. (EU) 1272/2008, and synergistic effects between any of the components are not expected. As the classification of the ingredients is sufficient for derivation of product classification, no testing on the product on this endpoint is required.

Conclusion used i	Conclusion used in risk assessment – Respiratory tract irritation				
Justification for the conclusion	The product contains monoethanolamine, which is classified as a respiratory irritant with a specific concentration limit (SCL) of 5%. That results in the classification of the product for respiratory irritation.				
Classification of the product according to CLP	STOT SE 3 (H335)				

Skin sensitization

Data waiving	
Information	Skin sensitization
requirement	

Justification	According to the BPR (Annex III), testing on the product does not
	need to be conducted if there are valid data available on each of the
	components in the mixture sufficient to allow classification of the
	mixture according to the rules laid down in Reg. (EU) 1272/2008,
	and synergistic effects between any of the components are not expected.
	As the classification of the ingredients is sufficient for derivation of
	product classification and no synergistic effects are expected, no
	testing on the product on this endpoint is required.

Conclusion used in risk assessment – Skin sensitization	
Value/conclusion	May elicit an allergic reaction in already sensitized individuals upon
	dermal contact
Justification for	The product contains propiconazole, which is classified as Skin
the	Sens. 1 (H317). The concentration of propiconazole in the product
value/conclusion	(0.3%) is not sufficient for classification, but exceeds the trigger
	value for elicitation in already sensitized individuals.
Classification of	Not classified, but EUH208 (propiconazole) to be included on the
the product	product label.
according to CLP	

Respiratory sensitization

Data waiving	
Information	Respiratory sensitization
requirement	
Justification	According to the BPR (Annex III), testing on the product does not need to be conducted if there are valid data available on each of the components in the mixture sufficient to allow classification of the mixture according to the rules laid down in Reg. (EU) 1272/2008, and synergistic effects between any of the components are not expected. As the classification of the ingredients is sufficient for derivation of product classification and no synergistic effects are expected, no testing on the product on this endpoint is required.

Conclusion used in risk assessment – Respiratory sensitization	
Value/conclusion	Not classified
Justification for	None of the ingredients is classified for respiratory sensitization.
the	However, Bochemit Forte Profi brown contains a dye, which itself is
value/conclusion	not classified, but similar reactive dyes may cause sensitization by
	inhalation (according to the information in the SDS of the dye). In
	accordance with the precautionary principle, the CZ CA proposes to
	include appropriate instructions (e.g. the statement P342+P311) on
	the product label.

Classification of	Not classified
the product	
according to CLP	

Acute toxicity

Acute toxicity by oral route

Data waiving	
Information	Acute oral toxicity
requirement	
Justification	According to the BPR (Annex III), testing on the product does not need to be conducted if there are valid data available on each of the components in the mixture sufficient to allow classification of the mixture according to the rules laid down in Reg. (EU) 1272/2008, and synergistic effects between any of the components are not expected. As there are the respective data available on the individual components and no synergistic effects are expected, no testing on the product on this endpoint is required.

Conclusion used in risk assessment – Acute oral toxicity	
Value	ATE_{mix} (Acute toxicity estimate of the mixture) > 2000 mg/kg bw
Justification for	The product contains the following ingredients classified for acute
the selected value	oral toxicity (the ingredients below the generic cut-off values as
	listed in CLP, Annex I, Table 1.1, are not considered): basic copper
	carbonate (20%; LD_{50} = 1350 mg/kg bw) and monoethanolamine
	(35%; LD ₅₀ = 1515 mg/kg bw).
	The acute toxicity estimate of the mixture has been obtained by the
	calculation method according to Reg. (EU) 1272/2008 (Annex I,
	3.1.3.6.1).
Classification of	Not classified
the product	
according to CLP	

Acute toxicity by inhalation

Data waiving	
Information	Acute inhalation toxicity
requirement	

-	
Justification	According to the BPR (Annex III), testing on the product does not
	need to be conducted if there are valid data available on each of the
	components in the mixture sufficient to allow classification of the
	mixture according to the rules laid down in Reg. (EU) 1272/2008,
	and synergistic effects between any of the components are not expected.
	As there are the respective data available on the individual
	components and no synergistic effects are expected, no testing on
	the product on this endpoint is required.

Conclusion used i	Conclusion used in risk assessment – Acute inhalation toxicity	
Value	ATE _{mix} corresponding to Acute Toxicity category 4	
Justification for	Two components of the product are classified for acute inhalation	
the selected value	toxicity: basic copper carbonate (LC ₅₀ > 1.03 mg/L) and monoethanolamine (LC ₅₀ > 1.3 mg/L). These two compounds differ in their physical state in air (dust/mist vs. vapour), which means that the LC ₅₀ ranges defining acute toxicity categories (CLP, Annex I, Table 3.3.1) also differ. In addition, for neither of the substances a point LC ₅₀ value is available. Therefore it has been decided (in accordance with CLP guidance, June 2015, 3.1.6.3.2) that for classification purposes, both compounds will be regarded as dust/mist and will be assigned a point estimate corresponding to the respective acute toxicity category (i.e., 1.5 mg/L for category 4). The resulting point estimate for classification purposes (which should not be regarded as a real value) is 2.7 mg/L (dust/mist).	
Classification of	That results in the classification of the product as Acute Tox. 4. Acute Tox. 4 (H332)	
the product	Acute TOX. 4 (11332)	
according to CLP		

Acute toxicity by dermal route

Data waiving	
Information	Acute dermal toxicity
requirement	
Justification	According to the BPR (Annex III), testing on the product does not need to be conducted if there are valid data available on each of the components in the mixture sufficient to allow classification of the mixture according to the rules laid down in Reg. (EU) 1272/2008, and synergistic effects between any of the components are not expected. As there are the respective data available on the individual components and only one component is classified for acute dermal toxicity, no testing on the product on this endpoint is required.

Conclusion used in risk assessment – Acute dermal toxicity					
Value	ATE_{mix} (Acute toxicity estimate of the mixture) > 2000 mg/kg bw				
Justification for	The only ingredient classified for acute dermal toxicity is				
the selected value	monoethanolamine ($LD_{50} = 2504 \text{ mg/kg bw}$).				
	The acute toxicity estimate of the mixture has been obtained by the				
	calculation method according to Reg. (EU) 1272/2008 (Annex I,				
	3.1.3.6.1).				
Classification of	Not classified				
the product					
according to CLP					

Information on dermal absorption

Value(s) used in the risk assessment – Dermal absorption				
Substance	Copper	Propiconazole	Tebuconazole	
Value(s)	Concentrated product: 100% Diluted solutions: 5%	2%	75%	
Justification for the selected value(s)	The values have been taken from basic copper carbonate Assessment Report (p. 48).	The dermal absorption value of 2% (propiconazole AR, p. 13) was obtained from a study using a diluted water- based product containing 1% a.s. The concentration in the application solutions of Bochemit Forte Profi ranges from 0.03 to 0.012%. However, the dermal absorption values obtained for other concentrations (1% at 10% a.s., 2% at 0.1% a.s. – AR for PT9) indicate that dermal absorption of propiconazole does not increase significantly with decreasing concentration.	The Assessment Report gives the value of 3.3% for a water-based solution containing 0.64% a.s. Even though there is structural similarity between propiconazole and tebuconazole, there is not enough data available for tebuconazole to allow an analogous inference. Therefore, the default value of 75% given in the EFSA Guidance on Dermal Absorption has been used.	

Available toxicological data relating to substance(s) of concern or a mixture that a substance(s) of concern is a component of

Monoethanolamine

Monoethanolamine (ethanolamine, 2-aminoethanol) is classified (CLP, Annex VI) as Acute Tox. 4 (oral), Acute Tox. 4 (dermal), Acute Tox. 4 (inhalation), Skin Corr. 1B and STOT SE 3 (respiratory irritation).

The following information on monoethanolamine (MEA) is based on methanolamine SDS and on the respective SCOEL recommendation⁴.

MEA is a colourless liquid with an ammoniacal odour. It has a boiling point of 170°C and a vapour pressure of 50 Pa at 20°C. It has a vapour density of 2.1 times that of air. The odour threshold is 2-3 ppm (5-8 mg/m³).

The pH of 10% solution in water is 12.1. MEA is corrosive to skin, eyes, and to the respiratory tract and other mucous membranes.

MEA is absorbed through the skin, lungs and gastrointestinal tract. It is a normal constituent of the body and following chemical modifications can be incorporated into cellular membranes. It can be converted into amino acids or deaminated and used as an energy source.

The acute toxicity of ethanolamine is relatively low. Repeated oral administration to rats has indicated a NOAEL of 320 mg/kg/day. The target organs upon inhalation exposure (above 66 ppm) were the lung, liver, kidneys, spleen and testes. Rats exposed to 5 ppm MEA exhibited lethargy after 2-3 weeks exposure. Behavioural changes are therefore concluded to be the critical effect of MEA.

MEA has not been found to be mutagenic in bacteria and did not induce cell transformation. There is evidence for reproductive toxicity at exposure levels much higher than those inducing skin irritation and behavioural effects. MEA has not been tested for immunotoxicity in animals or for carcinogenicity.

Very little information is available on the effects of exposure to monoethanolamine vapour in humans.

The SCOEL used the behavioural LOAEL of 5 ppm (12.7 mg/m³) to derive a recommended 8-hour TWA (time-weighted average) of 1 ppm (2.5 mg/m³) and a 15-min STEL (short term exposure limit) of 3 ppm (7.6 mg/m³) for inhalation exposure. It is assumed that dermal absorption could contribute substantially to the total body burden.

Based on its harmonized classification, monoethanolamine belongs to the band B according to the BPR Guidance (Vol. IIIB, April 2015, p. 371-372). For this class of substances of concern, a qualitative exposure and risk assessment has to be performed in order to determine whether the P-statements normally associated with concerned H-statements are sufficient or whether other risk mitigation measures should be applied.

2.2.6.2 Exposure assessment

The main phases of the product life cycle during which exposure to humans or the environment can occur are:

- 1. manufacturing of the product
- 2. application
- 3. use of the treated wood

The manufacturing phase is already addressed through other pieces of legislation than BPR.⁵ Therefore, no risk assessment for the manufacturing phase is considered necessary

⁴ Recommendation from Scientific Expert Group on Occupational Exposure Limits for ethanolamine (SCOEL/SUM/24). 1996

⁵ See the document 'Exposure associated with manufacture', endorsed at the 22nd meeting of representatives of Member States Competent Authorities for the implementation of Directive 98/8/EC concerning the placing of biocidal products on the market (7-8 September 2006).

CZ CA

here. Furthermore the applicant stated that the product formulation takes place under conditions preventing significant exposure (i.e. automated, closed systems). The formulation of the product is supervised by inspection bodies ensuring that required safety measures are followed.

During the product application operator exposure occurs via dermal and inhalation routes. Oral exposure is not expected.

Secondary exposure may occur during mechanical processing of treated wood by sawing, drilling, sanding and similar operations. The highest risk is associated with sanding and the potential inhalation of dust. Sanding can be performed by professionals (chronic exposure) or non-professionals (acute exposure).

Infants may be exposed dermally and orally (mouthing) via residues in playground structures; no mouthing is anticipated in children, who are exposed only via the dermal route. In addition, infants may be exposed orally via mouthing of treated wooden chips.

If the treated timber is used indoors (e.g. indoor cladding), there may be a risk from inhalation exposure to volatile residues of the product. A first-tier assessment has been performed using the criteria given in HEEG Opinion 13.⁶ Based on these screening criteria, the risk from inhalation exposure to basic copper carbonate, propiconazole and tebuconazole can be excluded. The risk from inhalation exposure to monoethanolamine cannot be excluded and a further refinement is needed (see the respective scenario).

The risk from dermal exposure to the product contained in wooden components indoors is covered by the dermal exposure in the Sanding scenario.

The main routes of exposure are summarized in the following table.

⁶ Basic copper carbonate as an inorganic ionic substance is not volatile, vapour pressure is not applicable (see Assessment Report, p. 5).

Calculation for propiconazole: 0.328 × MW × VP / AEL_{long-term} = 0.328 × 342 × 5.6 $\cdot 10^{-5}$ / 0.04 = 0.16 \leq 1

Calculation for tebuconazole: 0.328 \times 308 \times 1.7 $\cdot 10^{-6}$ / 0.03 = 0.0057 \leq 1

Calculation for monoethanolamine: 0.410 \times MW \times VP / AEC $_{\rm long-term}$ = 0.410 \times 61 \times 50 / (2.5/3) = 1500 > 1

The factor of 3 was applied to the 8-hour TWA of 2.5 mg/m³ as the indoor exposure at home may last up to 24 hours a day. Such an adaptation is an oversimplification with regard to toxicokinetic principles, but it is considered acceptable for screening purposes.

Indentification of main paths of human exposure towards active substance(s) and substances of concern from its use in biocidal product

	Summary table: relevant paths of human exposure						
Exposure Primary (direct) exposure			sure	Secondary (indirect) exposure			
path	Industri- al use	Profe- ssional use	Non-pro- fessional use	Industri- al use	Profe- ssional use	General public	Via food
Inhalation	yes	no	no	no	yes	yes	no
Dermal	yes	no	no	no	yes	yes	no
Oral	no	no	no	no	no	yes	no

List of scenarios

	Summary table: scenarios				
Scenario number	Scenario	Description of scenario	Exposed group		
Primary ex	posure				
1	Vaccum pressure treatment	Product application by vacuum pressure treatment	Industrial		
Secondary	exposure				
2	Sanding (professional)	Sanding of the treated wood performed by a professional (dermal and inhalation exposure)	Professionals		
3	Sanding (non- professional)	Sanding of the treated wood performed by a non-professional (dermal and inhalation exposure)	Non- professionals		
4	Child on a playground structure	A child playing on an outdoor playground structure made of treated wood (dermal exposure)	General public		
5	Infant chewing an off-cut	An infant chewing a (treated) wood off-cut (oral exposure)	General public		
6	Volatilized residues indoors	Inhalation of volatilized residues from indoor (treated) wooden structures	General public		
7	Infant on a playground structure	An infant playing on an outdoor playground structure made of treated wood (dermal and oral exposure)	General public		

Industrial exposure

Scenario 1: Vacuum pressure treatment

Description of Scenario 1 – Vacuum pressure treatment

Task description: An operator uses a fork-lift truck to place the wood on the rails of the treatment cylinder. The wood is automatically transferred into the treatment vessel and the vacuum pressure process is performed. When the impregnation process is finished, the door of the cylinder is opened and the wood is transferred by the fork-lift truck to a

storage area where it is placed to dry. Dermal contamination may occur e.g. when handling restraining straps and treatment machinery, maintaining the door seals of treatment vessels or removing sawdust sludge. Other operations associated with vacuum pressure treatment (i.e., dilution of the concentrate, re-stacking of fallen wood, cleaning of the treatment cylinder) are discussed below the table. For these operations no exposure calculations are required. The appropriate model is TNsG Handling model 1 (Biocides Human Health Exposure Methodology, Oct 2015, p. 119), giving the following indicative values: Body (potential) 8570 mg/cycle Hands (inside gloves) 1080 mg/cycle Inhalation 1.9 mg/m³ 3 cycles per day and the cycle duration of 3 hours is assumed. Duration of inhalation exposure is 30 min per day. A 1% to 4% application solution of the wood preservative is used. The concentration of the active substances and of monoethanolamine in 4% application solution are as follows: Copper: 0.46% Propiconazole: 0.012% Tebuconazole: 0.012% Monoethanolamine: 1.4% The application solution is considered a skin and eye irritant. Therefore, in the industrial setting, the use of gloves and protective eyewear is compulsory, and a calculation for the situation without gloves (i.e., Tier 1) would not be meaningful. PPE required: gloves, protective eyewear, coated coverall (unless the worker is protected from the contact with the preservative e.g. in the closed cab of a fork-lift truck) The dermal absorption values: Copper: 5%

Propiconazole: 2% Tebuconazole: 75%

	Parameters	Value
Tier 2 (gloves, coated	Number of cycles per day ⁷	3
coverall)	Cycle duration ⁷	3 h
	Duration of inhalation	30 min
	exposure per day ⁷	
	Clothing penetration ⁸	10%
	Inhalation rate ⁹	1.25 m³/h

Other operations associated with vacuum pressure treatment are the following:

⁷ Biocides Human Health Exposure Methodology, October 2015, p. 119-120

⁸ HEEG Opinion 9, coated coverall

⁹ HEEG Opinion 17

Mixing/loading

In addition, according to TGD (part I, p. 55) for properly labelled corrosives it is not necessary to assess the risk from (systemic) dermal exposure as repeated daily dermal contact is avoided. In addition, the transfer usually takes place in a closed system. Therefore no quantitative risk assessment is required (cf. HEEG Opinion 18).

<u>Storage</u>

According to HEEG Op. 18, at some point in the drying cycle piles of wooden articles in the storage area could fall and the wooden articles will need to be manually re-stacked. It is assumed that in any day one batch of timber from the dipping process will need to be manually re-stacked. However, on any particular day these operations will normally be performed by a person other than the person who performs wood impregnation.

Exposure from occasional re-stacking of the wet or partially dry wood is considered to be equal to or lower than the exposure during the application phase. As the two tasks are not performed by the same person, exposure from storage can be regarded as covered by the exposure from application.

Cleaning of the treatment vessel

As to the cleaning of the treatment equipment, the situation is assumed to be similar to that of dipping tanks. According to HEEG Op. 18, dip tanks are cleaned infrequently, usually less often than once a year. There is not enough information to allow defining an exposure model for the cleaning of the dip tank.

As there is not enough information for exposure calculation and the task is performed infrequently, no quantitative risk assessment will be performed.

Calculations for Scenario 1 – Vacuum pressure treatment

See Annex 3.2.

Summary table: estimated exposure from industrial uses					
Exposure Tier/PPE Estimated uptake (mg/kg bw/d)					
scenario		Inhalation	Dermal	Oral	Total
Scenario 1:	Tier 2 (gloves,	Cu: 9.1·10 ⁻⁵	Cu: 0.022	-	Cu: 0.022
Vacuum pressure	coated coverall)	Prop.: 2.4·10 ⁻⁶	Prop.: 2.3·10 ⁻⁴		Prop.: 2.4·10 ⁻⁴
treatment		Teb.: 2.4·10 ⁻⁶	Teb.: 8.7·10 ⁻³		Teb.: 8.7·10 ⁻³

<u>Combined scenarios</u> Not relevant.

Professional exposure

Scenario 2: Sanding (professional)

Description of Scenario 2 – Sanding (professional)

Task description: A professional performs machine sanding of the treated wood.

For the estimation of inhalation exposure from sanding of the treated wood the TNsG model 'Inhalation of dust – machine sanding preserved wood – adult' has been chosen

(TNsG 2002, part 3, p. 37). Dermal exposure has been estimated using the TNsG model 'Adult (professional) sanding wooden posts' (TNsG 2002, User Guidance, p. 56).

The dermal absorption values:

Copper: 5% Propiconazole: 2% Tebuconazole: 75%

Tebuconazole: 75%			
	Parameters	Value	
Tier 1 (no PPE)	Duration ¹⁰	6 h	
	Product retention ¹¹	14 kg/m ³	
	Penetration depth ¹⁰	1 cm	
	Article volume ¹⁰	720 cm ³	
	Volume of outer 1 cm	568 cm ³	
	wood ¹⁰		
	Wood density ¹²	0.4 g/m ²	
	Inhalation rate ¹³	1.25 m³/h	
	Dust concentration in the	5 mg/m ³	
	air ¹⁰		
	Hand surface area	84 cm ²	
	contaminated ¹⁴		
	Transfer coefficient ¹⁵	2%	

Calculations for Scenario 2 – Sanding (professional)

See Annex 3.2.

Summary table: estimated exposure from professional uses					
Exposure Tier/PPE Estimated uptake (mg/kg bw/d)					
scenario		Inhalation	Dermal	Oral	Total
Scenario 2:	Tier 1 (no PPE)	Cu: 3.2·10 ⁻³	Cu: 2.3·10 ⁻³	-	Cu: 5.4·10 ⁻³
Sanding		Prop.: 8.3·10 ⁻⁵	Prop.: 2.4·10 ⁻⁵		Prop.: 1.1.10 ⁻⁴
(professional)		Teb.: 8.3·10 ⁻⁵	Teb.: 8.8·10 ⁻⁴		Teb.: 9.7·10 ⁻⁴

<u>Combined scenarios</u> Not relevant.

Non-professional exposure

Scenario 3: Sanding (non-professional)

¹⁰ TNsG 2002, part 3, p. 37

¹¹ Use class 4a

¹² Manual of Technical Agreements, version 6, p. 31

¹³ HEEG Opinion 17

¹⁴ TNsG 2002, User guidance, p. 56

¹⁵ Biocides Human Health Exposure Methodology (October 2015, p. 171), rough sawn wood

Description of Scenario 3 – Sanding (non-professional) Task description: A non-professional performs sanding of the treated wood.

Dermal exposure has been estimated using the TNsG model 'Adult (professional) sanding wooden posts' (TNsG 2002, User Guidance, p. 56), which was also used for professional sanding. For the estimation of inhalation exposure from sanding of the treated wood the TNsG model 'Adult sanding treated wood posts – inhalation route' (TNsG 2002, part 3, p. 50; also User guidance, p. 55) has been chosen.

The dermal absorption values: Copper: 5% Propiconazole: 2% Tebuconazole: 75%

	Parameters	Value
Tier 1 (no PPE)	Duration ¹⁶	1 h
	Product retention ¹⁷	14 kg/m ³
	Article volume ¹⁶	4000 cm ³
	Volume of outer 1 cm	3008 cm ³
	wood ¹⁶	
	Wood density ¹⁸	0.4 g/m ²
	Dust concentration in the air ¹⁶	5 mg/m ³
	Inhalation rate ¹⁹	1.25 m ³ /h
	Hand surface area	84 cm ²
	contaminated ²⁰	
	Transfer coefficient ²¹	2%

Calculations for Scenario 3 – Sanding (non-professional)

See Annex 3.2.

Summary table: estimated exposure from non-professional uses					
Exposure	kposure Tier/PPE Estimated uptake (mg/kg bw/d)				
scenario		Inhalation	Dermal	Oral	Total
Scenario 3:	Tier 1 (no PPE)	Cu: 5.6·10 ⁻⁴	Cu: 2.3·10 ⁻³	-	Cu: 2.8·10 ⁻³
Sanding (non-		Prop.: 1.5·10 ⁻⁵	Prop.: 2.4·10 ⁻⁵		Prop.: 3.8·10 ⁻⁵
professional)		Teb.: 1.5·10 ⁻⁵	Teb.: 8.8·10 ⁻⁴		Teb.: 9.0·10 ⁻⁴

<u>Combined scenarios</u> Not relevant.

¹⁶ TNsG 2002, part 3, p. 50

¹⁷ Use class 4a

¹⁸ Manual of Technical Agreements, version 6, p. 31

¹⁹ HEEG Opinion 17

²⁰ TNsG 2002, User guidance, p. 56

²¹ Biocides Human Health Exposure Methodology (October 2015, p. 171), rough sawn wood

Exposure of the general public

Scenario 4: Child on a playground structure

Description of Scenario 4 – Child on a playground structure

Scenario description: Dermal exposure of a child playing on an outdoor playground structure made of treated wood.

The exposure has been estimated using the model 'Child playing on playground structure outdoors – dermal route' (TNsG 2002, part 3, p. 50). The surface concentration has been taken from the 'sanding' scenario (14 mg/cm^2).

The dermal absorption values:

Copper: 5% Propiconazole: 2% Tebuconazole: 75%

	Parameters	Value
Tier 1	Surface concentration	14 mg/cm ²
	Hand surface area contaminated ²²	40 cm ²
	Transfer coefficient ²³	2%
	Body weight ²²	15 kg

Calculations for Scenario 4 – Child on a playground structure

See Annex 3.2.

Scenario 5: Infant chewing an off-cut

Description of Scenario 5 – Infant chewing an off-cut
Scenario description: An infant chewing a treated wood off-cut (oral exposure).
The exposure has been estimated using the model 'Infant acute chewing wood off-cut – ingestion route' (TNsG 2002, part 3, p. 50).

Absorption from the gastrointestinal tract: Copper²⁴: 36%

Propiconazole, Tebuconazole: 100%

	Parameters	Value
Tier 1	Product retention ²⁵	14 kg/m ³
	Off-cut volume ²⁶	16 cm ³
	Fraction extracted by	10%
	chewing ²⁶	
	Body weight ²⁶	10 kg

²² TNsG 2002, part 3, p. 50

²³ Biocides Human Health Exposure Methodology (October 2015, p. 171), rough sawn wood

²⁴ Assessment Report, p. 48

²⁵ Use class 4a

²⁶ TNsG 2002, part 3, p. 50

Calculations for Scenario 5 – Infant chewing an off-cut

See Annex 3.2.

Scenario 6: Volatilized residues indoors

Description of Scenario 6 – Volatilized residues indoors

Scenario description: Inhalation of volatilized residues from treated indoor wooden structures.

A first-tier assessment has been performed using the criteria given in HEEG Opinion 13. Based on these screening criteria, the risk from inhalation exposure to basic copper carbonate, propiconazole and tebuconazole can be excluded. However, the risk from inhalation exposure to monoethanolamine cannot be excluded and a further refinement is needed.

For the second-tier assessment, the ConsExpo 4.1 model 'Exposure to vapour: evaporation' has been chosen. Volatilization from a timber-cladded ceiling in an unspecified room has been chosen as the model situation as for this situation harmonized default values are available.

	Parameters	Value
Tier 2	Exposure frequency	1 per year ²⁷
	Timber surface area ²⁸	8 m ²
	Surrogate application rate ²⁹	74 g/m ²
	Room volume ²⁸	20 m ³
	Ventilation rate ²⁸	0.6 h ⁻¹
	Vapour pressure	50 Pa
	Molecular weight	61 g/mol
	Mass transfer rate	Langmuir's method
	approximation model ³⁰	
	Molecular weight of matrix ³¹	18 g/mol
	Body weight ³²	10 kg
	Inhalation rate ³²	8 m³/24 h

Calculations for Scenario 6 – Volatilized residues indoors

See Annex 3.2.

²⁷ It means once a year freshly treated cladding is installed in the room, which is a conservative assumption.

²⁸ Bremmer, H.J.; Prud'homme de Lodder, L.C.H.; van Engelen, J.G.M. *General fact sheet, limiting conditions and reliability, ventilation, room size, body surface area. Updated version for ConsExpo 4.* RIVM report 320104002/2006.

All values are for an ,unspecified room'.

²⁹ Assuming penetration depth 1 cm = thickness of the cladding, and product retention of 7.4 kg (m³ (less class 2))

^{7.4} kg/m³ (Use class 2)

³⁰ Langmuir's method is more conservative than the Thibodeaux's method.

³¹ The molecular weight of water

³² Toddler, long-term exposure (as the worst case for inhalation exposure)

Scenario 7: Infant on a playground structure

Description of Scenario 7	Description of Scenario 7 – Infant on a playground structure								
	Scenario description: Dermal and oral exposure of an infant playing on an outdoor playground structure made of treated wood.								
The exposure has been estimated using the model 'Infant playing on weathered structure and mouthing – dermal and ingestion (TNsG 2002, part 3, p. 51).									
The dermal absorption values Copper: 5% Propiconazole: 2% Tebuconazole: 75%	Propiconazole: 2%								
mg/cm ²). No harmonized va chewing, 10% is given in th route' (TNsG 2002, part 3, p	entration has been taken from alue is available for the portion of scenario 'Infant acute chewing of 50). 5% is considered as a si ase of vacuum pressure treatm	on extracted by licking. For ing wood off-cut – ingestion ufficiently conservative value							
noted that defaults in the re- so their reliability is rather li product residue on the surfa value of 14 mg/cm ² , i.e. by a The second-tier refinement leaching study (Klamer and day, corresponding to 2 mm Conservatively it will be assu	Tier 1 estimates indicate unacceptable risk (see section 2.2.6.3). However, it should be noted that defaults in the respective TNsG scenario are not based on measured values, so their reliability is rather limited. In addition, in this assessment the TNsG default for product residue on the surface of 0.01 mg/cm ² has been replaced by a product-specific value of 14 mg/cm ² , i.e. by a value 3 orders of magnitude higher. The second-tier refinement will be based on product-specific values derived from the leaching study (Klamer and Venås, 2013). The leaching rates based on a normalized day, corresponding to 2 mm of precipitation, are considered to cover licking by infants. Conservatively it will be assumed that the timber is freshly treated, not weathered; this corresponds to the initial period of leaching (the first 30 days). For example, the								
	Parameters	Value							
Tier 1	Surface concentration	14 mg/cm ²							
	Hand surface area contaminated ³³	40 cm ²							
	Dermal transfer coefficient ³⁴	2%							
	Surface mouthed ³³	50 cm ²							
	Fraction extracted by	5%							
	licking ³⁵								

Body weight³³10 kgTier 2Leaching rate - copper³⁶5.3 mg/m²/d

³³ TNsG 2002, part 3, p. 51

³⁴ Biocides Human Health Exposure Methodology (October 2015, p. 171), rough sawn wood

 $^{^{35}}$ No harmonized value available; 5% is based on 10% extraction effectiveness by chewing in the 'Infant chewing an off-cut' scenario.

 $^{^{36}}$ Klammer and Venås (2013): the leaching rate for copper (Time 1 = 30 d) is 158 mg/m²/d

Leaching rate – propiconazole ³⁷	0.061 mg/m ² /d
Leaching rate – tebuconazole ³⁸	0.099 mg/m²/d
Surface mouthed ³³	0.005 m ²

Calculations for Scenario 7 – Child on a playground structure

See Annex 3.2.

Combined scenarios

No combined exposure is foreseen.

	Summary table: estimated exposure of the general public							
Exposure	Tier/	Estimated uptake (mg/kg bw/d)						
scenario	PPE	Inhalation	Dermal	Oral	Total			
Scenario 4: Child on a playground structure	Tier 1	-	Cu: 4.3·10 ⁻³ Prop.: 4.5·10 ⁻⁵ Teb.: 1.7·10 ⁻³	-	Cu: 4.3·10 ⁻³ Prop.: 4.5·10 ⁻⁵ Teb.: 1.7·10 ⁻³			
Scenario 5: Infant chewing an off-cut	Tier 1	-	-	Cu: 0.093 Prop.: 6.7·10 ⁻³ Teb.: 6.7·10 ⁻³	Cu: 0.093 Prop.: 6.7·10 ⁻³ Teb.: 6.7·10 ⁻³			
Scenario 6: Volatilized residues indoors	Tier 2	MEA: 2.5·10 ⁻³ ; 3.1·10 ⁻³ mg/m ³	-	-	MEA: 2.5·10 ⁻³ ; 3.1·10 ⁻³ mg/m ³			
Scenario 7: Infant on a playground	Tier 1	-	Cu: 6.4·10 ⁻³ Prop.: 6.7·10 ⁻⁵ Teb.: 2.5·10 ⁻³	Cu: 0.15 Prop.: 0.011 Teb.: 0.011	Cu: 0.15 Prop.: 0.011 Teb.: 0.013			
structure	Tier 2	-	Cu: $6.4 \cdot 10^{-3}$ Prop.: $6.7 \cdot 10^{-5}$ Teb.: $2.5 \cdot 10^{-3}$	Cu: 1.1·10 ⁻⁴ Prop.: 9.2·10 ⁻⁸ Teb.: 1.5·10 ⁻⁷	Cu: $6.6 \cdot 10^{-3}$ Prop.: $6.7 \cdot 10^{-5}$ Teb.: $2.5 \cdot 10^{-3}$			

Dietary exposure

No food, drinking water or livestock exposure is foreseen as the treated wood should not be used for the manufacture of articles coming into contact with food, beverages, drinking water or feed.

Exposure associated with production, formulation and disposal of the biocidal product

The manufacturing phase is already addressed through other pieces of legislation than BPR.³⁹ Therefore, no risk assessment for the manufacturing phase is considered

 $^{^{37}}$ Klammer and Venås (2013): the leaching rate for propiconazole (Time 1 = 30 d) is 1.83 mg/m²/d

 $^{^{38}}$ Klammer and Venås (2013): the leaching rate for tebuconazole (Time 1 = 30 d) is 2.97 mg/m²/d

necessary. Furthermore the applicant stated that the product formulation takes place under conditions preventing significant exposure (i.e. automated, closed systems). The formulation of the product is supervised by inspection bodies ensuring that required safety measures are followed.

The workers of hazardous waste treatment facilities dealing with the unused biocidal product and with the contaminated packaging are also protected by other pieces of legislation than BPR.

The exposure from disassembling and disposal of the wooden articles at the end of their service life is covered by the dermal exposure for the scenario 'Sanding (professional)' (see above).

Scenarios	Scenarios and values to be used in risk assessment							
Scenario number	Scenario	Exposed group	Tier/PPE	Estimated total uptake (mg/kg bw/d)				
1	Vacuum pressure treatment	Industrial	Tier 2 (gloves, coated coverall)	Cu: 0.022 Prop.: 2.4·10 ⁻⁴ Teb.: 8.7·10 ⁻³				
2	Sanding (professional)	Professionals	Tier 1 (no PPE)	Cu: 5.4·10 ⁻³ Prop.: 1.1·10 ⁻⁴ Teb.: 9.7·10 ⁻⁴				
3	Sanding (non- professional)	Non-professionals	Tier 1 (no PPE)	Cu: 2.8·10 ⁻³ Prop.: 3.8·10 ⁻⁵ Teb.: 9.0·10 ⁻⁴				
4	Child on a playground structure	General public	Tier 1	Cu: 4.3·10 ⁻³ Prop.: 4.5·10 ⁻⁵ Teb.: 1.7·10 ⁻³				
5	Infant chewing an off-cut	General public	Tier 1	Cu: 0.093 Prop.: 6.7·10 ⁻³ Teb.: 6.7·10 ⁻³				
6	Volatilized residues indoors	General public	Tier 2	MEA: 2.5·10 ⁻³ ; 3.1·10 ⁻³ mg/m ³				
7	Infant on a playground structure	General public	Tier 2	Cu: 6.6·10 ⁻³ Prop.: 6.7·10 ⁻⁵ Teb.: 2.5·10 ⁻³				

Summary of exposure assessment

³⁹ See the document 'Exposure associated with manufacture', endorsed at the 22nd meeting of representatives of Member States Competent Authorities for the implementation of Directive 98/8/EC concerning the placing of biocidal products on the market (7-8 September 2006).

2.2.6.3 Risk characterisation for human health

Copper: Reference values to be used in risk characterisation

Reference	Study	NOAEL (LOAEL)	AF	Correction for oral absorption	Value
AELshort-term			50*	25%	0.082 mg/kg bw/d
AELmedium-term	90d in rat	NOAEL: 16.3 mg/kg bw/d	50*	25%	0.082 mg/kg bw/d
AELlong-term			100**	25%	0.041 mg/kg bw/d
ARfD	n.a.				
ADI	n.a.				

* Although the inter-species factor is usually set at 10, it was agreed (Assessment Report, p. 22) it could be reduced from 10 to 5 in the case of copper compounds. This factor is composed of an allometric scaling subfactor (which is 4 for rats) and a residual subfactor of 2.5 accounting for the other interspecies variability. Whereas the allometric scaling subfactor was kept unchanged, it was proposed to reduce the residual subfactor from 2.5 to 1.25 on the basis of the extensive toxicokinetic data set both in humans and animals (rats) which demonstrates similarities between the two species in absorption, distribution and excretion of copper compounds.

** Inter-species factor 5, intra-species factor 10, additional factor of 2 for extrapolation from subchronic to chronic exposure

Reference	Study	NOAEL (LOAEL)	AF	Correction for oral absorption	Value	
AELshort-term	Develop- mental in rat	NOAEL: 30 mg/kg bw/d	100	No	0.3 mg/kg bw/d	
AELmedium- term	2- generation in rat	NOAEL: 8 mg/kg bw/d	100	No	0.08 mg/kg bw/d	
AELlong-term ⁴⁰	2-year in rat	NOAEL: 3.6 mg/kg bw/d	100	No	0.04 mg/kg bw/d	
ARfD		n.a.				
ADI			n.:	a.		

Propiconazole:	Reference	values to	be used	in risk	characterisation
1 i opicoliazoici		raiaco co	be abea		characteribation

⁴⁰ From the Assessment Report for PT9. In the AR for PT8 no AELlong-term was derived.

Reference	Study	NOAEL (LOAEL)	AF	Correction for oral absorption	Value	
AELshort-term						
AELmedium-	1 year in	NOAEL: 3	100	Νο	0.03 mg/kg	
term	dog	mg/kg bw/d	100	INO	bw/d	
AELlong-term						
ARfD	n.a.					
ADI	n.a.					

Tebuconazole: Reference values to be used in risk characterisation

Risk for industrial users

Systemic effects

Task/ Scenario	Tier	Systemic NOAEL mg/kg bw/d	AEL mg/kg bw/d	Estimated uptake mg/kg bw/d	Estimated uptake/ AEL (%)	Acceptable (yes/no)
Vacuum	Tier 2	Cu: 16.3	Cu: 0.041	Cu: 0.022	Cu: 54	Yes
pressure		Prop.: 3.6	Prop.: 0.04	Prop.: 2.4·10 ⁻⁴	Prop.: 0.60	
treatment		Teb.: 3	Teb.: 0.03	Teb.: 8.7·10 ⁻³	Teb.: 29	

Combined scenarios

Not relevant.

Local effects

Scenario /Task	Effects in terms of classification	Hazard category	Task	Potential exposure route	Frequency and duration of potential exposure
Vacuum pressure treatment – dilution of the product	Skin Corr. 1B (H314) Eye Dam. 1 (H318) STOT SE 3 (H335)	High	Loading product from IBC into a treatment device, dilution with water	skin, eye, inhalation	<few minutes, <1/week</few
Vacuum pressure treatment – application	Skin Irrit. 2 (H315) Eye Irrit. 2 (H319)	Low	Handling treated wood, mainly using a fork-lift truck; restacking fallen wood	skin, eye	<1 h/day, daily

Scenario	Degree	RMMs	Necessary PPE	Conclusion on risk
/Task	of			
	potential			
	exposure			
Vacuum	n.r.	Labelling	Appropriate gloves,	Acceptable:
pressure		according to the	coated coverall,	+Trained workers
treatment –		respective	eye protection,	+Use of appropriate PPE
dilution of the		classification,	face shield	+Low task frequency and
product		transfer in closed		duration
		system, good		+Low likelihood of
		ventilation		exposure
Vacuum	Body	Transfer using a	Gloves, coverall,	Acceptable:
pressure	potential	fork-lift truck,	eye protection	+Reversible effects
treatment –	~ 25	good ventilation		+Trained workers
application	g/day,			+Use of appropriate PPE
	hands			
	inside			
	gloves ~			
	3 g/day			

Table continued

Conclusion

The risk for industrial users is acceptable provided that appropriate PPE is used, i.e.:

- For dilution of the concentrate: gloves, eye protection, face shield, coated coverall
- For application: gloves, coverall, eye protection (unless the operator is protected e.g. in the closed cab of a fork-lift truck)

Risk for professional users

Systemic effects

Task/ Scenario	Tier	Systemic NOAEL mg/kg bw/d	AEL mg/kg bw/d	Estimated uptake mg/kg bw/d	Estimated uptake/ AEL (%)	Acceptable (yes/no)
Sanding	Tier 1	Cu: 16.3	Cu: 0.041	Cu: 5.4·10 ⁻³ Prop.: 1.1·10 ⁻⁴	Cu: 13 Prop.: 0.28	Yes
		Prop.: 3.6 Teb.: 3	Prop.: 0.04 Teb.: 0.03	Teb.: $9.7 \cdot 10^{-4}$	Teb.: 3.2	

<u>Combined scenarios</u> Not relevant.

Local effects

There are no local effects anticipated from sanding and other processing of the treated wood.

Conclusion

The risk for professional users is acceptable.

Risk for non-professional users

Systemic effects

Tier	Systemic NOAEL mg/kg bw/d	AEL mg/kg bw/d	Estimated uptake mg/kg bw/d	Estimated uptake/ AEL (%)	Acceptable (yes/no)
Tier 1	Cu: 16.3 Prop.: 30	Cu: 0.082 Prop.: 0.3	Cu: $2.8 \cdot 10^{-3}$ Prop.: $3.8 \cdot 10^{-5}$	Cu: 3.4 Prop.: 0.013	Yes
		NOAEL mg/kg bw/d Tier 1 Cu: 16.3	NOAEL mg/kg bw/dmg/kg bw/dTier 1Cu: 16.3 Prop.: 30Cu: 0.082 Prop.: 0.3	NOAEL mg/kg bw/d mg/kg bw/d uptake mg/kg bw/d Tier 1 Cu: 16.3 Prop.: 30 Cu: 0.082 Prop.: 0.3 Cu: 2.8·10 ⁻³ Prop.: 3.8·10 ⁻⁵	NOAEL mg/kg bw/d mg/kg bw/d uptake mg/kg bw/d uptake/ AEL (%) Tier 1 Cu: 16.3 Prop.: 30 Cu: 0.082 Prop.: 0.3 Cu: 2.8·10 ⁻³ Prop.: 3.8·10 ⁻⁵ Cu: 3.4 Prop.: 0.013

Combined scenarios

Not relevant.

Local effects

There are no local effects anticipated from sanding and other processing of the treated wood.

Conclusion

The risk for non-professional users is acceptable.

Risk for the general public

Systemic effects

Task/ Scenario	Tier	Systemic NOAEL mg/kg bw/d	AEL mg/kg bw/d	Estimated uptake mg/kg bw/d	Estimated uptake/ AEL (%)	Acceptable (yes/no)
Child on a playground structure	Tier 1	Cu: 16.3 Prop.: 3.6 Teb.: 3	Cu: 0.041 Prop.: 0.04 Teb.: 0.03	Cu: 4.3·10 ⁻³ Prop.: 4.5·10 ⁻⁵ Teb.: 1.7·10 ⁻³	Cu: 10 Prop.: 0.11 Teb.: 5.7	Yes
Infant chewing an off-cut	Tier 1	Cu: 16.3 Prop.: 30 Teb.: 3	Cu: 0.082 Prop.: 0.3 Teb.: 0.03	Cu: 0.093 Prop.: 6.7·10 ⁻³ Teb.: 6.7·10 ⁻³	Cu: 113 Prop.: 2.2 Teb.: 22	Yes ⁴¹
Volatilized residues indoors ⁴²	Tier 2	MEA: 12.7 mg/m ³	MEA: AEL not defined; limit for workplace exposure: 2.5 mg/m ³	MEA: 2.5·10 ⁻³ ; 3.1·10 ⁻³ mg/m ³	-	Yes ⁴³

⁴¹ The extraction of 10% of wood preservative by chewing is considered to be an overestimation in the case of vacuum pressure treatment. In addition, this scenario is considered as an accidental, uncommon occurrence as parents usually do not allow children to chew preservative treated wood. ⁴² For monoethanolamine only qualitative risk assessment is required

⁴³ The estimated concentration is much lower than the limit for workplace exposure

Infant on a	Tier 1	Cu: 16.3	Cu: 0.041	Cu: 0.15	Cu: 370	No
playground		Prop.: 3.6	Prop.: 0.04	Prop.: 0.011	Prop.: 28	
structure		Teb.: 3	Teb.: 0.03	Teb.: 0.013	Teb.: 43	
	Tier 2	Cu: 16.3	Cu: 0.041	Cu: 6.6·10 ⁻³	Cu: 16	Yes
		Prop.: 3.6	Prop.: 0.04	Prop.: 6.7·10 ⁻⁵	Prop.: 0.17	
		Teb.: 3	Teb.: 0.03	Teb.: 2.5·10 ⁻³	Teb.: 8.3	

Combined scenarios

No combined exposure is foreseen.

Local effects

For the scenario 'Child on a playground structure' no local effects are anticipated.

In the case of an infant chewing an off-cut or licking a playground structure, light and transient irritation of oral mucosa is not excluded due to the content of monoethanolamine. However, this effect is of minor importance. In addition, these scenarios are considered uncommon occurrences as parents usually do not allow children to chew preservative treated wood or to lick larger areas on a daily basis.

The estimated indoor concentration of monoethanolamine due to volatilized residues (0.0031 mg/m^3) is much lower than the limit for workplace exposure (2.5 mg/m³). Therefore no respiratory irritation is expected.

Conclusion

The risk for the general public is acceptable.

Risk for consumers via residues in food

No residues in food are anticipated as the treated wood should not be used for the manufacture of articles coming into contact with food, beverages, drinking water or feed.

Risk characterisation from combined exposure to several active substances or substances of concern within a biocidal product

Tier 1⁴⁴

	Risk characterisation from combined exposure: Tier 1						
Scenario	Scenario	PPE	Estimat	ed uptake /	′ AEL (%)	Acceptable	
number			Copper	Propi-	Tebu-	(yes/no)	
				conazole	conazole		
1	Vacuum pressure	Gloves,	54	0.60	29	Yes	
	treatment	coverall, eye protection					
2	Sanding (professional)	No	13	0.28	3.2	Yes	
3	Sanding (non- professional)	No	3.4	0.013	3.0	Yes	

⁴⁴ Tier 1, 2 and 3 as defined in the Guidance on BPR Vol. IIIB, section 4.4.1

	Risk characterisation from combined exposure: Tier 1						
4	Child on a playground structure	Not relevant	10	0.11	5.7	Yes	
5	Infant chewing an off-cut	Not relevant	113	2.2	22	Yes ⁴¹	
7	Infant on a playground structure	Not relevant	16	0.17	8.3	Yes	

Conclusion on Tier 1

Risk assessment is acceptable for each substance individually in the product (with or without PPE as specified in the table).

Tier 2

No information on synergy of combinations of copper with azole fungicides has been found. In the lack of information, additivity of effects will be assumed.

	Risk chara	cterisation fro	om combined exp	osure: Tier 2	
Scenario number	Scenario	PPE	Estimated uptake / AEL	Hazard quotient	Acceptable (yes/no)
			Copper + Propiconazole + Tebuconazole	Copper + Propiconazole + Tebuconazole	
1	Vacuum pressure treatment	Gloves, coverall, eye protection	84	0.84	Yes
2	Sanding (professional)	No	16	0.16	Yes
3	Sanding (non- professional)	No	6.4	0.06	Yes
4	Child on a playground structure	n.r.	16	0.16	Yes
5	Infant chewing an off-cut	n.r.	137	1.37	No
7	Infant on a playground structure	n.r.	24	0.24	Yes

Conclusion on Tier 2

Risk assessment is not acceptable for the scenario 'Infant chewing an off-cut'. It has been noted that the extraction factor used in the respective scenario is likely to be an overestimation and that the scenario is considered as an accidental, uncommon occurrence. Nevertheless, a Tier 3 assessment will be performed. For the remaining scenarios the risk is acceptable.

Tier 3

In tier 3 primarily the copper and tebuconazole NOAELs have to be investigated as the contribution of propiconazole to Σ HI is insignificant.

The AELacute for copper was derived from a subchronic study and the AELacute for tebuconazole was derived from a chronic study. This indicates that the AELacute values for both compounds may an overestimation. In addition, for tebuconazole an allometric scaling factor of 4 was used, although for extrapolation from a dog study a factor of 1.4 would be more appropriate (BPR guidance, vol. IIIB, April 2015, p. 177).

	The NOAELs for individual organs						
Target organ /	NOAEL						
Mode of action	(AEL)						
	Copper (subchronic)	Tebuconazole (chronic)					
Liver	34 mg/kg bw/d	-					
	(0.68 mg/kg bw/d)						
Kidney	16.3 mg/kg bw/d	-					
	(0.082 mg/kg bw/d)						
Spleen	15.2-35.2 mg/kg bw/d	-					
	(0.076-0.176 mg/kg bw/d)						
Adrenals	-	3 mg/kg bw/d					
		(0.03 mg/kg bw/d)					
Overall AEL	0.082 mg/kg bw/d (kidney	0.03 mg/kg bw/d					
	effect)	(histopathological alterations in					
		the adrenal cortex)					

<u>Tier 3A</u>

As the target organs used for AEL derivation differ, the HQs do not have to be summed up. Therefore the risk is deemed acceptable.

2.2.7 Risk assessment for animal health

The treated wood is not intended for the manufacture of articles coming into contact with feed or drinking water.

2.2.8 Risk assessment for the environment

PNEC	Copper	Propiconazole	Tebuconazole
PNEC _{STP}	0.23 mg/l	1.0 mg/l	0.32 mg/l
PNEC _{surface water}	7.8 µg/l	1.6 µg/l	1.0 µg/l
PNEC _{sediment}	18.9 mg/kg wwt	0.054 mg/kg wwt	0.55 mg/kg wwt
PNEC _{soil} ⁴⁵	40.35 mg/kg wwt	0.1 mg/kg wwt	0.10 mg/kg wwt

2.2.8.1 Effects assessment on the environment

Bioaccumulation: Because of the homeostasis of metals, copper is not considered bioaccumulative.

The bioaccumulation potential of propiconazole and tebuconazole is low. Experimentally derived bioconcentration factors in fish are 180 and 78 with relatively short depuration half-lives of 0.48 d and 0.44 days, respectively.

Information relating to the ecotoxicity of the biocidal product necessary for product classification

There are valid data available on each of the components in the mixture and synergistic effects between any of the components are not expected. Therefore the classification of the mixture can be made according to the rules laid down in Reg. (EC) 1272/2008.

Active substance / Substance of concern	Classification	Toxicity estimate	Readily biode- gradable (yes/no)	M-factor	Concen- tration in the product
Basic copper carbonate	Aquatic Acute 1 (H400)	Not available	No	_	20% Cu: 11.5%
	Aquatic Chronic 1 (H410)	NOEC 2.2 µg/l (Cu)		M=10	
Propiconazole	Aquatic Acute 1 (H400)	ErC ₅₀ 0.058 mg/l	No	M=10	0.3%
	Aquatic Chronic 1 (H410)	NOEC 0.016 mg/l		M=1	
Tebuconazole	Aquatic Acute 1 (H400)	ErC ₅₀ 0.237 mg/l	No	M=1	0.3%
	Aquatic Chronic 1 (H410)	NOEC 0.01 mg/l		M=10	

The resulting environmental classification of the product: Aquatic Chronic 1 (H410)

Further toxicological studies

No data is available. The data on the active substances give sufficient information.

 $^{^{45}}$ For propiconazole the more recent PNEC_{soil} from AR PT 9 will be used.

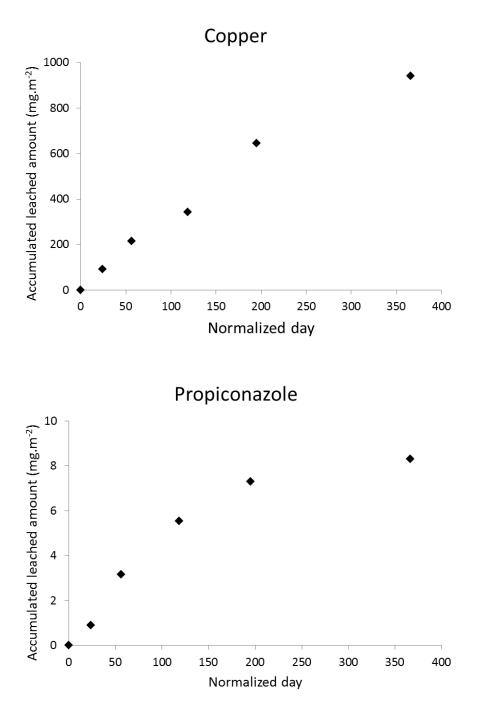
Foreseeable routes of entry into the environment on the basis of the use envisaged

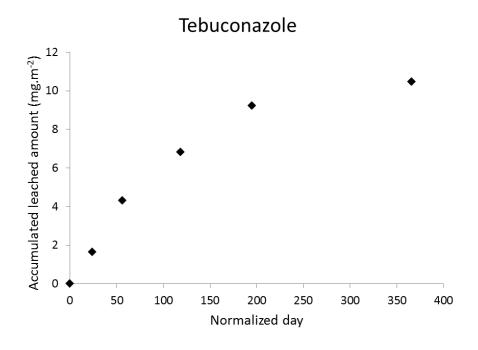
Please refer to the subsection *Fate and distribution in exposed environmental compartments* under 2.2.8.2.

Further studies on fate and behaviour in the environment

No data is available. The fate of the components in the product is covered by the data provided for the active substances.

Leaching behaviour


Two leaching studies have been submitted by the applicant: one for the part above ground and one for the part below ground. The latter study was submitted in 2017 to refine the exposure assessment for use class 4.


Leaching study for the part above ground

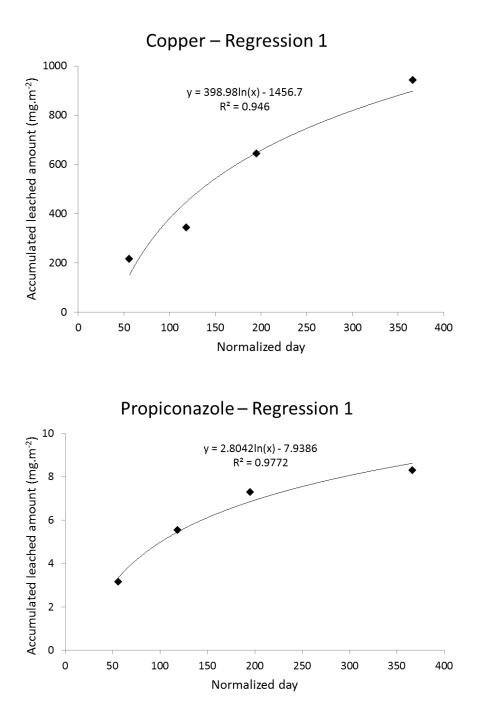
The leaching behaviour of the active substances from treated timber above ground was investigated in a semi-field leaching study (Klamer et Venås, 2013) carried out according to NT BUILD 509. The study was performed on vacuum pressure treated wood test specimens. The average product retention was 10.1 kg/m³.

The duration of the study was 554 days, during which 702.9 mm of rain accumulated. Concetrations of the active substances in the leachate solutions were determined after 46, 108, 227, 375, and 703 mm of rainfall. From a.s. concentrations and leachate volumes the leached amounts were calculated. A graphic representation of the data is shown below the table. 'Normalized days' are proportional to accumulated rainfall; the standard annual rainfall is 700 mm (TGD part II, p. 88).

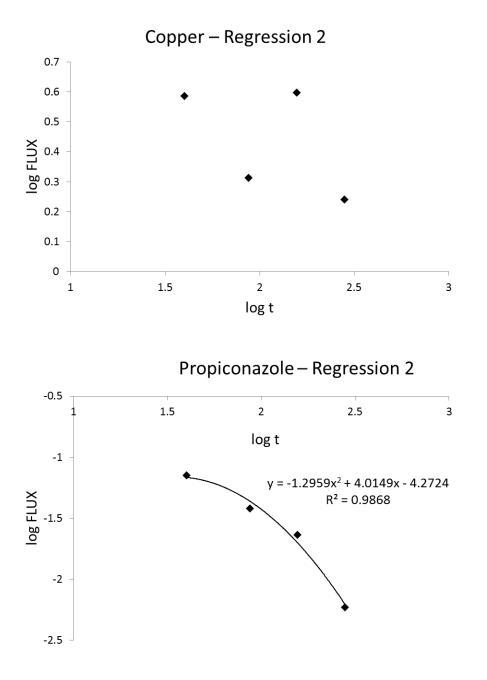
Results of the leaching study						
Days since	Accumulated	Normalized	Leached a	mount of active	substance	
start	rainfall	days	(mg.m ⁻²)			
	(mm)		Copper	Propiconazole	Tebuconazole	
48	46.0	24	91.1	0.893	1.64	
linear interpo	lation	30	114	1.32	2.14	
63	107.7	56.2	124	2.27	2.67	
153	227.3	118.5	128	2.37	2.51	
248	375.4	195	302	1.76	2.40	
554	702.9	366.2	297 1.0 1.24			
Total amount	leached (mg.m ⁻	2)	944	8.29	10.46	

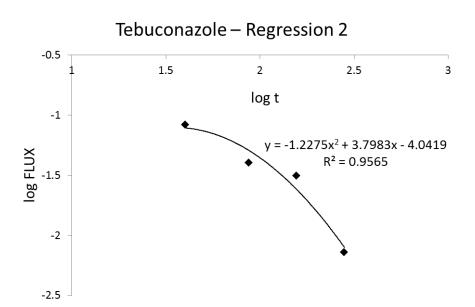
Leaching rates for Time 1 (the first 30 days) have been calculated using linear interpolation. An example calculation for copper is given below: $91.1 + (30-24)/(56.2-24) \times 124 = 114 \text{ mg.m}^{-2}$

51.1 + (50 2+)/(50.2 2+) × 12+ - 11+ mg.m


The simplest method of leaching rate calculation for Time 2 (20 years = 7300 days) is <u>linear extrapolation</u>. It is assumed that the flux during the last period of the study (normalized days 195 to 366) remains constant during the whole remaining period (days 367 to 7300). This assumption is conservative as the flux tends to decrease with time. Example calculations for copper:

Flux: $297/(366.2-195) = 1.73 \text{ mg.m}^{-2}.d^{-1}$ Amount leached: $944 + 1.73 \times (7300-366.2) = 12 939 \text{ mg.m}^{-2}$


A more refined approach, further referred to as <u>Regression 1</u>, was suggested by the applicant. The accumulated leached amount has been plotted versus normalised time and fitted with logarithmic regression in the following form:


$$y = a \cdot \ln t + b .$$

The first point (normalized day 24) has not been included. The amount leached during Time 2 has been calculated from the regression function. The graphs for copper and propiconazole are shown in Figure 2; the plot for tebuconazole is similar to that of propiconazole. The plot for copper indicates that for copper this model may lead to emission underestimation. On the other hand, for propiconazole and tebuconazole the regression curve fits the data satisfactorily. This conclusion could only be drawn from visual inspection as there are not enough data points for appropriate statistical procedures to be performed.

Yet another empirical model for extrapolation beyond the testing period, further referred to as <u>Regression 2</u>, is described in ESD (p. 149-154). The procedure consists of calculating the daily flux, plotting the flux vs. time on a logaritmic scale, and fitting the data with a second-order polynomial regression. The final estimate is obtained by numerical integration. The plots are shown below. The first point (normalized day 24) has not been included.

The flux values for copper are too scattered to allow fitting with a regression function. For propiconazole and tebuconazole the model is appropriate. According to ESD, the resultant function FLUX(t) does not yield reliable results when t approaches zero (the artefact of 'zero region'; see ESD, p. 153). Therefore, the total amount leached during the leaching study is used for days 1 to 366, and the flux values from the regression model for days 367 to 7 300 are added. The results are listed in the following table.

Leached amounts for Time 1 and 2: product retention 10.1 kg/m ³						
Time	Total a	Total amount leached (mg.m ⁻²)				
	Copper	Propiconazole	Tebuconazole			
Time 1	114	1.32	2.14			
Time 2 (linear	12,000	40.0	60.7			
extrapolation)	12 900	49.0	60.7			
Time 2 (Regression 1)	2 090	17.0	20.9			
Time 2 (Regression 2)	-	8.85	11.3			

Regression 1 gives approximately 3 times lower results for propiconazole and tebuconazole than linear extrapolation; in case of Regression 2 the decrease is 5-fold. The value for copper from Regression model 1 is not sufficiently reliable as it may lead to emission underestimation.

Conservatively, the linear extrapolation values will be used in the risk assessment. If the results lead to an unacceptable risk, use of values from Regression models 1 and 2 will be considered.

As a higher amount of the product was applied in the test (10.1 kg/m^3) than that recommended for Use class 3 (7.4 kg/m³), and lower than that recommended for Use class 4a (14 kg/m³), corrections have to be made for the respective application rates.

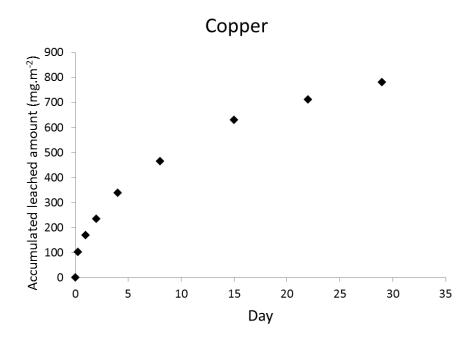
However, for Use class 4a the leaching rates are applicable only for the part above ground. For the part below ground no leaching study has been submitted and, as a result, only conservative Tier 1 emission calculations could be performed.

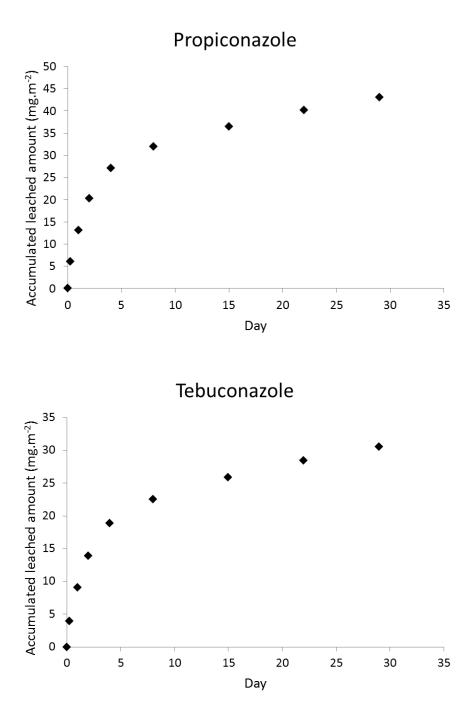
Leached amounts for Time 1 and 2: product retention 7.4 kg/m ³						
Time	Total a	Total amount leached (mg.m ⁻²)				
	Copper	Propiconazole	Tebuconazole			
Time 1	83.5	0.97	1.57			
Time 2 (linear	9 450	35.9	44.5			
extrapolation)	9 450	55.9	44.5			
Time 2 (Regression 1)	1 530	12.5	15.3			
Time 2 (Regression 2)	-	6.48	8.28			

The corrected values are given in the following tables.

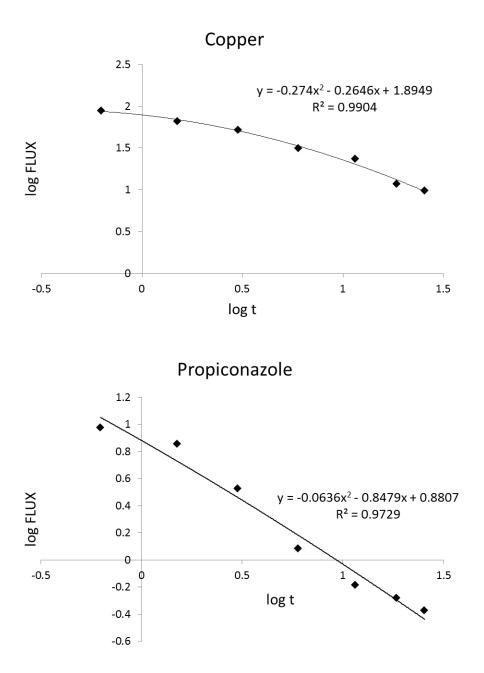
Leached amounts for Time 1 and 2: product retention 14 kg/m ³						
Time	Total amount leached (mg.m ⁻²)					
	Copper	Propiconazole	Tebuconazole			
Time 1	158.02	1.83	2.97			
Time 2 (linear	17 025 25	67.02	QA 1A			
extrapolation)	17 935.25 67.92 84.14					
Time 2 (Regression 1)	2 897.03	23.56	28.97			
Time 2 (Regression 2)	_	12.27	15.66			

Leaching study for the part below ground


Leaching behaviour of the active substances from treated wood below ground was investigated in a laboratory leaching study according to CEN/TS 15119-2 (Vaněk and Ptáček, 2016; Samsonek and Gerych, 2016). This study was commissioned by the applicant in order to refine the emission estimates for use class 4a.


Two sets of of treated specimens (5 pieces per set, exposed surface 200 cm² per set) had been treated by a vacuum pressure process. The retentions achieved (mean 14.6 kg/m³) were slightly higher than the recommended application rate for use class 4 of 14 kg/m³, but no correction for application rate is considered necessary as the difference is small and the correction would lead to a lower emission estimate.

Each set was immersed in 500 ml of distilled water. The water was replaced at the following time points: 6 hours, 1 day, 2 days, 4 days, 8 days, 15 days, 22 days and 29 days. The leachates were analysed for the content of the active substances. Calculation of leaching rates is given in Annex 3.2. Results are presented in the table below.


Results of the leaching study						
Time	Leached amount of the active substance(mg.m ⁻²)					
(day)	Copper	Propiconazole	Tebuconazole			
0.25	102.8	6.067	3.929			
1	66.5	7.075	5.138			
2	65.8	7.188	4.813			
4	104.3	6.738	4.963			
8	126.1	4.838	3.700			
15	164.3	4.550	3.338			
22	82.6	3.663	2.538			
29	68.3	2.975	2.163			
Total amount leached (mg.m ⁻²)	780.6	43.092	30.579			

Cumulative leached amounts are plotted in the following graphs.

Extrapolation to Time 1 (30 days) and Time 2 (20 years = 7300 days) has been performed according to the procedure described in the ESD (p. 149-154), referred to as Regression 2 in the previous leaching study. The plots are shown below. The first point (0.25 d) has not been included.

As the model does not give reliable results when time approaches zero, for days 1 to 29 the experimentally measured values have been used ('total amount leached'), and for days 30 to 7300 the extrapolated values from the regression model have been added. The results are listed in the following table.

Leached amounts for Time 1 and 2						
Time	Total amount leached (mg.m ⁻²)					
	Copper Propiconazole Tebuconazole					
Time 1	789	43.4	30.8			
Time 2	1330	79.7	54.3			

2.2.8.2 Exposure assessment

General information

Assessed PT	PT 8
	Scenario 1: House
Assessed scenarios	Scenario 2: Noise barrier
	Scenario 3: Transmission pole
ESD(s) used	Revised emission scenario document for wood
	preservatives, 2013
Approach	Scenarios 1, 2: Leaching rates
Арргоаст	Scenarios 3: Leaching rates, in tier 1 alsoapplied amount
Distribution in the	Calculated based on TGD 2003
environment	
Groundwater simulation	Scenario 1: FOCUS PEARL 4.4.4
	Scenarios 2, 3: not required

Confidential Annexes	No
	Scenarios 1, 2, 3:
	Production: No
Life cycle steps assessed	Formulation: No
	Use: No
	Service life: Yes
Remarks	-

Emissions during individual life cycle stages

Emissions to the environment can occur during the following product life-cycle stages:

- 1. application
- 2. storage
- 3. mechanical processing of treated wood
- 4. service life of the treated wood
- 5. disposal of the treated wood

Application

The product is intended exclusively for industrial application via vacuum pressure treatment. The Annex I inclusion directives for all the active substances state that any losses from the application of the product must be collected for reuse or disposal. According to the EU waste legislation, the application solutions as well as the product are considered hazardous waste and they must not be released to soil, surface water or any kind of sewer. These obligations shall be indicated on the product label and in safety data sheets. The prohibition of release of the collected waste water to a sewage treatment plant in the EU is also reflected in the ESD (p. 38, 46, 52). Emissions via volatilization can be regarded as negligible as vapour pressure of all the active substances is below 0.005 Pa (see ESD, p. 43). Consequently, the application phase is not considered as relevant for the environmental exposure assessment.

Storage

The Annex I inclusion directives for all the active substances state that freshly treated timber must be stored after treatment under shelter or on impermeable hard standing to prevent direct losses to soil or water. This obligation must be indicated on the product label and in safety data sheets. Therefore no exposure calculations are required for the storage phase.

Mechanical processing of treated wood

During mechanical processing of the treated wood all the remains should be collected and disposed of as waste. Thus no significant emissions are expected at this stage.

Service life

PECs related to the service life of the treated wood are to be calculated. Only PEC values for Use classes 3 and 4 have to be estimated as the potential emissions to the outer environment from treated wood in Use classes 1 and 2 are considered negligible (ESD, p. 66).

Disposal of the treated wood

Wood waste at the end of its life cycle is burned or stored in landfills. Its direct discarding into the environment is prohibited. Thus waste is not a significant source of the active ingredients of the active substances to the environment.

Emission scenarios

For Use class 1 and 2 the potential emissions from treated wood to the outer environment are considered negligible (ESD, p. 66).

For Use class 3 four basic emission scenarios are described in the ESD: House, Fence, Bridge over pond, and Noise barrier (ESD, p. 22). The Fence scenario for Use class 3 is covered by the House scenario (ESD, p. 69). The Bridge over pond scenario will not be included in the assessment as basic copper carbonate use in outdoor constructions near or above water is prohibited by the respective Annex I inclusion directive. This restriction must be indicated on the product label.

For Use class 4a (wood in contact with ground) there are two scenarios in ESD: Transmission pole and Fence post. The Fence post scenario is covered by the Transmission pole scenario (i.e. the Fence post scenario always yields lower emission estimates than the Transmission pole scenario; ESD, p. 77). Therefore the Fence post scenario has not been included in the present assessment.

Emission estimation according to the Transmission pole scenario was performed in two tiers. In the first tier, due to an initial absence of a leaching study for the part below ground default assumptions for leached amount had to be employed, i.e. 50% of the applied amount from the part below ground during Time 1 and 100% during Time 2. As the resulting PEC/PNEC in soil was above 1 for propiconazole and tebuconazole at Time 1 and for mixture toxicity at Time 2, the applicant commissioned a leaching study for the part below ground according to an appropriate method. The leaching rates from this study (Vaněk and Ptáček, 2016) were used to obtain a refined (tier 2) emission estimate. The treated wood is not intended to be used in Use classes 4b and 5.

An overview of the emission scenarios used and of the corresponding environmental compartments is given in the table below. PECs only have to be calculated for the compartments written in bold as they are considered the worst-case scenarios for the respective compartments. According to ESD, groundwater assessment is only necessary for the house scenario, which can be regarded as the worst-case for soil exposure (ESD, p. 176).

Use class	Emission scenario	Compartments affected
	House	Soil
	nouse	Groundwater (leaching from soil)
	JC 3 Noise barrier	Soil (direct)
		Soil (via STP sludge)
UC 3		Groundwater (leaching from soil)
	Noise Darrier	STP
		Surface water (via STP effluent)
		Sediment (via STP effluent)
		Soil
UC 4a	Transmission pole	Groundwater (leaching from soil)

Emission estimation

Scenario 1a: House (for calculation of PECsoil)

Input parameters for calculating the local emission						
Input	Symbol	Value	Unit	Remarks		
Scenario: House						
Leachable wood area	AREA _{house}	125	m ²	ESD, Table 4.15		
Duration of the initial assessment period	TIME1	30	d	ESD, Table 4.15		
Duration of the long-term assessment period	TIME2	7300	d	ESD, p. 68		
Cumulative quantity of substance leached out of 1 m ² of treated wood over the initial assessment period	$Q^*_{leach,time1}$	Cu: 83.5 Prop.: 0.97 Teb.: 1.57	mg.m ⁻²	See `Leaching behaviour'		
Cumulative quantity of substance leached out of 1 m ² of treated wood over the longer assessment period	Q^* leach,time2	Cu: 9 450 Prop.: 35.9 Teb.: 44.5	mg.m ⁻²	See `Leaching behaviour'		
Soil volume (wet)	V _{soil}	13	m ³	ESD, Table 4.15		
Bulk density of wet soil	RHO _{soil}	1700	kg _{wwt} .m ⁻³	ESD, Table 4.15		

Calculations for Scenario 1a - House

Output	Symbol	Value	Unit	Equation No.
Cumulative quantity of substance, leached over the initial assessment period	$Q_{\text{leach},\text{time1}}$	Cu: 10 438 Prop.: 121.3 Teb.: 196.3	mg	ESD, (4.43)
Cumulative quantity of substance, leached over the longer assessment period	$Q_{\text{leach},\text{time2}}$	Cu: 1 181 250 Prop.: 4 488 Teb.: 5 563	mg	ESD, (4.44)
Concentration in local soil at the end of the initial assessment period	Clocal _{soil,leach,time1}	Cu: 0.472 Prop.: 5.49·10 ⁻³ Teb.: 8.88·10 ⁻³	mg.kg _{wwt} ⁻¹	ESD, (4.45)
Concentration in local soil at the end of the longer assessment period	Clocal _{soil,leach,time2}	Cu: 53.5 Prop.: 0.203 Teb.: 0.252	mg.kg _{wwt} ⁻¹	ESD, (4.46)

Output	Symbol	Value	Unit	Equation No.
Average daily emission of substance due to leaching over the initial assessment period	E _{soil,leach,time1}	Cu: 347.9 Prop.: 4.042 Teb.: 6.542	mg.d ⁻¹	ESD, (3.5)
Average daily emission of substance due to leaching over the longer assessment period	E _{soil,leach,time1}	Cu: 161.8 Prop.: 0.615 Teb.: 0.762	mg.d ⁻¹	ESD, (3.6)

Scenario 1b: House (for calculation of PECgroundwater using FOCUS PEARL)

Input parameters for calculating the local emission					
Input	Symbol	Value	Unit	Remarks	
Scenario: House (groundwater)					
Leachable wood area per hectare	AREA _{total}	2000	m ² .ha ⁻¹	ESD, p. 176	
Duration of the longer assessment period	TIME2	20	у	ESD, p. 177	
Cumulative quantity of substance leached out of 1 m ² of treated wood over the longer assessment period	Q* _{leach,time2}	Prop.: 0.0359 Teb.: 0.0445	g.m ⁻²	See `Leaching behaviour'	
Fraction of house surface exposed to weather	$F_{weatherside}$	0.5	-	ESD, p. 177	

Calculations for Scenario 1b – House (groundwater)

Output	Symbol	Value	Unit	Equation
Annual application rate per hectar	_	Prop.: 1.80 Teb.: 2.23	g.ha ⁻¹ .y ⁻¹	$\begin{array}{l} (AREA_{total} \times Q*_{leach,time2} / TIME2) \\ \times F_{weatherside} \end{array}$

Scenario 2: Noise barrier

Input parameters for calculating the local emission					
Input	Symbol	Value	Unit	Remarks	
Scenario: Noise barrier					
Leachable wood area	AREA _{noise-barrier}	3000	m ²	ESD, Table 4.17	
Duration of the initial assessment period	TIME1	30	d	ESD, Table 4.17	

Input parameters for calculating the local emission				
Input	Symbol	Value	Unit	Remarks
Duration of the long-term assessment period	TIME2	7300	d	ESD, p. 68
Cumulative quantity of substance leached out of 1 m ² of treated wood over the initial assessment period	Q^* leach,time1	Cu: 83.5 Prop.: 0.97 Teb.: 1.57	mg.m ⁻²	See `Leaching behaviour'
Cumulative quantity of substance leached out of 1 m ² of treated wood over the longer assessment period	Q^* leach,time2	Cu: 9 450 Prop.: 35.9 Teb.: 44.5	mg.m ⁻²	See `Leaching behaviour'
Fraction released to the STP	F _{STP}	0.7	_	ESD, Table 4.17

Calculations for Scenario 2 – Noise barrier

Output	Symbol	Value	Unit	Equation No.
Local daily emission rate to the STP following leaching from treated wood during the initial assessment period	E _{STP,time1}	Cu: 5 845 Prop.: 67.90 Teb.: 109.9	mg.d ⁻¹	ESD, (4.55)
Local daily emission rate to the STP following leaching from treated wood during the longer assessment period	E _{STP,time2}	Cu: 2 718 Prop.: 10.33 Teb.: 12.80	mg.d ⁻¹	ESD, (4.56)

Scenario 3: Transmission pole (tier 1)

Input parameters for calculating the local emission					
Input	Symbol	Value	Unit	Remarks	
Scenario: Transmission pole					
Leachable wood area above soil	AREA _{pole,above}	5.5	m ²	ESD, Table 4.19	
Leachable wood area below soil	AREA _{pole,below}	1.6	m ²	ESD, Table 4.19	
Duration of the initial assessment period	TIME1	30	d	ESD, Table 4.19	
Duration of the long-term assessment period	TIME2	7300	d	ESD, p. 68	

Input parameters for calculating the local emission					
Input	Symbol	Value	Unit	Remarks	
Cumulative quantity of substance leached out of 1 m ² of treated wood over the initial assessment period	Q*leach,time1	Cu: 158.02 Prop.: 1.83 Teb.: 2.97	mg.m ⁻²	See `Leaching behaviour'	
Cumulative quantity of substance leached out of 1 m ² of treated wood over the longer assessment period	$Q^*_{leach,time2}$	Cu: 17 935.25 Prop.: 67.92 Teb.: 84.14	mg.m ⁻²	See 'Leaching behaviour'	
Soil volume (wet)	V _{soil}	2.97	m ³	ESD, Table 4.19	
Bulk density of wet soil	RHO _{soil}	1700	kg _{wwt} .m ⁻³	ESD, Table 4.19	
Volume of the part below soil	$V_{pole,below}$	0.098	m ³	Calculated using the dimensions in ESD, p. 77	
Application rate of the product	AR	14	kg/m ³	Use class 4a	
Active substance content in the product	F _{ai}	Cu: 11.5 Prop.: 0.3 Teb.: 0.3	%	-	
Fraction of the applied amount leached out of the part below soil over the initial assessment period	F _{leach,time1}	50	%	Tier 1	
Fraction of the applied amount leached out of the part below soil over the longer assessment period	F _{leach,time2}	100	%	Tier 1	

Calculations for Scenario 3 – Transmission pole (tier 1)

Output	Symbol	Value	Unit	Equation
Cumulative quantity of substance, leached over the initial assessment period from the part above ground	$Q_{leach,above,time1}$	Cu: 869.11 Prop.: 10.065 Teb.: 16.335	mg	$AREA_{pole,above} \times Q^*_{leach,time1}$

Output	Symbol	Value	Unit	Equation
Cumulative quantity of substance, leached over the longer assessment period from the part above ground	Qleach,above,time2	Cu: 98 643.88 Prop.: 373.56 Teb.: 462.77	mg	$AREA_{pole,above} \times Q^*_{leach,time2}$
Cumulative quantity of substance, leached over the initial assessment period from the part below ground	$Q_{leach,below,time1}$	Cu: 78 890 Prop.: 2 058 Teb.: 2 058	mg	$V_{pole,below} \times AR \times (F_{ai}/100) \times (F_{leach,time1}/100) \times 10^{6}$
Cumulative quantity of substance, leached over the longer assessment period from the part below ground	Qleach,below,time2	Cu: 157 780 Prop: 4 116 Teb.: 4 116	mg	$V_{pole,below} \times AR \times (F_{ai}/100) \times (F_{leach,time2}/100) \times 10^{6}$
Cumulative quantity of substance, leached over the initial assessment period	$Q_{leach,time1}$	Cu: 79 759.11 Prop.: 2 068.065 Teb.: 2 074.335	mg	Qleach,above,time1 + Qleach,below,time1
Cumulative quantity of substance, leached over the longer assessment period	$Q_{leach,time2}$	Cu: 256 423.9 Prop.: 4 489.56 Teb.: 4 578.77	mg	Qleach,above,time2 + Qleach,below,time2
Concentration in local soil at the end of the initial assessment period	Clocal _{soil,leach,time1}	Cu: 1.58·10 ¹ Prop.: 4.10·10 ⁻¹ Teb.: 4.11·10 ⁻¹	mg.kg _{wwt} ⁻¹	ESD, (4.69)
Concentration in local soil at the end of the longer assessment period	Clocal _{soil,leach,time2}	Cu: 5.08·10 ¹ Prop.: 8.89·10 ⁻¹ Teb.: 9.07·10 ⁻¹	mg.kg _{wwt} ⁻¹	ESD, (4.70)
Average daily emission of substance due to leaching over the initial assessment period	E _{soil,leach,time1}	Cu: 2.66·10 ³ Prop.: 68.9355 Teb.: 69.1445	mg.d ⁻¹	Q _{leach,time1} / TIME1

Output	Symbol	Value	Unit	Equation
Average daily emission of substance due to leaching over the longer assessment period	E _{soil,leach,time1}	Cu: 3.51·10 ¹ Prop.: 0.615 Teb.: 0.6272	mg.d ⁻¹	Q _{leach,time2} / TIME2

Scenario 3: Transmission pole (tier 2)

Input parameters for calculating the local emission						
Input	Symbol	Value	Unit	Remarks		
Scenario: Transmission pole						
Leachable wood area above soil	AREA _{pole,above}	5.5	m ²	ESD, Table 4.19		
Leachable wood area below soil	AREA _{pole,below}	1.6	m ²	ESD, Table 4.19		
Duration of the initial assessment period	TIME1	30	d	ESD, Table 4.19		
Duration of the long-term assessment period	TIME2	7300	d	ESD, p. 68		
Cumulative quantity of substance leached out of 1 m ² of treated wood over the initial assessment period for the part above ground	Q* _{leach,above,time1}	Cu: 158 Prop.: 1.83 Teb.: 2.97	mg.m ⁻²	See 'Leaching behaviour'		
Cumulative quantity of substance leached out of 1 m ² of treated wood over the longer assessment period for the part above ground	Q* _{leach,above,time2}	Cu: 17 935 Prop.: 67.9 Teb.: 84.1	mg.m ⁻²	See 'Leaching behaviour'		
Cumulative quantity of substance leached out of 1 m ² of treated wood over the initial assessment period for the part below ground	Q^* leach,below,time1	Cu: 789 Prop.: 43.4 Teb.: 30.8	mg.m ⁻²	See 'Leaching behaviour'		
Cumulative quantity of substance leached out of 1 m ² of treated wood over the longer assessment period for the part below ground	Q*leach, below,time2	Cu: 1330 Prop.: 79.7 Teb.: 54.3	mg.m ⁻²	See 'Leaching behaviour'		
Soil volume (wet)	V _{soil}	2.97	m ³	ESD, Table 4.19		
Bulk density of wet soil	RHO _{soil}	1700	kg _{wwt} .m ⁻³	ESD, Table 4.19		

Calculations for Scenario 3 – Transmission pole (tier 2)

Output	Symbol	Value	Unit	Equation
Cumulative quantity of substance, leached over the initial assessment period from the part above ground	$Q_{leach,above,time1}$	Cu: 869 Prop.: 10.065 Teb.: 16.335	mg	$AREA_{pole,above} \times Q^*_{leach,above,time1}$
Cumulative quantity of substance, leached over the longer assessment period from the part above ground	Qleach,above,time2	Cu: 98 642.5 Prop.: 373.45 Teb.: 462.55	mg	$AREA_{pole,above} \times Q^*_{leach,above,time2}$
Cumulative quantity of substance, leached over the initial assessment period from the part below ground	$Q_{leach,below,time1}$	Cu: 1262.4 Prop.: 69.44 Teb.: 49.28	mg	$AREA_{pole,below} \times Q^*_{leach,below,time1}$
Cumulative quantity of substance, leached over the longer assessment period from the part below ground	Qleach,below,time2	Cu: 2128 Prop: 127.52 Teb.: 86.88	mg	$AREA_{pole, below} \times Q^*_{leach, below, time2}$
Cumulative quantity of substance, leached over the initial assessment period	$Q_{leach,time1}$	Cu: 2131.4 Prop.: 79.505 Teb.: 65.615	mg	Qleach,above,time1 + Qleach,below,time1
Cumulative quantity of substance, leached over the longer assessment period	$Q_{leach,time2}$	Cu: 100770.5 Prop.: 500.97 Teb.: 549.43	mg	Q _{leach,above,time2} + Q _{leach,below,time2}
Concentration in local soil at the end of the initial assessment period	Clocal _{soil,leach,time1}	Cu: 0.422 Prop.: 1.57·10 ⁻² Teb.: 1.30·10 ⁻²	mg.kg _{wwt} ⁻¹	ESD, (4.69)

Output	Symbol	Value	Unit	Equation
Concentration in local soil at the end of the longer assessment period	Clocal _{soil,leach,time2}	Cu: 20.0 Prop.: 9.92·10 ⁻² Teb.: 0.109	mg.kg _{wwt} ⁻¹	ESD, (4.70)
Average daily emission of substance due to leaching over the initial assessment period	E _{soil,leach,time1}	Cu: 71.0 Prop.: 2.65 Teb.: 2.187	mg.d ⁻¹	Q _{leach,time1} / TIME1
Average daily emission of substance due to leaching over the longer assessment period	E _{soil,leach,time1}	Cu: 13.8 Prop.: 0.0686 Teb.: 0.0753	mg.d ⁻¹	Q _{leach,time2} / TIME2

Fate and distribution in exposed environmental compartments

For identification of relevant receiving compartments please refer to the subsection `Emission scenarios' above.

Copper: Input parameters (only set values) for calculating the fate and distribution in the environment					
Input	Value	Unit	Remarks		
Vapour pressure	not measurable	Ра	-		
Partition coefficitent in soil (K _{p,soil})	2 120	I.kg ⁻¹	-		
Partition coefficient in suspended matter ($K_{p,susp}$)	30 246	l.kg ⁻¹	-		
Leaching-ageing factor in soil	2	-	To be applied only for Time 2		
Regional background concentration in surface water	2.9	µg.l ⁻¹	-		
Regional background concentration in groundwater	2.9	µg.l ⁻¹	-		
Regional background concentration in soil	21.6	mg.kg _{wwt} ⁻¹	-		
Regional background concentration in sediment	14.7	mg.kg _{wwt} ⁻¹	-		

Propiconazole: Input parameters (only set values) for calculating the fate and distribution in the environment					
Input	Value	Unit	Remarks		
Molecular weight	342.2	g.mol ⁻¹	-		
Vapour pressure (at 25°C)	5.6·10 ⁻⁵	Ра	-		
Water solubility (at 20°C)	100	mg.l ^{−1}	-		
Log Octanol/water partition coefficient	3.72	Log 10	-		
Organic carbon/water partition coefficient (K _{oc})	944	l.kg ⁻¹	-		
Henry's law constant	9.2·10 ⁻⁵	Pa.m ³ .mol ⁻¹			
Biodegradability	Not readily biodegradable	-	-		
DT ₅₀ in the water-sediment system	1206	d (at 12°C)			
DT_{50} for hydrolysis in surface water	No remarkable hydrolysis	-	-		
DT_{50} for photolysis in surface water	No remarkable photolysis	-	-		
DT ₅₀ for degradation in soil	129	d	Field study		
Major metabolites above 10% in the water-sediment system	None	-	-		
Major metabolites above 10% in soil	1,2,4-triazole, CGA 118 245	_	-		

Both soil degradation products above 10%, i.e. 1,2,4-triazole and CGA 118 245, are degraded faster than the parent compound in soil (DT_{50} 9.3 days and 1 day respectively) and are more mobile in soil (K_{OC} 69 and 129, respectively). Both of them also show lower toxicity to earthworms ($LC_{50} > 299 \text{ mg.kg}_{wwt}^{-1}$) than propiconazole ($LC_{50} = 205 \text{ mg.kg}_{wwt}^{-1}$). Thus no risk assessment for the degradation products is necessary.

Tebuconazole: Input parameters (only set values) for calculating the fate and distribution in the environment					
Input	Value	Unit	Remarks		
Molecular weight	307.8	g.mol ⁻¹	-		
Vapour pressure (at 20°C)	1.7.10 ⁻⁶	Ра	-		
Water solubility (at 20°C)	29	mg.l ⁻¹	-		
Log Octanol/water partition coefficient	3.49	Log 10	_		
Organic carbon/water partition coefficient (K _{oc})	992	I.kg ⁻¹	-		
Henry's law constant	1.10-5	Pa.m ³ .mol ⁻¹			
Biodegradability	Not readily biodegradable	-	-		
DT_{50} for degradation in surface water (water phase)	43	d	Outdoor microcosm study		

Tebuconazole: Input parameters (only set values) for calculating the fate and distribution in the environment					
Input	Value	Unit	Remarks		
DT_{50} for hydrolysis in surface water	No significant hydrolysis	-	-		
DT_{50} for photolysis in surface water	No significant photolysis	-	-		
DT ₅₀ for degradation in soil	77	d	Field study		
Major metabolites above 10% in the water-sediment system	None	-	-		
Major metabolites above 10% in soil	1,2,4-triazole (9%)	-	-		

Calculated fate and distribution in the STP					
Compartment	Percentage	Remarks			
compartment	Scenario 2	Relliarks			
	Cu: 0%				
Air	Prop.: 0%	-			
	Teb.: 0%				
	Cu: 16%	Cu: 100% used in			
Water	Prop.: 89%	the risk assessment			
	Teb.: 89%				
	Cu: 84%				
Sludge	Prop.: 11%	-			
	Teb.: 11%				
	Cu: 0%				
Degraded in STP	Prop.: 0%	-			
	Teb.: 0%				

The distribution for propiconazole and tebuconazole was obtained from the SimpleTreat model as contained in EUSES 2.1.2 (K_{OC} used as input).

In order to estimate $Fstp_{sludge}$ for copper, a hypothetical K_{OC} value of 75 600 has been derived from $K_{p,susp}$ using TGD equations (23) and (24) and the default values in TGD Table 5. The resulting percentage of copper adsorbed to sludge is 84%. However, in the risk assessment the portion of copper remaining in water will conservatively be assumed 100%.

<u>Calculations of the distribution in exposed environmental compartments</u> Scenarios 1a, 2, 3 – See Annex 3.2.

The FOCUS PEARL model is not applicable to inorganic substances such as copper. Therefore, in accordance with TGD (part II, p. 86), the concentration in porewater of soil below the house has been used as PEC_{groundwater}. For the calculations see Annex 3.2.

Input parameters for Scenario 1b – groundwater exposure assessment for propiconazole, its degradation product 1,2,4-triazole and for tebuconazole, using FOCUS PEARL 4.4.4:

Parameter	Value	Unit	Remarks
	Propiconazole: 342.2	ı_1	
Molecular weight	1,2,4-triazole: 69.1	g.mol ⁻¹	-
	Tebuconazole: 307.8		
	Propiconazole: 1.8		
Application rate	1,2,4-triazole ⁴⁶ : 0.37	$g.ha^{-1}.y^{-1}$	-
	Tebuconazole: 2.3		
Organic carbon/water	Propiconazole: 944		
partition coefficient	1,2,4-triazole: 69	l.kg ⁻¹	-
(K _{oc})	Tebuconazole: 992		
Organic matter/water	Propiconazole: 548		Calculated:
partition coefficient	1,2,4-triazole: 40	l.kg ⁻¹	
(К _{ом})	Tebuconazole: 575		$K_{OM} = 0.58 \times K_{OC}$
	Propiconazole ⁴⁷ : 43		
DT ₅₀ in soil at 20°C	1,2,4-triazole: 9.3	d	-
	Tebuconazole: 77		
	Propiconazole: 5.6.10 ⁻⁵		
Vapour pressure	1,2,4-triazole: 0.22	Ра	-
	Tebuconazole: 1.7·10 ⁻⁶		
	Propiconazole: 100		
Solubility in water	1,2,4-triazole: 700 000	mg.l ^{−1}	-
	Tebuconazole: 29	_	
Application events per year	10	-	See ESD, p. 178
	Propiconazole: 0.18	1	
Amount applied per	1,2,4-triazole: 0.037	g.ha⁻¹ per	-
application event	Tebuconazole: 0.23	event	
Application type	To the soil surface	-	-
Сгор	Grass (=alfalfa)	-	-
	All nine FOCUS		
Scenarios calculated	scenarios	-	-
Additional accurations	No interception, fallow		
Additional assumptions	soil, no plant uptake	-	-

Calculated PEC values

Summary table on calculated PEC values – Time 1							
	PEC _{STP}	PEC _{water}	PEC _{sed}	PEC _{soil}			
	[mg/l]	[mg/l]	[mg/kg _{wwt}]	[mg/kg _{wwt}]	[µg/l]		
Scenario 1a	-	-	-	Cu: 22.1 Prop.: 5.07·10 ⁻³ Teb.: 7.78·10 ⁻³	-		

 $^{^{46}}$ Conservatively, 100% conversion of propiconazole to 1,2,4-triazole was assumed 47 From the Assessment Report for PT9

Summary table on calculated PEC values – Time 1						
	PEC _{STP}	PEC _{water}	PEC _{sed}	PEC _{soil}	PEC _{GW}	
	[mg/l]	[mg/l]	[mg/kg _{wwt}]	[mg/kg _{wwt}]	[µg/l]	
Scenario 1b	-	-	-	-	-	
Scenario 2	Cu: 2.92·10 ⁻³ Prop.: 3.02·10 ⁻⁵ Teb.: 4.89·10 ⁻⁵	Cu: 3.10·10 ⁻³ Prop.: 3.02·10 ⁻⁶ Teb.: 4.88·10 ⁻⁶	Cu: 16.0 Prop.: 6.43·10 ⁻⁵ Teb.: 1.09·10 ⁻⁴	-	-	
Scenario 3 (tier 1)	-	-	-	Cu: 37.4 Prop.: 3.78·10 ⁻¹ Teb.: 3.60·10 ⁻¹	-	
Scenario 3 (tier 2)	-	-	-	Cu: 22.0 Prop.: 1.45·10 ⁻² Teb.: 1.14·10 ⁻²	-	

Summary table on calculated PEC values – Time 2					
	PEC _{STP}	PEC _{water}	PEC _{sed}	PEC _{soil}	PEC _{GW}
	[mg/l]	[mg/l]	[mg/kg _{wwt}]	[mg/kg _{wwt}]	[µg/l]
Scenario 1a	-	-	-	Cu: 37.5 Prop.: 5.18·10 ⁻³ Teb.: 3.83·10 ⁻³	32
Scenario 1b	-	-	-	-	Prop.: <10 ⁻⁶ 1,2,4-triazole: <10 ⁻⁶ Teb.: <10 ⁻⁶
Scenario 2	Cu: 1.36·10 ⁻³ Prop.: 4.60·10 ⁻⁶ Teb.: 5.70·10 ⁻⁶	Cu: 2.99·10 ⁻³ Prop.: 4.59·10 ⁻⁷ Teb.: 5.69·10 ⁻⁷	Cu: 15.3 Prop.: 9.78·10 ⁻⁶ Teb.: 1.27·10 ⁻⁵	-	-
Scenario 3 (tier 1)	-	-	-	Cu: 36.2 Prop.: 2.27·10 ⁻² Teb.: 1.38·10 ⁻²	-
Scenario 3 (tier 2)	-	-	-	Cu: 20.8 Prop.: 2.53·10 ⁻³ Teb.: 1.66·10 ⁻³	-

Primary and secondary poisoning

Primary poisoning

For PT 8 primary poisoning is not relevant.

Secondary poisoning

Because of the homeostasis of metals, copper is not considered bioaccumulative.

Propiconazole and tebuconazole show slight potential for bioaccumulation. However, according to the Assessment Report for propiconazole, the degree of bioaccumulation potential does not require risk assessment for secondary poisoning.

2.2.8.3 Risk characterisation

Atmosphere

<u>Conclusion</u>: Due to the low volatility of the active substances, air is not the compartment of concern.

Sewage treatment plant (STP)

Summary table on calculated PEC/PNEC values – Time 1			
	PEC/PNEC _{STP}		
	Cu: 0.013		
Scenario 2	Prop.: 3.0·10 ⁻⁵		
	Teb.: 1.5·10 ⁻⁴		

Summary table on calculated PEC/PNEC values – Time 2			
	PEC/PNEC _{STP}		
	Cu: 5.9·10 ⁻³		
Scenario 2	Prop.: 4.6·10 ⁻⁶		
	Teb.: 1.8·10 ⁻⁵		

<u>Conclusion</u>: As the PEC/PNEC_{STP} < 1 in all cases, the risk to the STP is acceptable.

Aquatic compartment

Summary table on calculated PEC/PNEC values – Time 1					
	PEC/PNEC _{water} PEC/PNEC _{sed}				
	Cu: 0.40	Cu: 0.85			
Scenario 2	Prop.: 1.9·10 ⁻³	Prop.: 1.2·10 ⁻³			
	Teb.: 4.9·10 ⁻³	Teb.: 2.0·10 ⁻⁴			

Summary table on calculated PEC/PNEC values – Time 2					
	PEC/PNEC _{water} PEC/PNEC _{sed}				
	Cu: 0.38	Cu: 0.81			
Scenario 2	Prop.: 2.9·10 ⁻⁴	Prop.: 1.8·10 ⁻⁴			
	Teb.: 5.7·10 ⁻⁴	Teb.: 2.3·10 ⁻⁵			

<u>Conclusion</u>: As the PEC/PNEC_{STP} < 1 in all cases, the risk to the aquatic compartment is acceptable.

Terrestrial compartment

Summary table on calculated PEC/PNEC values – Time 1			
	PEC/PNEC _{soil}		
	Cu: 0.55		
Scenario 1a	Prop.: 0.051		
	Teb.: 0.078		
	Cu: 0.927		
Scenario 3 (tier 1)	Prop.: 3.78		
	Teb.: 3.60		
Coorregia 2	Cu: 0.546		
Scenario 3 (tier 2)	Prop.: 0.145		
	Teb.: 0.114		

Summary table on calculated PEC/PNEC values – Time 2			
	PEC/PNEC _{soil}		
	Cu: 0.93		
Scenario 1a	Prop.: 0.052		
	Teb.: 0.038		
Comparin 2	Cu: 0.897		
Scenario 3 (tier 1)	Prop.: 0.227		
	Teb.: 0.138		
Coorenia 2	Cu: 0.515		
Scenario 3 (tier 2)	Prop.: 0.0253		
	Teb.: 0.0166		

<u>Conclusion</u>: For Use class 3 (Scenario 1a) the risk to the terrestrial compartment is acceptable as the PEC/PNEC_{soil} < 1 in all cases.

For use class 4 (Scenario 3) the tier 2 estimates result in $PEC/PNEC_{soil} < 1$ for each active substance, therefore the risk to the soil compartment is acceptable.

The tier 1 estimates indicated unacceptable risk especially in Time 1. This was mainly due to the conservative assumption that 50% of the a.s. leaches out within the first 30 days. The subsequent leaching study showed that the default assumption was not realistic in this case.

Overall, the risk to soil is acceptable.

Groundwater

The PEC_{GW} for copper (0.032 mg/l) complies with the limit for drinking water of 2 mg/l according to Dir. 98/83/EC.

The PEC_{GW} for propiconazole, tebuconazole and 1,2,4-triazole ($<10^{-6} \mu g/I$) complies with the limit for pesticides of 0.10 $\mu g/I$ according to Dir. 98/83/EC.

Primary and secondary poisoning

Primary poisoning

For PT 8 primary poisoning is not relevant.

Secondary poisoning

Because of the homeostasis of metals, copper is not considered bioaccumulative. Propiconazole and tebuconazole show slight potential for bioaccumulation. However, according to the Assessment Report for propiconazole, the degree of bioaccumulation potential does not require risk assessment for secondary poisoning.

<u>Conclusion</u>: The risk assessment for primary or secondary poisoning is not considered relevant.

Mixture toxicity

Screening step

Screening Step 1: Identification of the concerned environmental compartments.

An exposure of the environment is likely. The PEC/PNEC values indicate a need to perform mixture toxicity assessment for the terrestrial compartment.

Mixture toxicity assessment for the remaining compartments is performed too although the PEC/PNEC values of propiconazole and tebuconazole for groundwater and sediment are low, so practically nothing is added to the copper concentrations. In the STP and in groundwater, the PEC/PNEC values are very low for all active substances.

Screening Step 2: Identification of relevant substances

Besides the active substances, the product contains only monoethanolamine. Monoethanolamine does not bear an environmental classification according to CLP, Annex IV.

Screening Step 3: Screen on synergistic interactions

There are no synergistic effects reported in the literature for a mixture containing both copper and azole fungicides. Therefore no synergism is not anticipated.

Screening step		
1	Significant exposure of environmental compartments? Yes	
2	Number of relevant substances >1? Yes	
3 Indication for synergistic effects for the product? No		

Tiered approach

Tier 1 (PEC/PNEC summation) was sufficient to demonstrate acceptable risk.

Tier 1. PEC/PNEC summation

Sewage treatment plant (STP)

Use class 3

Use class 3 (Scenario 2: Noise barrier)				
Compartment RQ product Acceptable risk for the environment? (Y/N) Remarks				
STP, Time 1	1.32·10 ⁻²	Yes	-	
STP, Time 2	5.92·10 ⁻³	Yes	-	

RQ values for sewage treated plant are below 1 therefore the risk is considered acceptable.

Aquatic compartment

Use class 3

Use class 3 (Scenario 2: Noise barrier)				
Compartment	RQ product	Acceptable risk for the environment? (Y/N)	Remarks	
Water, Time 1	$4.07 \cdot 10^{-1}$	Yes	-	
Water, Time 2	3.81·10 ⁻¹	Yes	-	
Sed, Time 1	$8.51 \cdot 10^{-1}$	Yes	-	
Sed, Time 2	$8.10 \cdot 10^{-1}$	Yes	-	

RQ values for aquatic compartment are below 1 therefore the risk is considered acceptable.

Terrestrial compartment

Use class 3

Use class 3 (Scenario 1a: House)				
Compartment RQ product Acceptable risk for the environment? (Y/N) Remarks			Remarks	
Soil, Time 1	0.68	Yes	-	
Soil, Time 2	1.02	No	-	

As the sum of PEC/PNEC is slightly above 1 at Time 2, the emission estimates in the house scenario will be refined by using higher-tier estimates of cumulative leached amount for propiconazole and tebuconazole. These higher-tier estimates have been obtained by an extrapolation procedure recommended in the ESD (p. 149-154). They have been presented in the subsection 'Leaching study for the part above ground' and are repeated below. The ESD extrapolation procedure was not applicable to copper data, so no refinement for copper was possible.

Leached amounts for Time 2: product retention 14 kg/m ³					
Time	Total amount leached (mg.m ⁻²)				
	Copper Propiconazole Tebuconazole				
Time 2 (linear extrapolation)	17 935	67.92	84.14		
Time 2 (Regression 2 = procedure according to ESD)	_	12.27	15.66		

Calculations of the refined PEC values are given in Annex 3.2. The PEC_{soil} values together with the corresponding $PEC/PNEC_{soil}$ ratios and risk quotients are summarized in the two tables below. As the risk quotients are below 1, the risk is considered acceptable.

	PEC _{soil} [mg/kg _{wwt}], Time 2	PEC/PNEC _{soil} , Time 2			
Before refine	Before refinement				
	Cu: 37.5	Cu: 0.93			
Scenario 1a	Prop.: 5.18·10 ⁻³	Prop.: 0.052			
	Teb.: 3.83·10 ⁻³	Teb.: 0.038			
After refinem	ent				
	Cu: 37.5	Cu: 0.93			
Scenario 1a	Prop.: 9.34·10 ⁻⁴	Prop.: 9.3·10 ⁻³			
	Teb.: 7.13·10 ⁻⁴	Teb.: 7.1·10 ⁻³			

Use class 3 (Scenario 1a: House – after refinement)				
Compartment	RQ product	Acceptable risk for the environment? (Y/N)	Remarks	
Soil, Time 1	0.68	Yes	-	
Soil, Time 2	0.95	Yes	-	

Use class 4

Use class 4a (Scenario 3: Transmission pole)				
Compartment	RQ product	Acceptable risk for the environment? (Y/N)	Remarks	
tier 1				
Soil, Time 1	8.31	No	-	
Soil, Time 2	1.26	No	-	
tier 2				
Soil, Time 1	0.81	Yes	-	
Soil, Time 2	0.56	Yes	-	

As the tier 2 risk quotients are below 1, the risk is considered acceptable.

Conclusion: In use class 3 and 4a the risk is acceptable for all exposed compartments.

Overall conclusion on the risk assessment for the environment of the product

For use class 3 and 4a, no unacceptable risk to the environment from the use of the product has been identified provided that the treated wood is not used in the proximity of water and appropriate risk mitigation measures are implemented during application and storage stages (freshly treated timber must be stored after treatment under shelter or on impermeable hard standing to prevent direct losses to soil or water; any losses must be collected for reuse or disposal).

2.2.9 Measures to protect man, animals and the environment

Please refer to sections 2.1.4 and 2.1.5.

2.2.10 Assessment of a combination of biocidal products

The product is not intended for use with other biocidal products.

3 ANNEXES

3.1 List of studies for the biocidal product family

Author	Year	Title	Testing laboratory	Owner of data
Štreit, V.; Plodíková, P.	2013a	Bochemit Forte Profi. Determination of pH, acidity and alkalinity (Study No. 359/13/pH)	Research Institute for Organic Syntheses, Rybitví, CZ	Bochemie a.s., Bohumín, CZ
Štreit, V.; Plodíková, P.	2013b	Bochemit Forte Profi. Relative density (Study No. 359/13/43)	Research Institute for Organic Syntheses, Rybitví, CZ	Bochemie a.s., Bohumín, CZ
Štreit, V.; Plodíková, P.	2013c	Bochemit Forte Profi. Persistent foaming (Study No. 359/13/CIPAC MT 47)	Research Institute for Organic Syntheses, Rybitví, CZ	Bochemie a.s., Bohumín, CZ
Navrátilová, Y.	2009	Storage stability test report for Bochemit Forte Profi (Study No. 5910/BFP/2007)	Bochemie a.s., Bohumín, CZ	Bochemie a.s., Bohumín, CZ
Hantlová, E.	2008a	Bochemit Forte Profi. ZKN PND 50-2130-05	Bochemie a.s., Bohumín, CZ	Bochemie a.s., Bohumín, CZ
Hantlová, E.	2008b	ZKP MOK č.9 BOCHEMIT FORTE PROFI 3/2008. Stanovení MEA. (in Czech) [Determination of monoethanolamine.]	Bochemie a.s., Bohumín, CZ	Bochemie a.s., Bohumín, CZ
Navrátilová, Y.	2006a	Validation of Determination of the copper content in the product Bochemit Forte Profi method	Bochemie a.s., Bohumín, CZ	Bochemie a.s., Bohumín, CZ
Navrátilová, Y.	2006b	Validation of Determination of the tebuconazole and propiconazole content in the product Bochemit Forte Profi method	Bochemie a.s., Bohumín, CZ	Bochemie a.s., Bohumín, CZ

Author	Year	Title	Testing laboratory	Owner of data
Navrátilová, Y.	2006c	Validační protokol pro metodu <i>Stanovení</i> <i>monoethanolaminu ve</i> <i>výrobku Bochemit Forte</i> <i>Profi.</i> Č. Protokolu VP- 04/06. (in Czech) [Validation report for the method <i>Determination of</i> <i>the monoethanolamine</i> <i>content in the product</i> <i>Bochemit Forte Profi.</i> Report No. VP-04/06]	Bochemie a.s., Bohumín, CZ	Bochemie a.s., Bohumín, CZ
Fennert, E M.; Doblinski, M.	2007a	Determination of the toxic values against recently hatched larvae of <i>Hylotrupes bajulus (L.)</i> according to EN 47 (06/2005) in combination with evaporative ageing procedure according to EN 73 (04/90). (Report No. 32/06/8870/03)	Materialprüfan stalt Brandenburg, Eberswalde, DE	Bochemie a.s., Bohumín, CZ
Fennert, E M.; Wessely, S.	2007a	Determination of the protective effectiveness against wood destroying basidiomycetes according to EN 113 (11/96) after evaporative ageing procedure according to EN 73 (04/90). (Report No. 32/06/8870/01A)	Materialprüfan stalt Brandenburg, Eberswalde, DE	Bochemie a.s., Bohumín, CZ
Fennert, E M.; Wessely, S.	2008	Determination of the protective effectiveness against wood destroying basidiomycetes according to EN 113 (11/96) after evaporative ageing procedure according to EN 73 (04/90). (Report No. 32/06/8870/09a)	Materialprüfan stalt Brandenburg, Eberswalde, DE	Bochemie a.s., Bohumín, CZ

Author	Year	Title	Testing laboratory	Owner of data
Součková, A.	2009	Determination of the toxic values against wood destroying fungus Poria placenta according to ČSN EN 113 in the combination with ČSN EN 73 of the preparation Bochemit Forte Profi. (Report No. VZL- 72/08/4)	Timber-wood research and development institute, Prague, CZ	Bochemie a.s., Bohumín, CZ
Fennert, E M.; Wessely, S.	2007b	Determination of the protective effectiveness against wood destroying basidiomycetes according to EN 113 (11/96) after leaching procedure according to EN 84 (05/97). (Report No. 32/06/8870/02A)	Materialprüfan stalt Brandenburg, Eberswalde, DE	Bochemie a.s., Bohumín, CZ
Fennert, E M.; Wessely, S.	2010	Determination of the protective effectiveness against wood destroying basidiomycetes according to EN 113 (11/96) after leaching procedure according to EN 84 (05/97). (Report No. 32/06/8870/12)	Materialprüfan stalt Brandenburg, Eberswalde, DE	Bochemie a.s., Bohumín, CZ
Reinprecht, L.	2005	Testing of the fungicide effectiveness of three preservatives from Bochemie Bohumín	Technical University in Zvolen, Zvolen, SK	Bochemie a.s., Bohumín, CZ
Fennert, E M.; Doblinski, M.	2007b	Determination of the toxic values against recently hatched larvae of <i>Hylotrupes bajulus (L.)</i> according to EN 47 (06/2005) in combination with leaching procedure according to EN 84 (05/97). (Report No. 32/06/8870/04a)	Materialprüfan stalt Brandenburg, Eberswalde, DE	Bochemie a.s., Bohumín, CZ

Author	Year	Title	Testing laboratory	Owner of data
Fennert, E M.; Wessely, S.	2007c	Determination of the protective effectiveness against soft rotting micro- fungi and other soil- inhabiting micro-organisms according to ENV 807 (12/2001). (Report No. 32/06/8870/05)	Materialprüfan stalt Brandenburg, Eberswalde, DE	Bochemie a.s., Bohumín, CZ
Erdmann, M.; Schumacher , P.	2014	Report No. 32/06/8870/07/f	Materialprüfan stalt Brandenburg, Eberswalde, DE	Bochemie a.s., Bohumín, CZ
Klamer, M.; Venås, T. M.	2014	Test Report EN 252 (stakes in ground contact). (Order no. 313170)	Danish Technological Institute, Taastrup, DK	Bochemie a.s., Bohumín, CZ
Klamer, M.; Venås, T. M.	2013	Leaching of copper, tebuconazole and propiconazole from wood treated with Bochemit Forte Profi – 1.5 years of exposure. (Order no. 454070)	Danish Technological Institute, Taastrup, DK	Bochemie a.s., Bohumín, CZ
Ptáček, P.	2015	Hodnocení účinnosti Bochemit Forte Profi, typ 8 (in Czech) [Efficacy evaluation Bochemit Forte Profi, product type 8]	Institute for testing and certification, Zlín, CZ	Bochemie a.s., Bohumín, CZ
Vaněk, P.; Ptáček, P.	2016	Test report No. 463500065/2016	Institute for testing and certification, Zlín, CZ	Bochemie a.s., Bohumín, CZ
Samsonek, J.; Gerych, P.	2016	Accredited laboratory test report ref. No. 46352265/01	Institute for testing and certification, Zlín, CZ	Bochemie a.s., Bohumín, CZ

3.2 Output tables from exposure assessment tools

Scenario 1: Vacuum pressure treatment

Scenario	Vacuum pressure treatment		
Active substance	Copper		
	Units	Tier 2	
Active substance concentration	%	0.46	
Body exposure			
Clothing type		coated coverall	
Indicative value	mg/cycle	8570	
Duration	cycles/day	3	
Potential body deposit	mg/day	25710	
Clothing penetration	%	10	
Actual dermal deposit (product)	mg/day	2571	
Hand exposure			
Gloves worn		yes	
Indicative value	mg/cycle	1080	
Duration	cycles/day	3	
Actual hand deposit (product)	mg/day	3240	
Total dermal exposure			
Product	mg/day	5811	
Active substance	mg/day	26.7306	
Dermal absorption			
Dermal penetration	%	5	
Absorbed dose (dermal)	mg/day	1.33653	
Inhalation exposure			
Indicative value	mg/m ³	1.9	
Duration	hr/day	0.5	
Inhalation rate	m³/hr	1.25	
Mitigation by RPE		none	
Inhaled (product)	mg/day	1.1875	
Inhaled (active substance)	mg/day	0.0054625	
Systemic dose			
Total absorbed dose	mg/day	1.3419925	
Body weight	kg	60	
Total systemic dose	mg/kg bw/day	2.24E-02	

Scenario Vacuum pressure treatmen		e treatment
Active substance	Propiconazole	
	Units	Tier 2
Active substance concentration	%	0.012
Body exposure		
clothing type		coated coverall
indicative value	mg/cycle	8570
duration	cycles/day	3
potential body deposit	mg/day	25710
clothing penetration	%	10
actual dermal deposit (product)	mg/day	2571
Hand exposure		
gloves worn		yes
indicative value	mg/cycle	1080
duration	cycles/day	3
actual hand deposit (product)	mg/day	3240
Total dermal exposure		
Product	mg/day	5811
Active substance	mg/day	0.69732
Dermal absorption		
Dermal penetration	%	2
Absorbed dose (dermal)	mg/day	0.0139464
Inhalation exposure		
Indicative value	mg/m ³	1.9
Duration	hr/day	0.5
Inhalation rate	m³/hr	1.25
Mitigation by RPE		none
Inhaled (product)	mg/day	1.1875
Inhaled (active substance)	mg/day	0.0001425
Systemic dose		
Total absorbed dose	mg/day	0.0140889
Body weight	kg	60
Total systemic dose	mg/kg bw/day	2.35E-04

Scenario 1: Vacuum pressure treatment – continued

Scenario	Vacuum pressure treatment		
Active substance	Tebuconazole		
	Units	Tier 2	
Active substance concentration	%	0.012	
Body exposure			
clothing type		coated coverall	
indicative value	mg/cycle	8570	
duration	cycles/day	3	
potential body deposit	mg/day	25710	
clothing penetration	%	10	
actual dermal deposit (product)	mg/day	2571	
Hand exposure			
gloves worn		yes	
indicative value	mg/cycle	1080	
duration	cycles/day	3	
actual hand deposit (product)	mg/day	3240	
Total dermal exposure			
Product	mg/day	5811	
Active substance	mg/day	0.69732	
Dermal absorption			
Dermal penetration	%	75	
Absorbed dose (dermal)	mg/day	0.52299	
Inhalation exposure			
Indicative value	mg/m ³	1.9	
Duration	hr/day	0.5	
Inhalation rate	m³/hr	1.25	
Mitigation by RPE		none	
Inhaled (product)	mg/day	1.1875	
Inhaled (active substance)	mg/day	0.0001425	
Systemic dose			
Total absorbed dose	mg/day	0.5231325	
Body weight	kg	60	
Total systemic dose	mg/kg bw/day	8.72E-03	

Scenario 1: Vacuum pressure treatment – continued

Scenario / Tier	Vacuum pressure treatment, Tier 2				
	Estimated uptake (mg/kg bw/d)				
	Inhalation Dermal Oral Total				
Copper	9.10E-05	2.23E-02	0.00E+00	2.24E-02	
Propiconazole	2.38E-06	2.32E-04	0.00E+00	2.35E-04	
Tebuconazole	2.38E-06	8.72E-03	0.00E+00	8.72E-03	

Scenario 1: Vacuum pressure treatment – continued

Scenario	Sanding (professional)	
Active substance	Copper	
	Units	Tier 1
Active substance concentration	%	11.5
Hand exposure		
Product retention	kg/m ³	14
Surface concentration	mg/cm ²	14
Hand surface area contaminated	cm ²	84
Transfer coefficient	%	2
Amount on hands (product)	mg	23.52
Amount on hands (a.s.)	mg	2.7048
Dermal absorption		
Dermal penetration	%	5
Absorbed dose (dermal)	mg	0.13524
Inhalation exposure		
Indicative value	mg/m ³	5
Duration	hr/day	6
Inhalation rate	m³/hr	1.25
Inhaled (wood dust)	mg/day	37.5
Product fraction in the wood		
Product retention	$kg/m^3 = mg/cm^3$	14
Article volume	cm ³	720
Volume of outer 1 cm wood	cm ³	568
Product retention in outer 1 cm	mg _{product} /cm _{wood} ³	17.74647887
Wood density	mg _{wood} /cm _{wood} ³	400
Weight fraction of the product in the wood	-	0.044366197
Inhaled (product)	mg/day	1.663732394
Inhaled (active substance)	mg/day	0.191329225
Systemic dose		
Total absorbed dose	mg/day	0.326569225
Body weight	kg	60
Total systemic dose	mg/kg bw/day	5.44E-03

Scenario 2: Sanding (professional)

Scenario	Sanding (professional)		
Active substance	Propiconazole		
	Units	Tier 1	
Active substance concentration	%	0.3	
Hand exposure			
Product retention	kg/m ³	14	
Surface concentration	mg/cm ²	14	
Hand surface area contaminated	cm ²	84	
Transfer coefficient	%	2	
Amount on hands (product)	mg	23.52	
Amount on hands (a.s.)	mg	0.07056	
Dermal absorption			
Dermal penetration	%	2	
Absorbed dose (dermal)	mg	0.0014112	
Inhalation exposure			
Indicative value	mg/m ³	5	
Duration	hr/day	6	
Inhalation rate	m³/hr	1.25	
Inhaled (wood dust)	mg/day	37.5	
Product fraction in the wood			
Product retention	$kg/m^3 = mg/cm^3$	14	
Article volume	cm ³	720	
Volume of outer 1 cm wood	cm ³	568	
Product retention in outer 1 cm	mg _{product} /cm _{wood} ³	17.74647887	
Wood density	mg _{wood} /cm _{wood} ³	400	
Weight fraction of the product in the wood	-	0.044366197	
Inhaled (product)	mg/day 1.663732		
Inhaled (active substance)	mg/day 0.004991197		
Systemic dose			
Total absorbed dose	mg/day	0.006402397	
Body weight	kg	60	
Total systemic dose	mg/kg bw/day	1.07E-04	

Scenario 2: Sanding (professional) – continued

Scenario	Sanding (professional)		
Active substance	Tebuconazole		
	Units	Tier 1	
Active substance concentration	%	0.3	
Hand exposure			
Product retention	kg/m ³	14	
Surface concentration	mg/cm ²	14	
Hand surface area contaminated	cm ²	84	
Transfer coefficient	%	2	
Amount on hands (product)	mg	23.52	
Amount on hands (a.s.)	mg	0.07056	
Dermal absorption			
Dermal penetration	%	75	
Absorbed dose (dermal)	mg	0.05292	
Inhalation exposure			
Indicative value	mg/m ³	5	
Duration	hr/day	6	
Inhalation rate	m³/hr	1.25	
Inhaled (wood dust)	mg/day	37.5	
Product fraction in the wood			
Product retention	$kg/m^3 = mg/cm^3$	14	
Article volume	cm ³	720	
Volume of outer 1 cm wood	cm ³	568	
Product retention in outer 1 cm	mg _{product} /cm _{wood} ³	17.74647887	
Wood density	mg _{wood} /cm _{wood} ³	400	
Weight fraction of the product in the wood	-	0.044366197	
Inhaled (product)	mg/day	1.663732394	
Inhaled (active substance)	mg/day 0.004991197		
Systemic dose			
Total absorbed dose	mg/day	0.057911197	
Body weight	kg	60	
Total systemic dose	mg/kg bw/day	9.65E-04	

Scenario 2: Sanding (professional) – continued

Scenario / Tier	Sanding (professional), Tier 1				
	Estimated uptake (mg/kg bw/d)				
	Inhalation Dermal Oral Total				
Copper	3.19E-03 2.25E-03 0.00E+00 5.44E-03				
Propiconazole	8.32E-05 2.35E-05 0.00E+00 1.07E-04				
Tebuconazole	8.32E-05 8.82E-04 0.00E+00 9.65E-04				

Scenario	Sanding (non-professional)		
Active substance	Copper		
	Units	Tier 1	
Active substance concentration	%	11.5	
Hand exposure			
Product retention	kg/m ³	14	
Surface concentration	mg/cm ²	14	
Hand surface area contaminated	cm ²	84	
Transfer coefficient	%	2	
Amount on hands (product)	mg	23.52	
Amount on hands (a.s.)	mg	2.7048	
Dermal absorption			
Dermal penetration	%	5	
Absorbed dose (dermal)	mg	0.13524	
Inhalation exposure			
Indicative value	mg/m ³	5	
Duration	hr/day	1	
Inhalation rate	m³/hr	1.25	
Inhaled (wood dust)	mg/day	6.25	
Product fraction in the wood			
Product retention	$kg/m^3 = mg/cm^3$	14	
Article volume	cm ³	4000	
Volume of outer 1 cm wood	cm ³	3008	
Product retention in outer 1 cm	mg _{product} /cm _{wood} ³	18.61702128	
Wood density	mg _{wood} /cm _{wood} ³	400	
Weight fraction of the product in the wood	-	0.046542553	
Inhaled (product)	mg/day	0.290890957	
Inhaled (active substance)	mg/day 0.03345246		
Systemic dose			
Total absorbed dose	mg/day	0.16869246	
Body weight	kg	60	
Total systemic dose	mg/kg bw/day	2.81E-03	

Scenario 3: Sanding (non-professional)

Scenario	Sanding (non-professional)		
Active substance	Propiconazole		
	Units	Tier 1	
Active substance concentration	%	0.3	
Hand exposure			
Product retention	kg/m ³	14	
Surface concentration	mg/cm ²	14	
Hand surface area contaminated	cm ²	84	
Transfer coefficient	%	2	
Amount on hands (product)	mg	23.52	
Amount on hands (a.s.)	mg	0.07056	
Dermal absorption			
Dermal penetration	%	2	
Absorbed dose (dermal)	mg	0.0014112	
Inhalation exposure			
Indicative value	mg/m ³	5	
Duration	hr/day	1	
Inhalation rate	m³/hr	1.25	
Inhaled (wood dust)	mg/day	6.25	
Product fraction in the wood			
Product retention	$kg/m^3 = mg/cm^3$	14	
Article volume	cm ³	4000	
Volume of outer 1 cm wood	cm ³	3008	
Product retention in outer 1 cm	mg _{product} /cm _{wood} ³	18.61702128	
Wood density	mg _{wood} /cm _{wood} ³	400	
Weight fraction of the product in the wood	-	0.046542553	
Inhaled (product)	mg/day	0.290890957	
Inhaled (active substance)	mg/day 0.000872673		
Systemic dose			
Total absorbed dose	mg/day	0.002283873	
Body weight	kg	60	
Total systemic dose	mg/kg bw/day	3.81E-05	

Scenario 3: Sanding (non-professional) – continued

Scenario	Sanding (non-professional)		
Active substance	Tebuconazole		
	Units	Tier 1	
Active substance concentration	%	0.3	
Hand exposure			
Product retention	kg/m ³	14	
Surface concentration	mg/cm ²	14	
Hand surface area contaminated	cm ²	84	
Transfer coefficient	%	2	
Amount on hands (product)	mg	23.52	
Amount on hands (a.s.)	mg	0.07056	
Dermal absorption			
Dermal penetration	%	75	
Absorbed dose (dermal)	mg	0.05292	
Inhalation exposure			
Indicative value	mg/m ³	5	
Duration	hr/day	1	
Inhalation rate	m³/hr	1.25	
Inhaled (wood dust)	mg/day 6.25		
Product fraction in the wood			
Product retention	$kg/m^3 = mg/cm^3$	14	
Article volume	cm ³	4000	
Volume of outer 1 cm wood	cm ³	3008	
Product retention in outer 1 cm	mg _{product} /cm _{wood} ³	18.61702128	
Wood density	mg_{wood}/cm_{wood}^{3}	400	
Weight fraction of the product in the wood	-	0.046542553	
Inhaled (product)	mg/day	0.290890957	
Inhaled (active substance)	mg/day	0.000872673	
Systemic dose			
Total absorbed dose	mg/day 0.05379267		
Body weight	kg	60	
Total systemic dose	mg/kg bw/day	8.97E-04	

Scenario 3: Sanding (non-professional) – continued

Scenario / Tier	Sanding (non-professional), Tier 1				
	Estimated uptake (mg/kg bw/d)				
	Inhalation Dermal Oral Total				
Copper	5.58E-04 2.25E-03 0.00E+00 2.81E-03				
Propiconazole	1.45E-05 2.35E-05 0.00E+00 3.81E-05				
Tebuconazole	1.45E-05 8.82E-04 0.00E+00 8.97E-04				

Scenario	Child on a playground str	Child on a playground structure	
Active substance	Copper		
	Units	Tier 1	
Active substance concentration	%	11.5	
Hand exposure			
Surface concentration	mg/cm ²	14	
Hand surface area contaminated	cm ²	40	
Transfer coefficient	%	2	
Amount on hands (product)	mg	11.2	
Amount on hands (a.s.)	mg	1.288	
Dermal absorption			
Dermal penetration	%	5	
Absorbed dose (dermal)	mg	0.0644	
Systemic dose			
Total absorbed dose	mg/day	0.0644	
Body weight	kg	15	
Total systemic dose	mg/kg bw/day	4.29E-03	

Scenario 4: Child on a playground structure

Scenario	Child on a playground st	Child on a playground structure		
Active substance	Propiconazole			
	Units	Tier 1		
Active substance concentration	%	0.3		
Hand exposure				
Surface concentration	mg/cm ²	14		
Hand surface area contaminated	cm ²	40		
Transfer coefficient	%	2		
Amount on hands (product)	mg	11.2		
Amount on hands (a.s.)	mg	0.0336		
Dermal absorption				
Dermal penetration	%	2		
Absorbed dose (dermal)	mg	0.000672		
Systemic dose				
Total absorbed dose	mg/day	0.000672		
Body weight	kg	15		
Total systemic dose	mg/kg bw/day	4.48E-05		

Scenario	Child on a playground st	Child on a playground structure		
Active substance	Tebuconazole			
	Units	Tier 1		
Active substance concentration	%	0.3		
Hand exposure				
Surface concentration	mg/cm ²	14		
Hand surface area contaminated	cm ²	40		
Transfer coefficient	%	2		
Amount on hands (product)	mg	11.2		
Amount on hands (a.s.)	mg	0.0336		
Dermal absorption				
Dermal penetration	%	75		
Absorbed dose (dermal)	mg	0.0252		
Systemic dose				
Total absorbed dose	mg/day	0.0252		
Body weight	kg	15		
Total systemic dose	mg/kg bw/day	1.68E-03		

Scenario 4: Child on a playground structure – continued

Scenario / Tier	Child playing on playground structure outdoors, Tier 1			
	Estimated uptake (mg/kg bw/d)			
	Inhalation Dermal Oral Total			
Copper	0.00E+00	4.29E-03	0.00E+00	4.29E-03
Propiconazole	0.00E+00	4.48E-05	0.00E+00	4.48E-05
Tebuconazole	0.00E+00	1.68E-03	0.00E+00	1.68E-03

Scenario	Infant chewing an off-cut		
Active substance	Copper		
	Units	Tier 1	
Active substance concentration	%	11.5	
Oral exposure			
Product retention	$kg/m^3 = mg/cm^3$	14	
Off-cut volume	cm ³	16	
Amount of product in the off-cut	mg	224	
Fraction extracted by chewing	%	10	
Amount ingested (product)	mg	22.4	
Amount ingested (active substance)	mg	2.576	
Absorption			
Absorption from GIT	%	36	
Absorbed dose	mg	0.92736	
Systemic dose			
Total absorbed dose	mg/day	0.92736	
Body weight	kg	10	
Total systemic dose	mg/kg bw/day	9.27E-02	

Scenario 5: Infant chewing an off-cut

Scenario	Infant chewing an off-cut	
Active substance	Propiconazole	
	Units	Tier 1
Active substance concentration	%	0.3
Oral exposure		
Product retention	$kg/m^3 = mg/cm^3$	14
Off-cut volume	cm ³	16
Amount of product in the off-cut	mg	224
Fraction extracted by chewing	%	10
Amount ingested (product)	mg	22.4
Amount ingested (active substance)	mg	0.0672
Absorption		
Absorption from GIT	%	100
Absorbed dose	mg	0.0672
Systemic dose		
Total absorbed dose	mg/day	0.0672
Body weight	kg	10
Total systemic dose	mg/kg bw/day	6.72E-03

Scenario	Infant chewing an off-cut	
Active substance	Tebuconazole	
	Units	Tier 1
Active substance concentration	%	0.3
Oral exposure		
Product retention	$kg/m^3 = mg/cm^3$	14
Off-cut volume	cm ³	16
Amount of product in the off-cut	mg	224
Fraction extracted by chewing	%	10
Amount ingested (product)	mg	22.4
Amount ingested (active substance)	mg	0.0672
Absorption		
Absorption from GIT	%	100
Absorbed dose	mg	0.0672
Systemic dose		
Total absorbed dose	mg/day	0.0672
Body weight	kg	10
Total systemic dose	mg/kg bw/day	6.72E-03

Scenario 5: Infant chewing an off-cut – continued

Scenario / Tier	Infant chewing an off-cut, Tier 1			
	Estimated uptake (mg/kg bw/d)			
	Inhalation	Dermal	Oral	Total
Copper	0.00E+00	0.00E+00	9.27E-02	9.27E-02
Propiconazole	0.00E+00	0.00E+00	6.72E-03	6.72E-03
Tebuconazole	0.00E+00	0.00E+00	6.72E-03	6.72E-03

Scenario 6: Volatilized residues indoors

ConsExpo 4.1 report

Product

Bochemit Forte Profi

Compound		
Compound name : CAS number : molecular weight vapour pressure KOW General Exposure Data	Monoethanolamine 61 50 -1.9	g/mol Pascal 10Log
exposure frequency body weight	1 10	1/year kilogram
Inhalation model: Exposure to vapour : evaporation		
weight fraction compound exposure duration room volume ventilation rate applied amount release area application duration mol weight matrix mass transfer rate	0.35 1 20 0.6 592 8 1 18 4.78E3	fraction year 1/hr gram m2 minute g/mol m/min
Uptake model: Fraction		
uptake fraction inhalation rate	1 8 Output	fraction m3/day
Inhalation (point estimates)		
inhalation mean event concentration : inhalation mean concentration on day of exposure: inhalation air concentration year average : inhalation acute (internal) dose : inhalation chronic (internal) dose :	0.00307 0.00307 8.4E-6 0.897 0.00246	mg/m3 mg/m3 mg/m3/day mg/kg mg/kg/day
Integrated (point estimates)		
total external dose: total acute dose (internal): total chronic dose (internal):	0.897 0.897 0.00246	mg/kg mg/kg mg/kg/day

Scenario	Infant on a playground s	Infant on a playground structure	
Active substance	Copper		
	Units	Tier 1	
Active substance concentration	%	11.5	
Surface concentration	mg/cm ²	14	
Hand exposure			
Hand surface area contaminated	cm ²	40	
Transfer coefficient	%	2	
Amount on hands (product)	mg	11.2	
Amount on hands (a.s.)	mg	1.288	
Dermal absorption			
Dermal penetration	%	5	
Absorbed dose (dermal)	mg	0.0644	
Oral exposure			
Surface mouthed	cm ²	50	
Fraction extracted by licking	%	5	
Amount ingested (product)	mg	35	
Amount ingested (a.s.)	mg	4.025	
Oral absorption			
Absorption from GIT	%	36	
Absorbed dose (oral)	mg	1.449	
Systemic dose			
Total absorbed dose	mg/day	1.5134	
Body weight	kg	10	
Total systemic dose	mg/kg bw/day	1.51E-01	

Scenario 7: Infant playing on a playground structure outdoors

Scenario	Infant on a playground	Infant on a playground structure	
Active substance	Propiconazole		
	Units	Tier 1	
Active substance concentration	%	0.3	
Surface concentration	mg/cm ²	14	
Hand exposure			
Hand surface area contaminated	cm ²	40	
Transfer coefficient	%	2	
Amount on hands (product)	mg	11.2	
Amount on hands (a.s.)	mg	0.0336	
Dermal absorption			
Dermal penetration	%	2	
Absorbed dose (dermal)	mg	0.000672	
Oral exposure			
Surface mouthed	cm ²	50	
Fraction extracted by licking	%	5	
Amount ingested (product)	mg	35	
Amount ingested (a.s.)	mg	0.105	
Oral absorption			
Absorption from GIT	%	100	
Absorbed dose (oral)	mg	0.105	
Systemic dose			
Total absorbed dose	mg/day	0.105672	
Body weight	kg	10	
Total systemic dose	mg/kg bw/day	1.06E-02	

Scenario 7: Infant playing on a playground structure outdoors – continued

Scenario	Infant on a playground	Infant on a playground structure	
Active substance	Tebuconazole	Tebuconazole	
	Units	Tier 1	
Active substance concentration	%	0.3	
Surface concentration	mg/cm ²	14	
Hand exposure			
Hand surface area contaminated	cm ²	40	
Transfer coefficient	%	2	
Amount on hands (product)	mg	11.2	
Amount on hands (a.s.)	mg	0.0336	
Dermal absorption			
Dermal penetration	%	75	
Absorbed dose (dermal)	mg	0.0252	
Oral exposure			
Surface mouthed	cm ²	50	
Fraction extracted by licking	%	5	
Amount ingested (product)	mg	35	
Amount ingested (a.s.)	mg	0.105	
Oral absorption			
Absorption from GIT	%	100	
Absorbed dose (oral)	mg	0.105	
Systemic dose			
Total absorbed dose	mg/day	0.1302	
Body weight	kg	10	
Total systemic dose	mg/kg bw/day	1.30E-02	

Scenario 7: Infant playing on a playground structure outdoors – continued

Scenario	Infant on a playground	Infant on a playground structure	
Active substance	Copper	Copper	
	Units	Tier 2	
Active substance concentration	%	11.5	
Surface concentration	mg/cm ²	14	
Hand exposure			
Hand surface area contaminated	cm ²	40	
Transfer coefficient	%	2	
Amount on hands (product)	mg	11.2	
Amount on hands (a.s.)	mg	1.288	
Dermal absorption			
Dermal penetration	%	5	
Absorbed dose (dermal)	mg	0.0644	
Oral exposure			
Surface mouthed	m ²	0.005	
Leaching rate	mg/m²/day	5.3	
Amount ingested (product)	mg	0.0265	
Amount ingested (a.s.)	mg	0.0030475	
Oral absorption			
Absorption from GIT	%	36	
Absorbed dose (oral)	mg	0.0010971	
Systemic dose			
Total absorbed dose	mg/day	0.0654971	
Body weight	kg	10	
Total systemic dose	mg/kg bw/day	6.55E-03	

Scenario 7: Infant playing on a playground structure outdoors – continued

Scenario Infant on a playground structure				
Active substance	Propiconazole			
	Units	Tier 2		
Active substance concentration	%	0.3		
Surface concentration	mg/cm ²	14		
Hand exposure				
Hand surface area contaminated	cm ²	40		
Transfer coefficient	%	2		
Amount on hands (product)	mg	11.2		
Amount on hands (a.s.)	mg	0.0336		
Dermal absorption				
Dermal penetration	%	2		
Absorbed dose (dermal)	mg	0.000672		
Oral exposure				
Surface mouthed	m ²	0.005		
Leaching rate	mg/m²/day	0.061		
Amount ingested (product)	mg	0.000305		
Amount ingested (a.s.)	mg	0.00000915		
Oral absorption				
Absorption from GIT	%	100		
Absorbed dose (oral)	mg	0.00000915		
Systemic dose				
Total absorbed dose	mg/day	0.000672915		
Body weight	kg	10		
Total systemic dose	mg/kg bw/day	6.73E-05		

Scenario 7: Infant playing on a playground structure outdoors – continued

Scenario	Infant on a playgroun	d structure
Active substance	Tebuconazole	
	Units	Tier 2
Active substance concentration	%	0.3
Surface concentration	mg/cm ²	14
Hand exposure		
Hand surface area contaminated	cm ²	40
Transfer coefficient	%	2
Amount on hands (product)	mg	11.2
Amount on hands (a.s.)	mg	0.0336
Dermal absorption		
Dermal penetration	%	75
Absorbed dose (dermal)	mg	0.0252
Oral exposure		
Surface mouthed	m ²	0.005
Leaching rate	mg/m²/day	0.099
Amount ingested (product)	mg	0.000495
Amount ingested (a.s.)	mg	0.000001485
Oral absorption		
Absorption from GIT	%	100
Absorbed dose (oral)	mg	0.000001485
Systemic dose		
Total absorbed dose	mg/day	0.025201485
Body weight	kg	10
Total systemic dose	mg/kg bw/day	2.52E-03

Scenario 7: Infant playing on a playground structure outdoors – continued

Scenario / Tier	Infant playing on playground structure outdoors, Tier 1					
	Estimated uptake (mg/kg bw/d)					
	Inhalation	Inhalation Dermal Oral Total				
Copper	0.00E+00 6.44E-03 1.45E-01 1.51E-01					
Propiconazole	0.00E+00 6.72E-05 1.05E-02 1.06E-02					
Tebuconazole	0.00E+00	2.52E-03	1.05E-02	1.30E-02		

Scenario / Tier	Infant playing on playground structure outdoors, Tier 2					
	Estimated uptake (mg/kg bw/d)					
	Inhalation Dermal Oral Total					
Copper	0.00E+00	6.44E-03	1.10E-04	6.55E-03		
Propiconazole	0.00E+00 6.72E-05 9.15E-08 6.73E-05					
Tebuconazole	0.00E+00	2.52E-03	1.49E-07	2.52E-03		

Leaching study for the part below ground – calculation of leaching rates:

Time	Leachate volume		
day	ml		
uay	set 1	set 2	
0,25	480	475	
1	500	500	
2	500	500	
4	500	500	
8	500	500	
15	500	500	
22	500	500	
29	500	500	

Exposed area: 0.02 $\ensuremath{m^2}$ Copper

Time	Conc. in	Conc. in leachate		Amount in leachate		
day	m	g/l		mg		mg/m ²
uay	set 1	set 2	set 1	set2	mean	mean
0,25	4,61	4,00	2,2128	1,9	2,0564	102,82
1	3,00	2,32	1,5	1,16	1,33	66,5
2	2,95	2,31	1,475	1,155	1,315	65,75
4	4,41	3,93	2,205	1,965	2,085	104,25
8	5,11	4,98	2,555	2,49	2,5225	126,125
15	6,53	6,61	3,265	3,305	3,285	164,25
22	2,91	3,70	1,455	1,85	1,6525	82,625
29	2,50	2,96	1,25	1,48	1,365	68,25

Propiconazole

Time	Conc. in leachate		Amount in leachate			L.rate (Qd)
day	m	g/l		mg		mg/m ²
uay	set 1	set 2	set 1	set2	mean	mean
0,25	0,276	0,232	0,13248	0,1102	0,12134	6,067
1	0,256	0,310	0,128	0,155	0,1415	7,075
2	0,317	0,258	0,1585	0,129	0,14375	7,1875
4	0,283	0,256	0,1415	0,128	0,13475	6,7375
8	0,188	0,199	0,094	0,0995	0,09675	4,8375
15	0,191	0,173	0,0955	0,0865	0,091	4,55
22	0,155	0,138	0,0775	0,069	0,07325	3,6625
29	0,121	0,117	0,0605	0,0585	0,0595	2,975

Time	Conc. in	Conc. in leachate		Amount in leachate		
dav	m	g/l		mg		mg/m ²
day	set 1	set 2	set 1	set2	mean	mean
0,25	0,178	0,151	0,08544	0,07173	0,07858	3,929125
1	0,167	0,244	0,0835	0,122	0,10275	5,1375
2	0,215	0,170	0,1075	0,085	0,09625	4,8125
4	0,220	0,177	0,11	0,0885	0,09925	4,9625
8	0,145	0,151	0,0725	0,0755	0,074	3,7
15	0,133	0,134	0,0665	0,067	0,06675	3,3375
22	0,108	0,095	0,054	0,0475	0,05075	2,5375
29	0,088	0,085	0,044	0,0425	0,04325	2,1625

Tebuconazole

PECregional _{soil}	21.6	mg.kg _{wwt} ⁻¹	AR, p. 32
Ageing factor	2	(-)	
PEClocal _{soil,time1}	2.21E+01	mg.kg _{wwt} ⁻¹	
PEClocal _{soil,time2} (with ageing)	3.75E+01	mg.kg _{wwt} ⁻¹	

Scenario 1a: House – copper, distribution in exposed compartments

Scenario 1a: House - propiconazole, distribution in exposed compartments

DT50 _{soil}	129	d	
k	0.0053732	d^{-1}	TGD, II, Eq. (29)
Clocal _{soil,time1} (with degr., time-weighted avg.)	2.60E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (3.7), Clocal _{soil,applic} = 0
Clocal _{soil,time2} (with degr., time-weighted avg.)	5.04E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (3.8), Clocal _{soil,applic} = 0
Clocal _{soil,time1} (with degr., at the end of time 1)	5.07E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (3.11), $Clocal_{soil,applic} = 0$
Clocal _{soil,time2} (with degr., at the end of time 2)	5.18E-03	${\sf mg.kg_{\sf wwt}}^{-1}$	ESD Eq. (3.12), $Clocal_{soil,applic} = 0$

Scenario 1a: House – tebuconazole, distribution in exposed compartments

DT50 _{soil}	77	d	
k	0.0090019	d^{-1}	TGD, II, Eq. (29)
Clocal _{soil,time1} (with degr., time-weighted avg.)	4.07E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (3.7), Clocal _{soil,applic} = 0
Clocal _{soil,time2} (with degr., time-weighted avg.)	3.77E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (3.8), Clocal _{soil,applic} = 0
Clocal _{soil,time1} (with degr., at the end of time 1)	7.78E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (3.11), Clocal _{soil,applic} = 0
Clocal _{soil,time2} (with degr., at the end of time 2)	3.83E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (3.12), Clocal _{soil,applic} = 0

Scenario			
AREA _{house}	125	m ²	ESD, Table 4.15
TIME1	30	d	ESD, Table 4.15
TIME2 (years)	20	У	ESD, p. 68
TIME2 (days)	7300	d	
Q*leach,time1	0.97	mg.m ⁻²	
Q*leach,time2	6.48	mg.m ⁻²	
V _{soil}	13	m ³	ESD, Table 4.15
RHO _{soil}	1700	$kg_{wwt}.m^{-3}$	ESD, Table 4.15
Q _{leach,time1}	121.25	mg	ESD Eq. (4.43)
Q _{leach,time2}	810	mg	ESD Eq. (4.44)
Clocal _{soil,leach,time1} (without degradation)	5.49E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (4.45)
Clocal _{soil,leach,time2} (without degradation)	3.67E-02	mg.kg _{wwt} ⁻¹	ESD Eq. (4.46)
E _{soil,leach,time1}	4.0416667	mg.d ⁻¹	ESD Eq. (3.5)
E _{soil,leach,time2}	0.1109589	mg.d ⁻¹	ESD Eq. (3.6)

Scenario 1a: House – propiconazole, calculation with a refined leaching rate (Regression 2) for Time 2

Distribution in exposed compartments

DT50 _{soil}	129	d	
k	0.0053732	d^{-1}	TGD, II, Eq. (29)
Clocal _{soil,time1} (with degr., time-weighted avg.)	2.60E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (3.7), Clocal _{soil,applic} = 0
Clocal _{soil,time2} (with degr., time-weighted avg.)	9.11E-04	mg.kg _{wwt} ⁻¹	ESD Eq. (3.8), Clocal _{soil,applic} = 0
Clocal _{soil,time1} (with degr., at the end of time 1)	5.07E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (3.11), Clocal _{soil,applic} = 0
Clocal _{soil,time2} (with degr., at the end of time 2)	9.34E-04	mg.kg _{wwt} ⁻¹	ESD Eq. (3.12), Clocal _{soil,applic} = 0

Scenario			
AREA _{house}	125	m ²	ESD, Table 4.15
TIME1	30	d	ESD, Table 4.15
TIME2 (years)	20	У	ESD, p. 68
TIME2 (days)	7300	d	
Q*leach,time1	1.57	mg.m ⁻²	
Q*leach,time2	8.28	mg.m ⁻²	
V _{soil}	13	m ³	ESD, Table 4.15
RHO _{soil}	1700	$kg_{wwt}.m^{-3}$	ESD, Table 4.15
Q _{leach,time1}	196.25	mg	ESD Eq. (4.43)
Q _{leach,time2}	1035	mg	ESD Eq. (4.44)
Clocal _{soil,leach,time1} (without degradation)	8.88E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (4.45)
Clocal _{soil,leach,time2} (without degradation)	4.68E-02	mg.kg _{wwt} ⁻¹	ESD Eq. (4.46)
Esoil,leach,time1	6.5416667	mg.d ⁻¹	ESD Eq. (3.5)
E _{soil,leach,time2}	0.1417808	mg.d ⁻¹	ESD Eq. (3.6)

Scenario 1a: House – tebuconazole, calculation with a refined leaching rate (Regression 2) for Time 2

Distribution in exposed compartments

DT50 _{soil}	77	d	
k	0.0090019	d^{-1}	TGD, II, Eq. (29)
Clocal _{soil,time1} (with degr., time-weighted avg.)	4.07E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (3.7), Clocal _{soil,applic} = 0
Clocal _{soil,time2} (with degr., time-weighted avg.)	7.02E-04	mg.kg _{wwt} ⁻¹	ESD Eq. (3.8), Clocal _{soil,applic} = 0
Clocal _{soil,time1} (with degr., at the end of time 1)	7.78E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (3.11), Clocal _{soil,applic} = 0
Clocal _{soil,time2} (with degr., at the end of time 2)	7.13E-04	mg.kg _{wwt} ⁻¹	ESD Eq. (3.12), Clocal _{soil,applic} = 0

DEClass	53.5	$ma ka ^{-1}$	See Calculations for scenario 1a in
PEClocal _{soil,time2}	53.5	mg.kg _{wwt} ⁻¹	section 2.2.8.2
Fwater _{soil}	0.2	-	TGD, II, Table 5 (p. 43)
Fsolid _{soil}	0.6	-	TGD, II, Table 5 (p. 43)
RHO _{solid}	2500	kg.m⁻³	TGD, II, p. 47
Kp _{soil}	2120	l.kg⁻¹	-
K _{soil-water}	3180	m ³ .m ⁻³	TGD, II, Eq. (24)
RHO _{soil}	1700	kg.m⁻³	ESD
PEClocal _{soil, porew}	0.0286	mg.l ^{−1}	TGD, II, Eq. (67)
PECregionalgroundwater	0.0029	mg.l⁻¹	-
PEClocalgroundwater	0.032	mg.l ^{−1}	-

Scenario 1b: House – copper, concentration in groundwater

STP			
CAPACITY _{stp}	10000	eq	TGD, II, Table 9 (p. 62)
WASTEWinhab	200	$I.d^{-1}.eq^{-1}$	TGD, II, Table 9 (p. 62)
EFFLUENT _{stp}	2000000	$I.d^{-1}$	TGD, II, Eq. (34)
Clocal _{inf,time1}	0.0029225	mg.l ^{−1}	TGD, II, Eq. (32)
Clocal _{inf,time2}	0.0013592	mg.l ^{−1}	TGD, II, Eq. (32)
Fstp _{water}	1	(-)	EUSES/SimpleTreat, using K _{oc}
Fstp _{sludge}	0	(-)	EUSES/SimpleTreat, using K _{oc}
PECstp _{time1} = Clocal _{eff,time1}	2.92E-03	mg.l ^{−1}	TGD, II, Eq. (33), (38)
PECstp _{time2} = Clocal _{eff,time2}	1.36E-03	mg.l ^{−1}	TGD, II, Eq. (33), (38)
Surface water			
Kp _{susp}	30246	l.kg ⁻¹	AR, p. 28
SUSP _{water}	15	mg.l ⁻¹	TGD, II, p. 76
DILUTION	10	(-)	TGD, II, p. 76
Clocal _{water,time1}	2.01E-04	mg.l ^{−1}	TGD, II, Eq. (45)
Clocal _{water,time2}	9.35E-05	mg.l ^{−1}	TGD, II, Eq. (45)
PECregional _{water}	0.0029	mg.l ^{−1}	AR, p. 32
PEClocal _{water,time1}	3.10E-03	mg.l ⁻¹	TGD, II, Eq. (48)
PEClocal _{water,time2}	2.99E-03	mg.l ⁻¹	TGD, II, Eq. (48)
Sediment		•	
Fwater _{susp}	0.9	(-)	TGD, II, Table 5 (p. 43)
Fsolid _{susp}	0.1	(-)	TGD, II, Table 5 (p. 43)
RHOsolid	2500	kg.m ^{−3}	TGD, II, p. 47
K _{susp-water}	7562.4	$m^{3}.m^{-3}$	TGD, II, Eq. (24)
RHO _{susp}	1150	kg.m ^{−3}	TGD, II, p. 44
Clocal _{sed,time1}	1.32E+00	mg.kg _{wwt} ⁻¹	TGD, II, Eq. (50)
Clocal _{sed,time2}	6.15E-01	mg.kg _{wwt} ⁻¹	TGD, II, Eq. (50)
PECregional sediment	14.7	mg.kg _{wwt} ⁻¹	AR, p. 32
PEClocal _{sed,time1}	1.60E+01	mg.kg _{wwt} ⁻¹	
PEClocal _{sed,time2}	1.53E+01	mg.kg _{wwt} ⁻¹	

Scenario 2: Noise barrier – copper, distribution in exposed compartments

STP			
CAPACITY _{stp}	10000	eq	TGD, II, Table 9 (p. 62)
WASTEWinhab	200	$I.d^{-1}.eq^{-1}$	TGD, II, Table 9 (p. 62)
EFFLUENT _{stp}	2000000	$I.d^{-1}$	TGD, II, Eq. (34)
Clocal _{inf,time1}	3.395E-05	mg.l ^{−1}	TGD, II, Eq. (32)
Clocal _{inf,time2}	5.164E-06	mg.l ⁻¹	TGD, II, Eq. (32)
Fstp _{water}	0.89	(-)	EUSES/SimpleTreat, using K _{oc}
Fstp _{sludge}	0.11	(-)	EUSES/SimpleTreat, using K _{oc}
PECstp _{time1} = Clocal _{eff,time1}	3.02E-05	mg.l ⁻¹	TGD, II, Eq. (33), (38)
$PECstp_{time2} = Clocal_{eff,time2}$	4.60E-06	mg.l ⁻¹	TGD, II, Eq. (33), (38)
Surface water			
Foc _{susp}	0.1	(-)	TGD, II, Table 5 (p. 43)
Кос	944	l.kg ⁻¹	
Kp _{susp}	94.4	l.kg ⁻¹	TGD, II, Eq. (23)
SUSP _{water}	15	mg.l ⁻¹	TGD, II, p. 76
DILUTION	10	(-)	TGD, II, p. 76
Clocal _{water,time1}	3.02E-06	mg.l ⁻¹	TGD, II, Eq. (45)
Clocal _{water,time2}	4.59E-07	mg.l ⁻¹	TGD, II, Eq. (45)
Sediment			
Fwater _{susp}	0.9	(-)	TGD, II, Table 5 (p. 43)
Fsolid _{susp}	0.1	(-)	TGD, II, Table 5 (p. 43)
RHOsolid	2500	kg.m ⁻³	TGD, II, p. 47
K _{susp-water}	24.5	m ³ .m ⁻³	TGD, II, Eq. (24)
RHO _{susp}	1150	kg.m ^{−3}	TGD, II, p. 44
PEClocal _{sed,time1}	6.43E-05	mg.kg _{wwt} ⁻¹	TGD, II, Eq. (50)
PEClocal _{sed,time2}	9.78E-06	mg.kg _{wwt} ⁻¹	TGD, II, Eq. (50)

Scenario 2: Noise barrier – propiconazole, distribution in exposed compartments

STP			
CAPACITY _{stp}	10000	eq	TGD, II, Table 9 (p. 62)
WASTEWinhab	200	$I.d^{-1}.eq^{-1}$	TGD, II, Table 9 (p. 62)
EFFLUENT _{stp}	2000000	$I.d^{-1}$	TGD, II, Eq. (34)
Clocal _{inf,time1}	5.495E-05	mg.l ^{−1}	TGD, II, Eq. (32)
Clocal _{inf,time2}	6.401E-06	mg.l ⁻¹	TGD, II, Eq. (32)
Fstp _{water}	0.89	(-)	EUSES/SimpleTreat, using K _{oc}
Fstp _{sludge}	0.11	(-)	EUSES/SimpleTreat, using K _{oc}
PECstp _{time1} = Clocal _{eff,time1}	4.89E-05	mg.l ⁻¹	TGD, II, Eq. (33), (38)
PECstp _{time2} = Clocal _{eff,time2}	5.70E-06	mg.l ^{−1}	TGD, II, Eq. (33), (38)
Surface water			
Foc _{susp}	0.1	(-)	TGD, II, Table 5 (p. 43)
Кос	992	l.kg ⁻¹	
Kp _{susp}	99.2	l.kg ⁻¹	TGD, II, Eq. (23)
SUSP _{water}	15	mg.l ⁻¹	TGD, II, p. 76
DILUTION	10	(-)	TGD, II, p. 76
Clocal _{water,time1}	4.88E-06	mg.l ⁻¹	TGD, II, Eq. (45)
Clocal _{water,time2}	5.69E-07	mg.l ^{−1}	TGD, II, Eq. (45)
Sediment			
Fwater _{susp}	0.9	(-)	TGD, II, Table 5 (p. 43)
Fsolid _{susp}	0.1	(-)	TGD, II, Table 5 (p. 43)
RHOsolid	2500	kg.m ^{−3}	TGD, II, p. 47
K _{susp-water}	25.7	m ³ .m ⁻³	TGD, II, Eq. (24)
RHO _{susp}	1150	kg.m ^{−3}	TGD, II, p. 44
PEClocal _{sed,time1}	1.09E-04	mg.kg _{wwt} ⁻¹	TGD, II, Eq. (50)
PEClocal _{sed,time2}	1.27E-05	mg.kg _{wwt} ⁻¹	TGD, II, Eq. (50)

Scenario 2: Noise barrier – tebuconazole, distribution in exposed compartments

Scenario 3: Transmission pole (tier1) – copper, distribution in exposed compartments

PECregional _{soil}	21.6	mg.kg _{wwt} ⁻¹	AR, p. 32
Ageing factor	2	(-)	
PEClocal _{soil,time1}	3.74E+01	mg.kg _{wwt} ⁻¹	
PEClocal _{soil,time2} (with ageing)	3.62E+01	mg.kg _{wwt} ⁻¹	

Scenario 3: Transmission pole (tier 1) – propiconazole, distribution in exposed compartments

DT50 _{soil}	129	d	
k	0.00537323	d^{-1}	TGD, II, Eq. (29)
Clocal _{soil,time1} (with degr., time-weighted avg.)	1.94E-01	mg.kg _{wwt} ⁻¹	ESD Eq. (3.7), Clocal _{soil,applic} = 0
Clocal _{soil,time2} (with degr., time-weighted avg.)	2.21E-02	mg.kg _{wwt} ⁻¹	ESD Eq. (3.8), Clocal _{soil,applic} = 0
Clocal _{soil,time1} (with degr., at the end of time 1)	3.78E-01	mg.kg _{wwt} ⁻¹	ESD Eq. (3.11), Clocal _{soil,applic} = 0
Clocal _{soil,time2} (with degr., at the end of time 2)	2.27E-02	mg.kg _{wwt} ⁻¹	ESD Eq. (3.12), Clocal _{soil,applic} = 0

Scenario 3: Transmission pole (tier 1) – tebuconazole, distribution in exposed compartments

DT50 _{soil}	77	d	
k	0.00900191	d^{-1}	TGD, II, Eq. (29)
Clocal _{soil,time1} (with degr., time-weighted avg.)	1.88E-01	mg.kg _{wwt} ⁻¹	ESD Eq. (3.7), Clocal _{soil,applic} = 0
Clocal _{soil,time2} (with degr., time-weighted avg.)	1.36E-02	mg.kg _{wwt} ⁻¹	ESD Eq. (3.8), Clocal _{soil,applic} = 0
Clocal _{soil,time1} (with degr., at the end of time 1)	3.60E-01	mg.kg _{wwt} ⁻¹	ESD Eq. (3.11), $Clocal_{soil,applic} = 0$
Clocal _{soil,time2} (with degr., at the end of time 2)	1.38E-02	mg.kg _{wwt} ⁻¹	ESD Eq. (3.12), $Clocal_{soil,applic} = 0$

Scenario 3: Transmission pole (tier 2) – copper, distribution in exposed compartments

PECregional _{soil}	21,6	mg.kg _{wwt} ⁻¹	AR, p. 32
Ageing factor	2	(-)	
PEClocal _{soil,time1}	2,20E+01	mg.kg _{wwt} ⁻¹	
PEClocal _{soil,time2} (with ageing)	2,08E+01	mg.kg _{wwt} ⁻¹	

Scenario 3: Transmission pole (tier 2) – propiconazole, distribution in exposed compartments

DT50 _{soil}	129	d	
k	0,00537323		TGD, II, Eq. (29)
Clocal _{soil,time1} (with degr., time-weighted avg.)			ESD Eq. (3.7), Clocal _{soil,applic} = 0
Clocal _{soil,time2} (with degr., time-weighted avg.)	2,47E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (3.8), Clocal _{soil,applic} = 0
Clocal _{soil,time1} (with degr., at the end of time 1)	1,45E-02	mg.kg _{wwt} ⁻¹	ESD Eq. (3.11), Clocal _{soil,applic} = 0
Clocal _{soil,time2} (with degr., at the end of time 2)	2,53E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (3.12), Clocal _{soil,applic} = 0

Scenario 3: Transmission pole (tier 2) – tebuconazole, distribution in exposed compartments

DT50 _{soil}	77	d	
k	0,00900191		TGD, II, Eq. (29)
Clocal _{soil,time1} (with degr., time-weighted avg.)	5,95E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (3.7), Clocal _{soil,applic} = 0
Clocal _{soil,time2} (with degr., time-weighted avg.)	1,63E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (3.8), Clocal _{soil,applic} = 0
Clocal _{soil,time1} (with degr., at the end of time 1)	1,14E-02	mg.kg _{wwt} ⁻¹	ESD Eq. (3.11), Clocal _{soil,applic} = 0
Clocal _{soil,time2} (with degr., at the end of time 2)	1,66E-03	mg.kg _{wwt} ⁻¹	ESD Eq. (3.12), Clocal _{soil,applic} = 0

3.3 New information on the active substance

No new data on the active substance have been submitted.

3.4 Residue behaviour

No other data on residue behaviour have been submitted.

3.5 Summaries of the efficacy studies (B.5.10.1-xx)

Please refer to the IUCLID file.

3.6 Confidential annex I

3.6.1 Product family composition and formulation

NB: This information is confidential and should not be disclosed to third parties

Qualitative and quantitative information on the composition of the biocidal product family are given in a confidential annex I.

3.6.2 Qualitative and quantitative information on the composition of the members of the biocidal product family

Qualitative and quantitative information on the composition of the members of the biocidal product family are given in a confidential annex I.

3.6.3 Information on the substance(s) of concern

Information on the substance(s) of concern are given in confidential annex I.

3.7 Other

No other relevant information.