CLH report

Proposal for Harmonised Classification and Labelling

Based on Regulation (EC) No 1272/2008 (CLP Regulation), Annex VI, Part 2

International Chemical Identification:

mecetronium etilsulfate; N-ethyl-N,N-dimethylhexadecan-1-aminium ethyl sulfate;

mecetronium ethyl sulphate [MES]

EC Number: 221-106-5 CAS Number: 3006-10-8 Index Number: -

Contact details for dossier submitter:

Bureau for Chemical Substances

30/34 Dowborczykow Street

90-019 Lodz, Poland

biuro@chemikalia.gov.pl

Version number: 3

Date: 24.04.2017

CONTENTS

1	Ι	DENTITY OF THE SUBSTANCE		1	
	1.1	NAME AND OTHER IDENTIFIERS OF THE SUBSTANC	Е	1	
	1.2				
2	I	PROPOSED HARMONISED CLASSIFICATIO	N AND LABELLING	4	
	2.1		BELLING ACCORDING TO THE CLP CRITERIA		
3	I	HISTORY OF THE PREVIOUS CLASSIFICAT	ION AND LABELLING	7	
4 JUSTIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL					
5 IDENTIFIED USES					
6			FE CHEMICAL PROPERTIES		
7					
8	I	EVALUATION OF PHYSICAL HAZARDS			
	8.1	EXPLOSIVES			
			e information provided on explosive properties		
	8				
	8		for explosive properties		
	8.2		STABLE GASES)		
	8	3.2.1 Short summary and overall relevance of	the provided information on flammable gases (in	ncluding	
	C	chemically unstable gases)		11	
	8	<i>Comparison with the CLP criteria</i>			
	8	8.2.3 Conclusion on classification and labelling j	for flammable gases	11	
	8.3		• • •		
	8	<i>3.3.1</i> Short summary and overall relevance of the	provided information on oxidising gases		
	8				
			for oxidising gases		
	8.4				
	8	<i>8.4.1 Short summary and overall relevance of the</i>	provided information on gases under pressure	12	
	8	<i>B.4.3</i> Conclusion on classification and labelling <i>j</i>	for gases under pressure	12	
		<i>8.5.1</i> Short summary and overall relevance of the	provided information on flammable liquids	12	
			for flammable liquids		
	8.6				
			e provided information on flammable solids		
			for flammable solids		
	8.7				
			e provided information on self-reactive substances		
			for self-reactive substances		
	8.8				
			provided information on pyrophoric liquids		
			~ 7 . 7 . 7		
	8	8.8.3 Conclusion on classification and labelling j	for pyrophoric liquids	15	

	8.9 Pyroph	HORIC SOLIDS	15
		hort summary and overall relevance of the provided information on pyrophoric solids	
		Comparison with the CLP criteria	
		Conclusion on classification and labelling for pyrophoric solids	
		F-HEATING SUBSTANCES	
	8.10.1	Short summary and overall relevance of the provided information on self-heating substances	
	8.10.2 8.10.3	Comparison with the CLP criteria Conclusion on classification and labelling for self-heating substances	
		STANCES WHICH IN CONTACT WITH WATER EMIT FLAMMABLE GASES	
	8.11.1	Short summary and overall relevance of the provided information on substances which in contac	
		flammable gases	
	8.11.2	Comparison with the CLP criteria	
	8.11.3	Conclusion on classification and labelling for substances which in contact with water emit flam	
	gases	17	
		DISING LIQUIDS	
	8.12.1	Short summary and overall relevance of the provided information on oxidising liquids	
	8.12.2	Comparison with the CLP criteria	
	8.12.3	Conclusion on classification and labelling for oxidising liquids	
	8.13 OXII 8.13.1	DISING SOLIDS Short summary and overall relevance of the provided information on oxidising solids	
	8.13.1 8.13.2	Comparison with the CLP criteria	
	8.13.3	Comparison with the CLI criteria Conclusion on classification and labelling for oxidising solids	
		ANIC PEROXIDES	18
	8.14.1	Short summary and overall relevance of the provided information on organic peroxides	
	8.14.2	Comparison with the CLP criteria	
	8.14.3	Conclusion on classification and labelling for organic peroxides	
		ROSIVE TO METALS	
	8.15.1	Short summary and overall relevance of the provided information on the hazard class corros	ive to
	metals		10
	8.15.2 8.15.3	Comparison with the CLP criteria Conclusion on classification and labelling for corrosive to metals	
9	TOXICO	KINETICS (ABSORPTION, METABOLISM, DISTRIBUTION AND ELIMINATION)	19
		SUMMARY AND OVERALL RELEVANCE OF THE PROVIDED TOXICOKINETIC INFORMATION ON	
	PROPOSED CL	ASSIFICATION(S)	20
1() EVALUA	TION OF HEALTH HAZARDS	20
	10.1 ACU	TE TOXICITY - ORAL ROUTE	20
		Short summary and overall relevance of the provided information on acute oral toxicity	
	10.1.2	Comparison with the CLP criteria	
	10.1.3	Conclusion on classification and labelling for acute oral toxicity	
	10.2 ACU	TE TOXICITY - DERMAL ROUTE	24
	10.2.1	Short summary and overall relevance of the provided information on acute dermal toxicity	25
	10.2.2	Comparison with the CLP criteria	
	10.2.3	Conclusion on classification and labelling for acute dermal toxicity	
		TE TOXICITY - INHALATION ROUTE	
	10.3.1	Short summary and overall relevance of the provided information on acute inhalation toxicity	
	10.3.2 10.3.3	Comparison with the CLP criteria Conclusion on classification and labelling for acute inhalation toxicity	
		Conclusion on classification and labelling for acute inhalation toxicity	
	10.4 SKI 10.4.1	Short summary and overall relevance of the provided information on skin corrosion/irritation	
	10.4.1	Comparison with the CLP criteria	
	10.4.3	Conclusion on classification and labelling for skin corrosion/irritation	
		IOUS EYE DAMAGE/EYE IRRITATION	
	10.5.1	Short summary and overall relevance of the provided information on serious eye damage	
	······	33	
	irritation		
	10.5.2	Comparison with the CLP criteria	
	10.5.2 10.5.3	Conclusion on classification and labelling for serious eye damage/eye irritation	34
	10.5.2 10.5.3		<i>34</i> 34

10.6.2	Comparison with the CLP criteria	
10.6.3	Conclusion on classification and labelling for respiratory sensitisation	
10.7 Ski	N SENSITISATION	
10.7.1	Short summary and overall relevance of the provided information on skin sensitisation	
10.7.2	Comparison with the CLP criteria	
10.7.3	Conclusion on classification and labelling for skin sensitisation	
10.8 Gei	RM CELL MUTAGENICITY	
10.8.1	Short summary and overall relevance of the provided information on germ cell mutagenicity.	
10.8.2	Comparison with the CLP criteria	
10.8.3	Conclusion on classification and labelling for germ cell mutagenicity	
10.9 CAI	RCINOGENICITY	
10.9.1	Short summary and overall relevance of the provided information on carcinogenicity	
10.9.2	Comparison with the CLP criteria	
10.9.3	Conclusion on classification and labelling for carcinogenicity	
10.10 Ref	PRODUCTIVE TOXICITY	
10.10.1	Adverse effects on sexual function and fertility	
10.10.2	Short summary and overall relevance of the provided information on adverse effects of	
function c	<i>und fertility</i>	
10.10.3	Comparison with the CLP criteria	
10.10.4	Adverse effects on development	
10.10.5	Short summary and overall relevance of the provided information on adverse effects on dev 59	
10.10.6	Comparison with the CLP criteria	60
10.10.0	Adverse effects on or via lactation	
10.10.7	Short summary and overall relevance of the provided information on effects on or via lactation	
10.10.8	Comparison with the CLP criteria	
10.10.9	Conclusion on classification and labelling for reproductive toxicity	
	CIFIC TARGET ORGAN TOXICITY-SINGLE EXPOSURE	
10.11.1	Short summary and overall relevance of the provided information on specific target organ	
	osure	•
10.11.2	Comparison with the CLP criteria	
10.11.2	Conclusion on classification and labelling for STOT SE	
	CIFIC TARGET ORGAN TOXICITY-REPEATED EXPOSURE	
10.12	Short summary and overall relevance of the provided information on specific target organ	
	exposure	
10.12.2	Comparison with the CLP criteria	
10.12.2	Conclusion on classification and labelling for STOT RE	
	PIRATION HAZARD.	
10.13.1	Short summary and overall relevance of the provided information on aspiration hazard	
10.13.2	Comparison with the CLP criteria	
10.13.3	Conclusion on classification and labelling for aspiration hazard	
	ATION OF ENVIRONMENTAL HAZARDS	
11.1 RAI	PID DEGRADABILITY OF ORGANIC SUBSTANCES	
11.1.1	Ready biodegradability	
11.1.2	<i>BOD</i> ₅ / <i>COD</i>	79
11.1.3	Hydrolysis	79
11.1.4	Other convincing scientific evidence	
11.1.4.1	∂	
11.1.4.2		79
11.1.4.	,	80
11.1.4.4	8	
	VIRONMENTAL TRANSFORMATION OF METALS OR INORGANIC METALS COMPOUNDS	
11.2.1	Summary of data/information on environmental transformation	
	VIRONMENTAL FATE AND OTHER RELEVANT INFORMATION	
	ACCUMULATION	
11.4.1	Estimated bioaccumulation	
11.4.2	Measured partition coefficient and bioaccumulation test data	
11.5 Act 11.5.1	UTE AQUATIC HAZARD	
11.5.1	Acute (short-term) toxicity to fish Acute (short-term) toxicity to aquatic invertebrates	
11.3.2	Acute (short-term) to aqualle invertebrates	

	11.5.3	Acute (short-term) toxicity to algae or other aquatic plants	92
	11.5.4	Acute (short-term) toxicity to other aquatic organisms	93
1	1.6 LON	G-TERM AQUATIC HAZARD	
	11.6.1	Chronic toxicity to fish	
	11.6.2	Chronic toxicity to aquatic invertebrates	96
	11.6.3	Chronic toxicity to algae or other aquatic plants	97
	11.6.4	Chronic toxicity to other aquatic organisms	
1	1.7 CON	APARISON WITH THE CLP CRITERIA	
	11.7.1	Acute aquatic hazard	97
	11.7.2	Long-term aquatic hazard (including bioaccumulation potential and degradation)	
1	1.8 CON	ICLUSION ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS .	
12	EVALUA	TION OF ADDITIONAL HAZARDS	98
1	2.1 HAZ	ARDOUS TO THE OZONE LAYER	98
	12.1.1	Short summary and overall relevance of the provided information on ozone layer hazard	
	12.1.2	Comparison with the CLP criteria	
	12.1.3	Conclusion on classification and labelling for hazardous to the ozone layer	
13	ADDITIO	NAL LABELLING	99
14	REFERE	NCES	99
15		S	103

1 IDENTITY OF THE SUBSTANCE

1.1 Name and other identifiers of the substance

Table 1: Substance identity and information related to molecular and structural formula of the substance.

Name(s) in the IUPAC nomenclature or other international chemical name(s)	N-ethyl-N,N-dimethylhexadecan-1-aminium ethyl sulfate (IUPAC)
Other names (usual name, trade name,	Mecetronium ethyl sulphate
abbreviation)	Mecetronium ethylsulfate,
	Mecetronium etilsulfat,
	MES,
	Ethylhexadecyldimethylammonium ethylsulfate,
	Cetylethyldimethylammonium ethosulfat
	Dimethylethylhexadecylammonium-ethylsulfate
	Ethanesulfonate ethyl-hexadecyl-dimethyl-ammonium
ISO common name (if available and appropriate)	-
EC number (if available and appropriate)	221-106-5
EC name (if available and appropriate)	mecetronium etilsulfate
CAS number (if available)	3006-10-8
Other identity code (if available)	-
Molecular formula	$C_{20}H_{44}N^+ \bullet C_2H_5O_4S^-$
Structural formula	H_3C N^+CH_3 C_2H_5 $OSO_3^ H_3C$ CH_3 C_2H_5 OSO_3^-
SMILES notation (if available)	CCCCCCCCCCCC[N+](C)(C)CC.CCOS(=0)(=0)[0-]
Molecular weight or molecular weight range	423.70
Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate)	Not applicable
Description of the manufacturing process and identity of the source (for UVCB substances only)	Not applicable
Degree of purity (%) (if relevant for the entry in Annex VI)	> 95% w/w (manufactured as solution 29% in water)

1.2 Composition of the substance

Table 2: Constituents (non-confidential information).

Constituent (Name and numerical identifier)	Concentrati on range (% w/w minimum and maximum in multi- constituent substances)	Current CLH in Annex V I Table 3.1 (CLP)	Current self- classification and labelling (CLP)
N-ethyl-N,N-dimethylhexadecan-1- aminium ethyl sulfate (IUPAC) Mecetronium ethyl sulphate [MES] EC number: 221-106-5	>95% w/w	Not included in Anex VI Table 3.1	Notified classification and labelling according to CLP criteria http://www.echa.europa.eu/pl/web/guest/informatio n-on-chemicals/cl-inventory-database/- /discli/details/23964 Number of notifiers: 2 Skin Irrit. 2, H315 Eye Irrit. 2, H315 Eye Irrit. 2, H319 Number of notifiers: 1 Acute Tox. 4, H302 Skin Irrit. 2, H315 Eye Dam. 1, H318 Acute Tox. 4, H332 STOT SE 3, H335 Aquatic Acute 1, H400 Aquatic Chronic 1, H410 Number of notifiers: 1 Skin Irrit. 2, H315 Eye Dam. 1, H318 Aquatic Chronic 1, H410 Number of notifiers: 1 Acute Tox. 4, H302 Skin Corr. 1B, H314 Aquatic Acute 1, H400 Aquatic Chronic 1, H410

Table 3: Impurities (non-confidential in	information) if relevant for the classification of the substance.
--	---

Impurity (Nameand and numerical identifier)	Concentration range (% w/w minimum and maximum)	Currentself-classificationandlabelling (CLP)	I I I
For futher			
information please			
refer to the IUCLID			
file (confidential			
information)			

Table 4: Additives (non-confidential information) if relevant for the classification of the substance.

Additive (Name and numerical identifier)	Function	Concentration range (% w/w minimum and maximum)	Current CLH in Annex VI Table 3.1 (CLP)	The additive contributes to the classification and labelling
None				

Table 5: Test substances (non-confidential information) (this table is optional).

Identification of test	Purity	Impurities and additives (identity, %, classification if	Other information	The study(ies) in which the test
of test substance		available)		which the test substance is used
Mecetronium	>95% w/w			
ethyl sulphate				
[MES]				
Mecetronium				
ethyl sulphate				
[MES]				
Clear liquid;				
30% active				
component				
Mecetronium				
ethyl sulphate				
[MES]				
Clear liquid;				
4% active				
component				

2 PROPOSED HARMONISED CLASSIFICATION AND LABELLING

2.1 Proposed harmonised classification and labelling according to the CLP criteria

Table 6: Proposed harmonised classification and labelling.

			Classification Labelling		Classification		Classification				
	Index No	International Chemical Identification	EC No	CAS No	Hazard Class and Category Code(s)	Hazard statement Code(s)	Pictogram, Signal Word Code(s)	Hazard statement Code(s)	Suppl. Hazard statement Code(s)	Specific Conc. Limits, M-factors	Notes
Current Annex VI entry					Not inclu	uded in Annex V	[
					Acute Tox. 4	H302	GHS05	H302			
		mecetronium etilsulfate;			Acute Tox. 3	H311	GHS06	H311			
Dossier	612-RST- VW-Y	N-ethyl-N,N- dimethylhexadecan-1-	221-106-5 3006-	3006-10-8	Skin Corr. 1C	H314	GHS09	H314*		M=100 (Acute) M=10	
submitters					Eye Dam. 1	H318	Dgr	H410*			
proposal					Aquatic Acute	H400				(Chronic)	
					Aquatic Chronic 1	H410					
					Acute Tox. 4	H302	GHS05	H302			
		mecetronium etilsulfate;			Acute Tox. 3	H311	GHS06	H311			
Resulting Annex VI		N-ethyl-N,N-			Skin Corr. 1C	H314	GHS09	H314*		M=100 (Acute)	
entry if agreed by	612-RST- VW-Y	dimethylhexadecan-1- aminium ethyl sulfate;	221-106-5	3006-10-8	Eye Dam. 1	H318	Dgr	H410*		M=100 (<i>f</i> cute)	
RAC and		mecetronium ethyl			Aquatic Acute	H400				(Chronic)	
СОМ		sulphate [MES]			Aquatic Chronic 1	H410					

*Article 27 of CLP states that if a substance or mixture is classified within several hazard classes or differentiations of a hazard class, all hazard statements

CLH REPORT FOR MES

resulting from the classification shall appear on the label, unless there is evident duplication or redundancy.

In accordance with Article 27 the following principles of precedence for hazard statements may apply to labelling:

- if the hazard statement H314 'Causes severe skin burns and eye damage' is assigned, the statement H318 'Causes serious eye damage' may be omitted,

- if the hazard statement H410 'Very toxic to aquatic life with long lasting effects' is assigned, the statement H400 'Very toxic to aquatic life' may be omitted.

Table 7: Reason for not proposing harmonised classification and status under public consultation.	Table 7: Reason for not	proposing harmonise	d classification and status	under public consultation.
---	-------------------------	---------------------	-----------------------------	----------------------------

Hazard class	Reason for no classification	Within the scope of public consultation
Explosives	data conclusive but not sufficient for classification	Yes
Flammable gases (including chemically unstable gases)	hazard class not applicable	No
Oxidising gases	hazard class not applicable	No
Gases under pressure	hazard class not applicable	No
Flammable liquids	hazard class not applicable	No
Flammable solids	data conclusive but not sufficient for classification	Yes
Self-reactive substances	data conclusive but not sufficient for classification	Yes
Pyrophoric liquids	hazard class not applicable	No
Pyrophoric solids	data conclusive but not sufficient for classification	Yes
Self-heating substances	data conclusive but not sufficient for classification	Yes
Substances which in contact with water emit flammable gases	data conclusive but not sufficient for classification	Yes
Oxidising liquids	hazard class not applicable	No
Oxidising solids	data conclusive but not sufficient for classification	Yes
Organic peroxides	hazard class not applicable	No
Corrosive to metals	data lacking	No
Acute toxicity via oral route	harmonised classification proposed	Yes
Acute toxicity via dermal route	harmonised classification proposed	Yes
Acute toxicity via inhalation route	data lacking	No
Skin corrosion/irritation	harmonised classification proposed	Yes
Serious eye damage/eye irritation	harmonised classification proposed	Yes
Respiratory sensitisation	data lacking	No
Skin sensitisation	data conclusive but not sufficient for classification	Yes
Germ cell mutagenicity	data conclusive but not sufficient for classification	Yes
Carcinogenicity	data lacking	No
Reproductive toxicity	data conclusive but not sufficient for classification	Yes
Specific target organ toxicity- single exposure	data conclusive but not sufficient for classification	Yes
Specific target organ toxicity- repeated exposure	data conclusive but not sufficient for classification	Yes
Aspiration hazard	hazard class not applicable	No
Hazardous to the aquatic environment	harmonised classification proposed	Yes
Hazardous to the ozone layer	data lackingclassification	No

3 HISTORY OF THE PREVIOUS CLASSIFICATION AND LABELLING

A harmonised classification and labelling for Mecetronium ethyl sulphate [MES] is not available and the substance is not listed in Annex VI of the Regulation (EC) No 1272/2008.

4 JUSTIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL

Mecetronium ethyl sulphate [MES] is a biocidal active substance according to Regulation (EU) No 528/2012. In accordance with Article 36(2) of EC Regulation 1272/2008 (CLP) on classification, labelling and packaging of substances and mixtures such substances shall be subject to harmonised classification and labelling.

There is no requirement for justification that action is needed at Community level.

5 IDENTIFIED USES

Biocidal active substance.

Main Group 1: Disinfectants

These product-types exclude cleaning products that are not intended to have a biocidal effect, including washing liquids, powders and similar products.

Product-type 1: Human hygiene

Products in this group are biocidal products used for human hygiene purposes, applied on or in contact with human skin or scalps for the primary purpose of disinfecting the skin or scalp.

The substance is used as a biocidal active substance inside the EU in commercial product. A commercial product (a mixture containing mecetronium ethyl sulphate) is a ready for use product for hygienic and surgical hand disinfection. Additionally it is used as skin antiseptic (medical product). A commercial product (a mixture containing mecetronium ethyl sulphate) is applied in all areas where hygiene is important, e.g. operating theatres, intensive care units, infection departments, sanitation areas, in laboratories, in medical practices, in the home-care of patients, in home dialysis and in pharmaceutical, cosmetic, and food processing industry.

6 DATA SOURCES

A classification and labelling proposal is based mainly on the information presented in the Competent Authority Report (CAR) for mecetronium ethyl sulphate [MES].

7 PHYSICOCHEMICAL PROPERTIES

Table 8: Summary of physicochemical properties.

Property	Value	Reference	Comment (e.g. measured or estimated)
Physical state at 20°C and 101,3 kPa	solid		visual
Melting/freezing point	result: 87.6 – 111.0°C (360.7 – 384.2 K) pressure: normal atmospheric pressure	BODE Chemie (2002b)	OECD 102 EC (No) 440/2008 A.1. The test substance has a melting range; GLP
Boiling point	result: Boiling point could not be measured due to decomposition at 271°C – 286°C pressure: normal atmospheric pressure	BODE Chemie (2002c)	OECD 103 EC (No) 440/2008 A.2. Siwoloboff method, preliminary test; GLP
Relative density	Density = 1.08 g/cm^3 at 20°C D ₄ ²⁰ = 1.08	BODE Chemie (2002d)	OECD 109 EC (No) 440/2008 A.3. Pycnometer method; GLP
Vapour pressure	temperature: 25°C result: 1 • 10 ⁻⁸ hPa	-	Estimated value Lowest value accepted by EUSES; Due to decomposition of Mecetronium ethyl sulfate [MES] at temperatures above 271°C it is not possible to determine the boiling point of MES. This may be explained by its ionic structure which prevents volatilization. MES, as a ionic substance, can therefore safely be assumed to possess a very low volatility. In- line with the TNsG on Data Requirements (EC, 2000) a recognized estimation method is acceptable if the boiling point is between 200 and 300°C. Therefore, it is reasonable to use the lowest value for vapour pressure accepted by EUSES which is 1 • 10 ⁻⁸ hPa.
Surface tension	result: 38.5 mN/m temperature: 20°C	BODE Chemie (2001a)	OECD 115 EC (No) 440/2008 A.5. ring method; test substance conc.: 1.0 g/L; GLP
Water solubility	result: > 500 g /1000 g water temperature: no data pH: no data	BODE Chemie (2002)	OECD 105 flask method, preliminary test; main test not possible due to

Property	Value	Reference	Comment (e.g. measured or estimated)
			complete solubility; GLP
			Estimation using solubilities in water and n-octanol, the log Pow value was calculated;
Partition coefficient	result:	BODE Chemie (2002)	The study on solubility in n-octanol was performed according to CIPAC MT 181 and the solubility was found to be 168-202 g/L.
n-octanol/water	-0.39	BODE Chemie (2010c)	The study on solubility in water was performed according to OECD 105 with a determined solubility of 500-1000 g/L.
			As a worst case the highest solubility value of n-octanol and the lowest value of water are used for further calculation.
Flash point	-	-	Not applicable (Study of the flash point is not required for solids)
Flammability	not highly flammable	BODE Chemie (2010a)	EC (No) 440/2008 A.10; GLP
Explosive properties	No explosive properties	BODE Chemie (2010b)	EC (No) 440/2008 A.14; GLP
Self-ignition temperature	No data		
Oxidising properties	From the structural formula and the composition of the substance it can be concluded that the substance does not evolve any oxidizing properties. Additionally the substance is produced, handled and marketed as aqueous solution, which prevents oxidizing properties.		estimated
Granulometry	No data		
Stability in organic solvents and identity of relevant degradation products	result: a.s. was stable in b.p. over 60 months at 25°C and over 12 months at 40°C	BODE Chemie (1999a)	Biocidal product (a mixture containing MES), 4 different batches were tested.
Dissociation constant	pKa = 6.5	BODE Chemie (2007)	OECD 112 titration method; GLP

Property	Value	Reference	Comment (e.g. measured or estimated)
			30.1% MES solution in water
Viscosity	result: 1390.5 mPa/s temperature: 20°C content: 30.4% (m/m)	BODE Chemie (2007)	OECD 114 "rolling ball viscometer" (according to Höppler), described in DIN 53015

8 EVALUATION OF PHYSICAL HAZARDS

8.1 Explosives

Table 9: Summary table of studies on explosive properties.

Method	Results	Remarks	Reference
EU test method A.14 according to Regulation 440/2008/EC; GLP	The heat decomposition was below 500 J/g. Therefore the test on explosive properties was not necessary.	The test item has no explosive properties in the sense of the European Commission Regulation No. 440/2008,	BODE Chemie (2010b)

8.1.1 Short summary and overall relevance of the information provided on explosive properties

As a screening method for the determination of explosive properties a differential scanning calorimetry (DSC) under nitrogen was performed.

If the decomposition energy is below 500 J/g a main test for explosive properties is unnecessary - Recommendations on the Transport of Dangerous Goods/Manual of Tests and Criteria (ST/SG/AC.10/11/Rev.3 – page 398).

The DSC-measurement in a closed glass crucible with the item showed multiple endothermal effects in the temperature range of 25 - 150°C and two exotermal effects in the temperature range of 330 - 420°C and 435 - 460°C with an energy of 84 J/g and 167 J/g respectively (exothermal overall energy: 251 J/g). The heat decomposition was below 500 J/g. Therefore the test on explosive properties was not necessary.

The test item has no explosive properties in the sense of the European Commission Regulation (EC) No. 440/2008, Method A.14.

8.1.2 Comparison with the CLP criteria

According to CLP regulation a substance or mixture shall not be classified as explosive if:

a) There are no chemical groups associated with explosive properties present in the molecule. Examples of groups which may indicate explosive properties are given in Table A6.1 in Appendix 6 of the UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria; or

b) The substance contains chemical groups associated with explosive properties which include oxygen and the calculated oxygen balance is less than - 200;

The oxygen balance is calculated for the chemical reaction:

 $C_xH_yO_z + [x + (y/4)-(z/2)] O_2 \rightarrow x CO_2 + (y/2) H_2O$

Using the formula:

Oxygen balance = -1600 [2x + (y/2)-z]/molecular weight;

c) When the organic substance or a homogenous mixture of organic substances contains chemical groups associated with explosive properties but the exothermic decomposition energy is less than 500 J/g and the onset of exothermic decomposition is below 500°C. The exothermic decomposition energy can be determined using a suitable calorimetric technique; or

d) For mixtures of inorganic oxidising substances with organic material(s), the concentration of the inorganic oxidising substance is:

- less than 15 % by mass, if the oxidising substance is assigned to Categories 1 or 2;

- less than 30 % by mass.

The heat of decomposition of MES obtained during DSC-measurement was below 500 J/g.

8.1.3 Conclusion on classification and labelling for explosive properties

Mecetronium ethyl sulphate [MES] is proposed not to be classified as explosive according to CLP regulation.

8.2 Flammable gases (including chemically unstable gases)

Table 10: Summary table of studies on flammable gases (including chemically unstable gases)

Method	Results	Remarks	Reference
Hazard class not applicable.			

8.2.1 Short summary and overall relevance of the provided information on flammable gases (including chemically unstable gases)

Hazard class not applicable.

8.2.2 Comparison with the CLP criteria

Hazard class not applicable.

8.2.3 Conclusion on classification and labelling for flammable gases

Hazard class not applicable.

8.3 Oxidising gases

Table 11: Summary table of studies on oxidising gases.

Method	Results	Remarks	Reference
	Hazard class not applicable.		

8.3.1 Short summary and overall relevance of the provided information on oxidising gases

Hazard class not applicable.

8.3.2 Comparison with the CLP criteria

Hazard class not applicable.

8.3.3 Conclusion on classification and labelling for oxidising gases

Hazard class not applicable.

8.4 Gases under pressure

Table 12: Summary table of studies on gases under pressure.

Method	Results	Remarks	Reference
	Hazard class not applicable.		

8.4.1 Short summary and overall relevance of the provided information on gases under pressure

Hazard class not applicable.

8.4.2 Comparison with the CLP criteria

Hazard class not applicable.

8.4.3 Conclusion on classification and labelling for gases under pressure

Hazard class not applicable.

8.5 Flammable liquids

Table 13: Summary table of studies on flammable liquids.

Method	Results	Remarks	Reference
	Hazard class not applicable.		

8.5.1 Short summary and overall relevance of the provided information on flammable liquids

The substance is produced, handled and marketed as aqueous solution. Since purified mecetronium ethyl sulphate [MES] is not considered as highly flammable solid it could be concluded that aqueous solution of mecetronium ethyl sulphate [MES] do not poses any flammable properties.

8.5.2 Comparison with the CLP criteria

Hazard class not applicable.

8.5.3 Conclusion on classification and labelling for flammable liquids

Hazard class not applicable.

8.6 Flammable solids

Table 14: Summary table of studies on flammable solids.

Method	Results	Remarks	Reference
test method A.10 according to	No explosive properties		BODE Chemie
Regulation EC (No) 440/2008/EC;	according to Regulation		(2010a)
GLP	440/2008/EC.		

8.6.1 Short summary and overall relevance of the provided information on flammable solids

In order to assess if the mecetronium ethyl sulphate [MES] should be classified as flammable solid or not the A.10 (Flammability (solids)) test was performed.

In the preliminary screening test the substance is formed into an unbroken strip or powder train about 250 mm long by 20 mm wide by 10 mm high on a non-combustible, non-porous and low heat-conducting base plate. A hot flame from a gas burner (minimum diameter 5 mm) is applied to one end of the powder train until the powder ignites or for a maximum of two minutes. It should be noted whether combustion propagates along 200 mm of the train within the 4 minutes test period. If the substance does not ignite and propagate combustion either by burning with flame or smouldering along 200 mm of the powder train within the four minutes test period, then the substance should not be considered as highly flammable and no further testing is required. If the substance propagates burning of a 200 mm length of the powder train in less than four minutes the main test should be carried out.

In preliminary test mecetronium ethyl sulphate [MES] could not be ignited with a flame. Mecetronium ethyl sulphate [MES] melted at contact with the flame. A main test was therefore not necessary.

8.6.2 Comparison with the CLP criteria

Based on the results of preliminary screening test – mecetronium ethyl sulphate [MES] could not be ignited with a flame – mecetronium ethyl sulphate [MES] should not be considered as highly flammable.

8.6.3 Conclusion on classification and labelling for flammable solids

Classification and labelling is not required.

8.7 Self-reactive substances

Table 15: Summary table of studies on self-reactivity.

Method	Results	Remarks	Reference
	No data.		

8.7.1 Short summary and overall relevance of the provided information on self-reactive substances

There are no studies to assess if mecetronium ethyl sulphate [MES] should be classified as self-reactive substance.

8.7.2 Comparison with the CLP criteria

According to CLP, substances and mixtures must be considered for classification in this hazard class as a self-reactive substance or mixture unless:

(a) they are explosives, according to the criteria given in 2.1;

(b) they are oxidising liquids or solids, according to the criteria given in 2.13 or 2.14, except that mixtures of oxidising substances, which contain 5% or more of combustible organic substances shall be classified as self-reactive substances according to the procedure defined in 2.8.2.2;

(c) they are organic peroxides, according to the criteria given in 2.15;

(d) their heat of decomposition is less than 300 J/g; or

(e) their self-accelerating decomposition temperature (SADT) is greater than 75°C for a 50 kg package (See UN RTDG, Manual of Test and Criteria, sub-sections 28.1, 28.2, 28.3 and Table 28.3.)

The DSC-measurement in a closed glass crucible with MES showed multiple endothermal effects in the temperature range of 25 - 150°C and two exotermal effects in the temperature range of 330 - 420°C and 435 - 460°C with an energy of 84 J/g and 167 J/g respectively (exothermal overall energy: 251 J/g). The heat decomposition was below 300 J/g.

8.7.3 Conclusion on classification and labelling for self-reactive substances

Classification and labelling is not proposed.

8.8 Pyrophoric liquids

Table 16: Summary table of studies on pyrophoric liquids.

Method	Results	Remarks	Reference
	Hazard class not applicable.		

8.8.1 Short summary and overall relevance of the provided information on pyrophoric liquids

Hazard class not applicable.

8.8.2 Comparison with the CLP criteria

Hazard class not applicable.

8.8.3 Conclusion on classification and labelling for pyrophoric liquids

Hazard class not applicable.

8.9 Pyrophoric solids

Table 17: Summary table of studies on pyrophoric solids.

Method	Results	Remarks	Reference	
No data.				

8.9.1 Short summary and overall relevance of the provided information on pyrophoric solids

There are no studies performed in order to asses if mecetronium ethyl sulphate [MES] should be classified as pyrophoric solid.

8.9.2 Comparison with the CLP criteria

According to CLP Regulation the classification procedure for pyrophoric solids need not be applied when experience in manufacture or handling shows that the substance or mixture does not ignite spontaneously on coming into contact with air at normal temperatures (i.e. the substance is known to be stable at room temperature for prolonged periods of time (days)).

Mecetronium ethyl sulphate [MES] is produced as 29% solution in water.

Additionally the chemical stability of mecetronium ethyl sulphate [MES] powder was investigated by 1H-NMR after storage at 65°C for 24 hours. Mecetronium ethyl sulphate [MES] was found to be stable and the NMR spectrum was consistent with the proposed structure.

8.9.3 Conclusion on classification and labelling for pyrophoric solids

Classification and labelling is not required.

8.10 Self-heating substances

Table 18: Summary table of studies on self-heating substances

Method	Results	Remarks	Reference	
No data				

8.10.1 Short summary and overall relevance of the provided information on self-heating substances

There are no studies to assess if mecetronium ethyl sulphate [MES] should be classified as self-heating substance.

8.10.2 Comparison with the CLP criteria

According to Guidance on the application of the CLP criteria (Version 4.1, June 2011):

a) in general, the phenomenon of self-heating applies only to solids. The surface of liquids is not large enough for reaction with air and the test method is not applicable to liquids. Therefore liquids are not classified as self-heating. However, if liquids are adsorbed on a large surface (e.g. on powder particles), a self-heating hazard should be considered.

Mecetronium ethyl sulphate [MES] is produced as 29% solution in water.

b) Substances or mixtures with a low melting point (< 160°C) should not be considered for classification in this class since the melting process is endothermic and the substance-air surface is drastically reduced. However, this criterion is only applicable if the substance or mixture is completely molten up to this temperature.

In A.1 test (Melting/freezing temperature) mecetronium ethyl sulphate [MES] has a melting range from 87.6°C to 111°C.

8.10.3 Conclusion on classification and labelling for self-heating substances

Classification and labelling is not peoposed.

8.11 Substances which in contact with water emit flammable gases

Table 19: Summary table of studies on substances which in contact with water emit flammable gases.

Method	Results	Remarks	Reference
	No data.		

8.11.1 Short summary and overall relevance of the provided information on substances which in contact with water emit flammable gases

There are no studies on mecetronium ethyl sulphate [MES] which can be used to assess if substance in contact with water emit flammable gases.

8.11.2 Comparison with the CLP criteria

According to CLP regulation the classification procedure for this class need not be applied if:

(a) the chemical structure of the substance or mixture does not contain metals or metalloids; or

(b) experience in production or handling shows that the substance or mixture does not react with water, e.g. the substance is manufactured with water or washed with water; or

(c) the substance or mixture is known to be soluble in water to form a stable mixture.

Based on the chemical structure of mecetronium ethyl sulphate [MES] and also experience in production and handling it can be concluded that mecetronium ethyl sulphate [MES] in contact with water not emit flammable gases.

8.11.3 Conclusion on classification and labelling for substances which in contact with water emit flammable gases

Classification and labelling is not required.

8.12 Oxidising liquids

Table 20: Summary table of studies on oxidising liquids.

Method	Results	Remarks	Reference	
Hazard class not applicable.				

8.12.1 Short summary and overall relevance of the provided information on oxidising liquids

Hazard class not applicable.

8.12.2 Comparison with the CLP criteria

Hazard class not applicable.

8.12.3 Conclusion on classification and labelling for oxidising liquids

Hazard class not applicable.

8.13 Oxidising solids

Table 21: Summary table of studies on oxidising solids.

Method	Results	Remarks	Reference	
No data.				

8.13.1 Short summary and overall relevance of the provided information on oxidising solids

From the structural formula and the composition of the substance it can be concluded that the substance does not evolve any oxidizing properties.

Additionally the substance is produced, handled and marketed as aqueous solution, which prevents oxidizing properties.

8.13.2 Comparison with the CLP criteria

The classification procedure needs not to be applied due to information obtained from structural formula and the composition of the substance.

8.13.3 Conclusion on classification and labelling for oxidising solids

Classification and labelling is not required.

8.14 Organic peroxides

Table 22: Summary table of studies on organic peroxides.

Method	Results	Remarks	Reference
Hazard class not applicable.			

8.14.1 Short summary and overall relevance of the provided information on organic peroxides

Hazard class not applicable.

8.14.2 Comparison with the CLP criteria

Hazard class not applicable.

8.14.3 Conclusion on classification and labelling for organic peroxides

Classification and labelling is not proposed.

8.15 Corrosive to metals

Table 23: Summary table of studies on the hazard class corrosive to metals.

Method	Results	Remarks	Reference
	No data.		

8.15.1 Short summary and overall relevance of the provided information on the hazard class corrosive to metals

There are no studies on the hazard class corrosive to metals for mecetronium ethyl sulphate [MES].

8.15.2 Comparison with the CLP criteria

No data to to compare with CLP criteria.

8.15.3 Conclusion on classification and labelling for corrosive to metals

Classification and labelling is not proposed.

9 TOXICOKINETICS (ABSORPTION, METABOLISM, DISTRIBUTION AND ELIMINATION)

Table 24: Summary table of toxicokinetic studies.

		D I	D.C.
Method	Results	Remarks	Reference
Comparable to OECD guideline	After dermal exposure to 1 mg		BODE Chemie (1987)
417	14C-labelled Mecetronium ethyl		
GLP: no	sulphate [MES] in DMSO for		
Study according to "Hazleton	24 h less than 3% of the		
Standard Operating Procedures"	radioactivity were recovered in		
and regular audit/inspections by an	urine, faeces, cage washings		
independent quality assurance	during the sampling period of 72 h and in tissues at		
unit.	termination (carcass 0.7% and		
Three male and 3 female rats	all other tissues 0.2%)		
received a dermal application of 1	indicating a minimal absorption		
mg/rat 14C-labelled test substance	of the radiolabelled test		
(exposure period: 6 h, test	substance. Furthermore, small		
formulations, 24 h, control	but widely distributed		
formulation, under occlusive	radioactive tissue residues at 72		
conditions). Urine, faeces and	h post-dose were reported. Most		
expired air were collected in	of the radioactivity was		
intervals over 72 h and	recovered in the occlusive		
radioactivity measured. After 72 h	dressings or bound to the site of		
the radioactivity was determined	application.		
in selected tissues.	Similar results (max. 4.5%		
	percutaneous absorption) were		
The percutaneous absorption of 1	obtained in parallel		
mg radiolabelled MES from a	percutaneous absorption		
control formulation (DMSO) and 2	experiments with 14C-labelled		
test formulations (solution T and	Mecetronium ethyl sulphate in		
solution M, both mixtures	two test formulations (mixtures		
containing 0.2% MES) has been	containing 0.2 MES) after an		
studied. Batch 1 was used for the	exposure period of 6 h.		
control, batch 2 was used for the T	Relatively high concentrations		
and M formulations (mixtures	(1.9-3.5%) were found in the		
containing 0.2% MES).	remaining carcass, 0.2-0.7% in		
Test substance labelled with	all other removed organs. Most		
carbon 14 in the N-methyl	of the radioactivity was		
moieties, specific radioactivity	recovered in the occlusive		
59.7 μ Ci/mg (analytical; nominal	dressings or bound to the site of		
49 μ Ci/mg) for batch 1 (control	application.		
formulation) and 53.64 μ Ci/mg			
(analytical; nominal 53 μ Ci/mg) for batch 2 (test formulations T			
and M, mixtures containing 0.2			
MES).			
	ead across to several other quaternar	v ammonium compour	ds is possible

Basic toxicokinetics - a read across to several other quaternary ammonium compounds is possible.

Information given for quaternary ammonium compounds in the literature can be summarized as follows:

Quaternary ammonium compounds are poorly absorbed from the gastrointestinal tract; and therefore relatively large amounts are eliminated in feces (PIM G022). In general, excretion is via feces and urine; an influence of the molecular weight on the excretion is indicated by one study (Hughes et al. (1973)) showing that cations within a molecular range of 94 to 164 g/mol are excreted mainly via urine and cations from 173 - 302 g/mol are excreted via feces as well. For those compounds that are absorbed to a certain extent a rapid distribution in the body is shown (Neef et al. (1984)), however elimination is a fast running process showing half lives of only few minutes. A negligible amount for i.e. Didecyldimethylammonium chloride is retained in the body after one week (Hendersen (1992)).

Several quaternary ammonium compounds are excreted mainly unchanged, others are metabolised to a certain extent. Hughes et al. (1973) detected in their set of quaternary ammonium compounds 7 substances which were excreted largely unchanged in urine or bile (Triethylethanaminium, 1-methylpyridinium, N,N-trimethylanilinium, N,N-

Method	Results	Remarks	Reference
diethyl-N-methylanilinium, N	-methyl-N,N-dipropylanilinium,	N,N-dimethyl-N-phenylani	linium). Three other
compounds (3-hydroxyphenyl tr	imethylammonium, 3-bromo-N-me	thyl pyridinium and cetyltri	imethylammonium) were
metabolised. In another set of qu	aternary ammonium compounds N	eef et al (1984) found out th	hat all biliary metabolites
still contain a quaternary amm	onium group and that no evidenc	e for a reaction with gluc	uronic acid, sulphate or
	, ring oxidation and/or hydroxylati		
most probable; oxidation of the	decyl side chain is likely. Henderse	en (1992) postulated for Did	decyldimethylammonium
chloride that initial hydroxylatic	on is followed by formation of hydr	oxyketone; the metabolism	involving oxidation and
conjugation reactions is analogo	us to the degradation of fatty acids	oy β-oxidation.	
Systemic effects from percutant	eous absorption through intact skir	are rare (PIM G022). Did	lecyldimethylammonium
chloride does not undergo degra	dation on the skin (Hendersen (1992	2)).	

9.1 Short summary and overall relevance of the provided toxicokinetic information on the proposed classification(s)

Minimal percutaneous absorption of mecetronium ethyl sulphate [MES] in DMSO (control formulation) has been observed. During a 72 h sampling period about 2% were excreted via faeces and urine and only 0.9% were detected in the body at termination indicating an absorption of about 3%. In two test formulations (mixtures containing 0.2 MES) a maximum percutaneous absorption of 4.5% was observed. About 1% were excreted in faeces and urine and about 3.5% were detected in the body, primarily in the remaining carcass. In order to explain these results one additional rat was treated with radiolabelled mecetronium ethyl sulphate [MES] in formulation T, and MES was found not only at the initial application site, but also recovered from concentric areas of skin surrounding the initial application site, analysed with the residual carcass and thus leading to an overestimation of the dermally absorbed dose. A comparison of the 3 formulations without residual carcass indicated that the dermal absorption of mecetronium ethyl sulphate [MES] from the formulations T and M (mixtures containing 0.2 MES) were similar to that observed with the control vehicle DMSO which was designed to give the maximal absorption.

10 EVALUATION OF HEALTH HAZARDS

Acute toxicity

10.1 Acute toxicity - oral route

Method,	Species, strain,	Test substance,	Dose levels,	Value	Reference
guideline,	sex, no/group		duration of	LD50	
deviations if any			exposure		
OECD 401	Rat	Mecetronium	2000 mg/kg bw	Clinical signs: Within	<confidential></confidential>
Limit test	Wistars	ethyl sulphate [MES]	Post exposure	the 1st 24 h after application 1/5 males	(1992)
Oral; Gavage	Males	Clear liquid	period: 14 days	and 1/5 females died.	
GLP	and females Number of	Clear liquid; 30% active component	Examinations: clinical observations (10	The main clinical signs observed up to day 4 (females more affected	
	animals per group: 5 males	Purity of the active substance:	min, 1 h, 2 h, 6 h, 24 h and	than males) were poor general condition,	

Table 25: Summary table of animal studies on acute oral toxicity.

Method,	Species, strain,	Test substance,	Dose levels,	Value	Reference
guideline,	sex, no/group		duration of	LD50	
deviations if any	and 5 females, one dose	IUCLID technical dossier	exposure thereafter once daily up to day 14 after exposure), body weight (measured day 0, 7 and 14), necropsy (14 days after exposure or when rats were found dead).	decreased respiratory rate, abnormal gait, squatting position and sunken flanks (no effects at day 5-14). Body weight gain normal in males but in females slight decrease in body weight on day 7 compared with day 0 (156 versus 159 g), increase at day 14 (176 g). Related to "Mecetroniumetilsulfat 30%" the LD ₅₀ for males and females is greater than 2000 mg/kg bw. Related to the active component Mecetronium ethyl sulphate the LD ₅₀ for males and females is greater than 600 mg/kg bw.	
OECD 401 Limit test Oral; Gavage GLP	Rat Wistars Males and females Number of animals per group: 5 males and 5 females, one dose	Mecetronium ethyl sulphate [MES] Clear liquid; 4% active component Purity of the active substance: IUCLID technical dossier	2000 mg/kg bw Post exposure period: 14 days Examinations: clinical observations (10 min, 1 h, 2 h, 6 h, 24 h, and thereafter once daily up to day 14 after exposure), body weight (measured day 0, 7 and 14), necropsy (14 days after exposure).	no effects. Normal mean body weight	<confidential> (1992a)</confidential>

Type of data/report	Test substance,	Relevant information about the study (as applicable)	Observations	Reference
Epidemiological studies on the general population	Biocidal product containing 0.2% MES	The overall incidence of suspected drug reactions is very low (0.00018%). Any type of suspected drug reactions can be considered to be "very rare" (<0.01%).	frequency of suspected drug reactions in connection with a mixture containing 0.2 MES between January 2000 and August 2005	Periodic Safety Update Report for Medicinal Products.
			Oral misuse: Number of incidents: 7 Relative frequency per all hygienic hand disinfections: 0.0000001%	

Table 26: Summary table of human data on acute oral toxicity

Table 27: Summary table of other studies relevant for acute oral toxicity

J I -	Test substance,	Relevant information about the study (as applicable)	Observations	Reference
		No data		

10.1.1 Short summary and overall relevance of the provided information on acute oral toxicity

Two animal studies on acute oral toxicity were performed.

The first study was performed on "Mecetroniumetilsulfat 30%" (Clear liquid; 30% active component, density 0.99 g/ml; pH value 7.38). Study performed according to OECD guideline 401 (limit-test using a dose of 2000 mg/kg bw of "Mecetroniumetilsulfat 30%" in 5 male and 5 female rats).Within the 1st 24 h after application of 2000 mg/kg bw 1/5 males and 1/5 females died. The main clinical signs observed up to day 4 (females more affected than males) were poor general condition, decreased respiratory rate, abnormal gait, squatting position and sunken flanks (no effects at day 5-14). Body weight gain normal in males but in females slight decrease in body weight on day 7 compared with day 0 (156 versus 159 g), increase at day 14 (176 g). LD₅₀ for active component mecetronium ethyl sulphate [MES] was calculated as >600 mg/kg bw taking into

account, that in the acute oral toxicity study the LD_{50} for 30% solution was >2000 mg/kg bw. Such calculation could be burdened with an uncertainity due to possible difference in toxicity related to dilution of the active substance. In this case, since the active substance is presented always as a 30% solution, it seems to be justified to support LD_{50} derived from the acute toxicity of 2000 mg/kg/bw of 30% mecetronium ethyl sulphate [MES] solution.

The second study was performed on "Mecetroniumetilsulfat 4%" (Clear liquid; 4% active component, density 0.99 g/ml; pH value 6.18). Study performed according to OECD guideline 401 (limit-test using a dose of 2000 mg/kg bw of "Mecetroniumetilsulfat 4%" in 5 male and 5 female rats). Clinical observations were conducted at regular intervals during the 14-day observation period. Body weights were measured at days 0, 7 and 14 p.a. Gross pathological observations were performed on all animals 14 days p.a. No animals died during the study. Clinical signs: piloerection in 10/10 rats, in 2 females slightly reduced activity, squatting position and decreased respiratory rate 2-6 h after application, later observations revealed no effects. Normal mean body weight gain. The LD₅₀ for male and female rats after oral exposure to "Mecetroniumetilsulfat 4%" is greater than 2000 mg/kg bw (80 mg/kg bw related to active component).

10.1.2 Comparison with the CLP criteria

Table 29 Decults of couts and	1 torrigity studios in	commoniation to the	CI D amitamia
Table 28. Results of acute oral	i toxicity studies in	comparision to the	CLF CITIEITA.

Toxicological results	CLP criteria
The LD ₅₀ for male and female rats after oral exposure to "Mecetroniumetilsulfat 4%" is greater than 2000 mg/kg bw (80 mg/kg bw related to active component). The LD ₅₀ for male and female rats after oral exposure to "Mecetroniumetilsulfat 30%" is greater than 2000 mg/kg bw (600 mg/kg bw related to active component).	Cat. 4 (H302) $300 < LD_{50} \le 2000 \text{ mg/kg bw}$ Cat. 3 (H301) $50 < LD_{50} \le 300 \text{ mg/kg bw}$ Cat. 2 (H300) $5 < LD_{50} \le 50 \text{ mg/kg bw}$
LD ₅₀ for active component Mecetronium ethyl sulphate [MES] was calculated as greater than 80 mg/kg bw taking into account, that in the acute oral toxicity study the LD ₅₀ for 4% solution was >2000mg/kg bw. Such calculation could be burdened with an uncertainty. The study provides vast margin of uncertainty because no mortality was observed and other signs of toxicity were rather mild. Therefore this study should not be used for active substance LD ₅₀ approximation, rather LD ₀ than LD ₅₀ could be revealed, but could be used for toxicological classification of 4% MES solution.	Cat. 1 (H300) LD ₅₀ \leq 5 mg/kg bw
In this case, since the active substance is presented always as a 30% solution, it seems to be justified to support LD_{50} derived from the acute toxicity of > 2000 mg/kg/bw of 30% MES solution.	
However, taking into account the results obtained with	

30% solution, it may be concluded, that LD_{50} of active substance is > 600mg/kg bw.	
---	--

10.1.3 Conclusion on classification and labelling for acute oral toxicity

Based on the submitted acute oral toxicity studies, mecetronium ethyl sulphate [MES] should be classified for acute oral toxicity in category 4 (Acute Tox. 4, H302 – Harmful if swallowed) (LD_{50} for active component mecetronium ethyl sulphate [MES] was calculated as >600 mg/kg bw taking into account, that in the acute oral toxicity study the LD_{50} for 30% solution was >2000 mg/kg bw).

10.2 Acute toxicity - dermal route

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance,	Dose levels duration of exposure	Value LD50	Reference
OECD 402 Limit test Dermal GLP	Rat Wistars Males and females Number of animals per group: 5 males and 5 females, one dose	Mecetronium ethyl sulphate [MES] Clear liquid; 4% active component Purity of the active substance: IUCLID technical dossier	2000 mg/kg bw Duration of exposure: 24h Examinations: clinical observations (10 min, 1 h, 2 h, 6 h, 24 h and thereafter once daily up to day 14 after exposure), skin reaction scored once daily after patch removal, body weight (measured day 0, 7 and 14), necropsy (14 days after exposure).	The LD ₅₀ for male and female rats after dermal exposure to "Mecetroniumetilsulfat 4%" is greater than 2000 mg/kg bw (80 mg/kg bw related to active component).	<confidential> (1992b)</confidential>
OECD 402 Limit test Dermal GLP	Rat Wistars Males and females Number of animals per group: 5 males and 5 females, one dose	Mecetronium ethyl sulphate [MES] Clear liquid; 30% active component Purity of the active substance: IUCLID technical dossier	2000 mg/kg bw Duration of exposure: 24h Post exposure period: 14 days Examinations: clinical observations (10 min, 1 h, 2 h, 6 h, 24 h and thereafter once daily up to day 14 after	Related to "Mecetroniumetilsulfat 30%" the LD ₅₀ for males and females is greater than 2000 mg/kg bw. Related to the active component Mecetronium ethyl sulphate [MES] the LD ₅₀ for males and females is greater than 600 mg/kg bw.	<confidential> (1992c)</confidential>

Table 29: Summary table of animal studies on acute dermal toxicity.

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance,	Dose levels duration of exposure	Value LD50	Reference
			exposure), skin reaction scored once daily after patch removal, body weight (measured day 0, 7 and 14), necropsy (14 days after exposure).		

Table 30: Summary table of human data on acute dermal toxicity.

• •	Relevant information applicable)	about the study (a	S Observations	Reference
		No data		

Table 31: Summary table of other studies relevant for acute dermal toxicity.

Type of study/data	Test substance,	Relevant information about the study (as applicable)	Observations	Reference
		No data		

10.2.1 Short summary and overall relevance of the provided information on acute dermal toxicity

Two animal studies on acute dermal toxicity were performed.

The first study was performed on "Mecetroniumetilsulfat 4%" (Clear liquid; 4% active component, density 0.99 g/ml). Study performed according to OECD guideline 402 (limit-test using a dose of 2000 mg/kg bw of "Mecetroniumetilsulfat 4%" in 5 male and 5 female rats). Clinical observations were conducted at regular intervals during the 14-day observation period. Body weights were measured at days 0, 7 and 14 p.a. After patch removal, dermal irritation was evaluated once daily for 14 days according to a scheme based on Draize. Mainly in the female rats erythema and oedema were observed up to 13 days in 2 females. Additionally in a few females formation of fissures and degreasing of the treated skin were observed. Gross pathological observations were performed on all animals at terminations. No animals died during the study. The LD₅₀ for male and female rats after dermal exposure to "Mecetroniumetilsulfat 4%" is greater than 2000 mg/kg bw (80 mg/kg bw related to active component).

The second study was performed on "Mecetroniumetilsulfat 30%" (Clear liquid; 30% active component, density 0.99 g/ml; pH value 7.38). Study performed according to OECD guideline 402

(limit-test using a dose of 2000 mg/kg bw of "Mecetroniumetilsulfat 30%" in 5 male and 5 female rats). Clinical observations were conducted at regular intervals during the 14-day observation period. Body weights were measured at days 0, 7 and 14 p.a. After patch removal, dermal irritation and other alterations were evaluated once daily for 14 days according to a scheme based on Draize. Moderate to severe erythema and very slight oedema were observed up to day 12 p.a. followed by a decline of these skin reactions up to the end of observation period (day 14 p.a.). Additionally degreasing, induration, partial desquamation and formation of fissures were observed. Gross pathological observations were performed on all animals at terminations. No animals died during the study. The LD₅₀ for male and female rats after dermal exposure to "Mecetroniumetilsulfat 30%" is greater than 2000 mg/kg bw (600 mg/kg bw related to active component).

10.2.2 Comparison with the CLP criteria

Toxicological results	CLP criteria
The LD ₅₀ for male and female rats after dermal exposure to "Mecetroniumetilsulfat 4%" is greater than 2000 mg/kg bw (80 mg/kg bw related to active component). The LD ₅₀ for male and female rats after dermal exposure to "Mecetroniumetilsulfat 30%" is greater than 2000 mg/kg bw (600 mg/kg bw related to active component).	Cat. 4 (H312) $1000 < LD_{50} \le 2000 \text{ mg/kg bw}$ Cat. 3 (H311) $200 < LD_{50} \le 1000 \text{ mg/kg bw}$ Cat. 2 (H310) $50 < LD_{50} \le 200 \text{ mg/kg bw}$
LD ₅₀ for active component Mecetronium ethyl sulphate [MES] was calculated as greater than 80 mg/kg bw taking into account, that in the acute oral toxicity study the LD ₅₀ for 4% solution was >2000mg/kg bw. Such calculation could be burdened with an uncertainty. The study provides vast margin of uncertainty because no mortality was observed and other signs of toxicity were rather mild. Therefore this study should not be used for active substance LD ₅₀ approximation, rather LD ₀ than LD ₅₀ could be revealed, but could be used for toxicological classification of 4% MES solution. Since the active substance is always present as 30% solution, it seems to be justified to support LD ₅₀ derived from the acute dermal toxicity of 30% solution. However, taking into account the results obtained with 30% solution, it may be concluded, that LD ₅₀ of active substance is > 600 mg/kg bw.	Cat. 1 (H310) LD ₅₀ ≤ 50 mg/kg bw

Table 32. Results of acute dermal toxicity studies in comparision to the CLP criteria.

10.2.3 Conclusion on classification and labelling for acute dermal toxicity

Based on the submitted acute dermal toxicity studies, mecetronium ethyl sulphate [MES] should be classified for acute dermal toxicity in category 3 (Acute Tox. 3, H311 – Toxic in contact with skin).

(The LD_{50} for male and female rats after dermal exposure to "Mecetroniumetilsulfat 30%" is greater than 2000 mg/kg bw - 600 mg/kg bw related to active component- based on the worst case scenario it can not be concluded that LD_{50} for active substance is higher that cut-off value for category 3).

10.3 Acute toxicity - inhalation route

Table 33: Summary table of animal studies on acute inhalation toxicity

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance, form and particle size (MMAD)	Dose levels, duration of exposure	Value LC50	Reference
No data					

Table 34: Summary table of human data on acute inhalation toxicity

• •	Relevant information about the study (a applicable)	Observations	Reference		
No data					

Table 35: Summary table of other studies relevant for acute inhalation toxicity

J 1	Test substance,	Relevant information about the study (as applicable)	Observations	Reference
		No data		

10.3.1 Short summary and overall relevance of the provided information on acute inhalation toxicity

An acute inhalation toxicity study was not performed due to the following reasons:

1) the physico-chemical properties indicate that the active substance has no tendency to become airborne. Mecetronium ethyl sulphate [MES] is an ionic substance which is produced as 30% aqueous solution. In addition, the vapour pressure is calculated to be very low $(3.2 \cdot 10^{-12} \text{ Pa} (20^{\circ}\text{C}),$

2) the exposure of professionals to mecetronium ethyl sulphate [MES] during production and formulation is limited to the dermal route, since PC data excluded the existence of mecetronium ethyl sulphate in inhaled air (see above). The generation of an aerosol during production or formulation is improbable,

3) the exposure of users to mecetronium ethyl sulphate [MES] via the product containing 0.2% MES is limited to the dermal route. Inhalation exposure to mecetronium ethyl sulphate [MES]

vapour is excluded due to the low vapour pressure and the generation of an aerosol during use (specified dispenser as described in product information) is excluded.

10.3.2 Comparison with the CLP criteria

There are no relevant data to compare with criteria.

10.3.3 Conclusion on classification and labelling for acute inhalation toxicity

Classification and labelling is not required.

10.4 Skin corrosion/irritation

Method,	Species,	Test substance,	Dose levels	Results	Reference
guideline,	strain,		duration of	-Observations and time point	
deviations	sex,		exposure	of onset	
if any	no/group			-Mean scores/animal	
				-Reversibility	
OECD	Rabbit	"Mecetroniumetilsulfat		No erythema, oedema or any	<confidential>(1992d)</confidential>
404	White	0.2%"	the test	other effects on skin observed	
	New		substance applied to		
	Zealand		ca. $6 \text{ cm}^2 \text{ of}$		
	Number		test site		
	of				
	animals		exposure: 4		
	per		hours		
	group: 3		Examination		
	rabbits		time points:		
			30-60 min,		
			24 h, 48 h, 72 h after		
			patch		
			removal.		
OECD	Rabbit	"Mecetroniumetilsulfat		Reversibility: No	<confidential>(1993)</confidential>
404	White	4%"	the test		Acute dermal
	New		substance applied to		irritation/corrosion test of
	Zealand		ca. $6 \text{ cm}^2 \text{ of}$		"Mecetroniumetilsulfat
	Number		test site		4%" in rabbits. IBR
	of		4		Forschungs GmbH,
	animals		exposure: 4		Project No.: 10-03-
	per		hours		1705/00-92
	group: 3		Examination		(unpublished).
	rabbits		time points:		
			30-60 min,		
			24 h, 48 h, 72 h after		
			patch		
			removal and		
			thereafter		
			once daily		
			up to day 15		
			(1 rabbit) or		
			18 (2		

Table 36: Summary table of animal studies on skin corrosion/irritation.

g d	Vlethod, guideline, leviations f any	strain,	Test substance,	Dose levels duration of exposure	Results -Observations and time point of onset -Mean scores/animal -Reversibility	Reference
				rabbits).		

Table 37: Summary table of human data on skin corrosion/irritation.

Type of data/report	substance,	Relevant about the applicable)	information study (as	Observations		Reference
Data on the general population can be obtained from the biocidal product containing 0.2% of MES as a periodical safety up-date. The overall incidence of suspected drug reactions is very low (0.00018%). Any type of suspected drug reactions can be considered to be "very rare" (<0.01%). Skin irritation, suspected allergy and eye irritation are the commonly reported drug reactions, oral misuse occurred occasionally.						
	Table: Absolute and relative frequency of suspected drug reactionsin connection with a mixture containing 0.2% MES between January2000 and August 2005					
	Type of drugNumber ofRelative frequency per allreactionincidentshygienic hand disinfections					
	Suspected aller	gy	43	0.0000006%		
	Skin irritation	Skin irritation 41 0.000006%				
	Ocular irritation	n	24	0.000003%		
	Oral misuse		7	0.0000001%		
	Respiratory irritation	tract	2	<0.000001%		
	Diarrhea		1	<0.0000001%		
	Burns 1 <0.000001%					
	All		118	0.0000018%		

Table 38: Summary table of other studies relevant for skin corrosion/irritation.

Type of study/data	Test substance,	Relevant about the applicable)	information study (as		Reference
No data					

10.4.1 Short summary and overall relevance of the provided information on skin corrosion/irritation

The potential toxicity of "Mecetroniumetilsulfat 0.2%" was assessed in an acute dermal irritation/corrosion test on 3 albino rabbits. The skin was exposed to the test article for 4 hours. Animals were examined for signs of erythema and oedema at 30-60 min, 24, 48 and 72 h after patch removal. The mean grades of skin reactions at 24, 48 and 72 h after patch removal were lower than

the cut-off value for classification of substance/mixture as irritant to skin included in CLP Regulation.

score (average of 3 animals	time	Erythema	Edema
investigated)			
	30-60 min	0	0
average score Draize scores	24 h	0	0
(0 to maximum 4)	48 h	0	0
	72 h	0	0
average score	24h, 48h, 72h	0	0

Table 39. Skin irritation in rabbits after dermal exposure to 0.2% Mecetroniumetilsulfat.

The potential toxicity of "Mecetroniumetilsulfat 4%" was also assessed in an acute dermal irritation/corrosion test on 3 albino rabbits. The skin was exposed to the test article for 4h. Animals were examined for signs of erythema and oedema at 30-60 min, 24, 48 and 72 h and thereafter once daily up to days 15-18 after patch removal. Severe skin reactions of varying extent and duration were apparent in all animals throughout most of the observation period. Over the first 9-10 days after patch removal in all animals erythema and oedema of the treated skin were observed. From 9-10 onwards, all animals showed skin fissures and leathery skin was also evident in one animal. These effect showed little or no signs of reversibility up to days 15-18 post exposure.

Table 40. Skin irritation in rabbits after dermal exposure to 4% Mecetroniumetilsulfat.

score (average of 3 animals investigated)	time	Erythema	Edema
	30-60 min	1	0
average score	24 h	2.0	2.3
Draize scores (0 to maximum 4)	48 h	2.0	2.3
	72 h	2.3	2.3
average score	24h, 48h, 72h	2.1	2.3
other times	4 d	2.3	2.0
	5 d	2.3	2.0
	6 d	2.0	2.0
	7 d	2.0	2.0
	8 d	2.0	2.0

	9 d	2.0**	2.0
	10 d	1.3***	1.0 #
	11 d	1.3***	1.0 #
	12 d	1.0***	0.6 #
	13 d	1.0***	0.6 #
	14d	0.6***	0.3 #
	15 d	0.6***	0.3 #
	16 d (n=2)	0.5**	0.5 #
	17 d (n=2)	0.5**	0.5 #
	18 d (n=2)	0.5**	0.5 #
reversibility:		n.c.	n.c.
	ible; *: formation of skin fissu #: leathery skin in one animal	res (* in one rabb	it, ** in 2

10.4.2 Comparison with the CLP criteria

Toxicological results	CLP criteria
Irreversible skin demage	Corrosion
	On the basis of the results of animal testing a substance is classified as
	corrosive: a corrosive substance is a substance that produces
	destruction of skin tissue, namely, visible necrosis through the
	epidermis and into the dermis, in at least 1 tested animal after exposure
	up to a 4 hour duration. Corrosive reactions are typified by ulcers,
	bleeding, bloody scabs and, by the end of observation at 14 days, by
	discoloration due to blanching of the skin, complete areas of alopecia
	and scars. Histopathology shall be considered to discern questionable
	lesions.
	Three subcategories are provided within the corrosive category:
	subcategory 1A - where responses are noted following up to 3 minutes
	exposure and up to 1 hour observation; subcategory 1B - where
	responses are described following exposure between 3 minutes and 1
	hour and observations up to 14 days; and subcategory 1C - where
	responses occur after exposures between 1 hour and 4 hours and
	observations up to 14 days.

10.4.3 Conclusion on classification and labelling for skin corrosion/irritation

During skin corrosion/irritation study on 4% Mecetroniumetilsulfat some effects observed were not reversible. It can be concluded that "undiluted active substance" has potential corrosive properties. It is proposed to classify mecetronium ethyl sulphate [MES] as skin corrosive in subcategory 1C (Skin Corr. 1C) – responses in study performed on 4% Mecetroniumetilsulfat occur after 4 hour exposure and observations up to 14 days.

10.5 Serious eye damage/eye irritation

Method, guideline, deviations	Species, strain, sex, no/group	Test substance,	Doselevelsdurationofexposure	Results - Observations and time point of onset	Reference
if any				- Mean scores/animal - Reversibility	
according to Draize, (no further details); no guideline study but comparable to OECD 405 with acceptable restrictions: • no wash out after 24 h but presumably not appropriate (minor restriction); •limited data on test animals and clinical signs (minor	group, no information about sex and age	containing	Volume applied: 0.1 ml, duration of observation period: 7 days after application, post exposure period: 7 days	Mean score 2 for conjunctival redness. Effects lasted 24 h Redness, chemosis and discharge of the conjunctiva reached score 2, that is completely reversible after 4 days	BODE Chemie (1978)

Table 41: Summary table of animal studies on serious eye damage/eye irritation.

Table 42: Summary table of human data on serious eye damage/eye irritation.

Type of data/report	Test substance,	Relevant about the	information study (as	Observations	Reference
-		applicable)	•		

AES as a periodical safety up-date The overall incidence of suspected rug reactions can be considered nd eye irritation are the common Table: Absolute and in connection with a	the general population can be obtained from the biocidal product containing 0.2% of a periodical safety up-date: rall incidence of suspected drug reactions is very low (0.00018%). Any type of suspected actions can be considered to be "very rare" (<0.01%). Skin irritation, suspected allerg irritation are the commonly reported drug reactions, oral misuse occurred occasionally. Table: Absolute and relative frequency of suspected drug reactions in connection with a mixture containing 0.2% MES between January 2000 and August 2005						
Type of drug reaction	Number of incidents	Relative frequency per all hygienic hand disinfections					
Suspected allergy	43	0.000006%					
Skin irritation	41	0.0000006%					
Ocular irritation	24	0.000003%					
Oral misuse	7	0.0000001%					
Respiratory tract irritation	2	<0.0000001%					
Diarrhea	Diarrhea 1 <0.000001%						
Burns	1	<0.000001%					
All	118	0.0000018%					

Table 43: Summary table of other studies relevant for serious eye damage/eye irritation.

Type of study/data	Test substance,	Relevant about the applicable)	information study (as		Reference
No data					

10.5.1 Short summary and overall relevance of the provided information on serious eye damage/eye irritation

There are no experimental data on eye irritation/corrosion performed on mecetronium ethyl sulphate [MES] (only the biocidal product containing 0.2 % MES has been tested for acute eye irritation in rabbits) but taking into account the following information:

- the biocidal product containing 0.2 % MES has been tested for acute eye irritation in rabbits. A mixture containing 0.2% mecetronium ethyl sulphate [MES] was irritant to the rabbit eye,

- skin irritation studies have shown that a 4% solution of mecetronium ethyl sulphate [MES] resulted in severe erythema (some indications of irreversible skin damage) after a single dermal application,

- severe local effects in the acute dermal toxicity study with 30 % mecetronium ethyl sulphate [MES] have been demonstrated,

severe eye irritation of MES can be expected.

10.5.2 Comparison with the CLP criteria

There are no relevant data to compare with criteria (No experimental studies were performed to assess the corrosive potential of substance to the eyes).

Mecetronium ethyl sulphate [MES] produced severe irritation/corrosive effects to the skin of rabbits.

According to CLP Regulation skin corrosive substances shall be considered as leading to serious damage to the eyes as well (Category 1). Also according to section 3.3.2.1.2.5 (Testing methods: In vivo methods) of Guidance on the application of CLP Criteria "Testing for eye irritation would not be carried out on substances known or predicted to be corrosive to skin. Such substances are automatically considered to be severely damaging to the eye and are classified but not labelled for serious eye damage in addition to skin corrosion".

Dossier Submitter, taking into account the above mentioned information, recommends also classification, according to CLP, of mecetronium ethyl sulphate [MES] as corrosive to the eyes – Eye Dam. 1, H318.

10.5.3 Conclusion on classification and labelling for serious eye damage/eye irritation

According to CLP regulation requirements mecetronium ethyl sulphate [MES] should be classified for serious eye damage category 1 with hazard statement H318 (Causes serious eye damage).

10.6 Respiratory sensitisation

Table 44: Summary table of animal studies on respiratory sensitisation.

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance,	Dose levels, duration of exposure		Reference	
No data						

Table 45: Summary table of human data on respiratory sensitisation.

Type of data/report	Test substance,	Relevant information about the study (as applicable)		Reference			
	No data						

Table 46: Summary table of other studies relevant for respiratory sensitisation.

J I -	Test substance,	Relevant information about the study (as applicable)		Reference		
	No data					

10.6.1 Short summary and overall relevance of the provided information on respiratory sensitisation

Te are no relevant data to discuss respiratory sensitisation.

10.6.2 Comparison with the CLP criteria

There are no relevant data to compare with criteria.

10.6.3 Conclusion on classification and labelling for respiratory sensitisation

No classification of mecetronium ethyl sulphate [MES] for respiratory sensitisation is proposed.

10.7 Skin sensitisation

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance,	Dose levels duration of exposure	Results	Reference
OECD 406 GLP	Guinea pigs Pirbright white 10 males and 10 females in the treatment group and in the control group	Clear liquid; 30% active component	Study type: Adjuvant day 0 (intradermal) and day 7 (topical)	not considered to have the potential to cause skin sensitisation.	<confidential> (1992e)</confidential>

Table 47: Summary table of animal studies on skin sensitisation.

Table 48: Summary table of human data on skin sensitisation.

Type of data/report	Test substance,	Relevant about the applicable)	information study (as	Observations	Reference
human data	a mixture containing 0.2% MES			In a human case study 55 volunteers were exposed to a mixture containing 0.2% MES for 24 hours under occlusive conditions. The potential for skin irritation and sensitisation was determined. Under the condition of this assay a mixture containing 0.2% MES has no irritant or sensitizing properties in humans.	BODE Chemie (2006)
human data	a mixture containing 0.2% MES			Data on the general population can be obtained from the biocidal product containing 0.2% of MES as a periodical safety up-date: The overall incidence of suspected drug reactions is very low (0.00018%). Any type of suspected drug reactions can be considered to be "very rare" (<0.01%).	BODE Chemie (2006)

Type of data/report	Test substance,	Relevant about the applicable)	inform: study	ation (as		Observat	ions	Reference
						the commo	l allergy and eye nly reported drug ccurred	
					of suspection	ted drug with a mi between J	elative frequency reactions in ixture containing anuary 2000 and	
					Type of drug reaction	Number of incidents	Relative frequency per all hygienic hand disinfections	
					Suspected allergy	43	0.0000006%	
					Skin irritation	41	0.0000006%	
					Ocular irritation	24	0.000003%	
					Oral misuse	7	0.0000001%	
					Respiratory tract irritation	2	<0.0000001%	
					Diarrhea	1	<0.000001%	
					Burns	1	<0.000001%	
					All	118	0.0000018%	

Table 49: Summary table of other studies relevant for skin sensitisation

Type of study/data	Test substance,	Relevant information about the study (as applicable)		Reference		
	No data					

10.7.1 Short summary and overall relevance of the provided information on skin

sensitisation

The Guinea Pig Maximization test performed on Mecetroniumetilsulfat 30% is only available. The potential skin sensitising properties of Mecetroniumetilsulfat 30% were assessed by using 20 test and 20 control animals. The concentrations used were selected on the basis of the results of the pilot study. Following induction exposure to the test article or the vehicle, the animals were subject to two weeks later to a challenge exposure with the test article. The treated skin areas were evaluated 24 and 48 hours after the end

of exposure period. 24h after removal of the patch no skin reaction was detected in any animal of the treatment and the control group (evaluation of erythema and edema according to the scoring given in OECD 404). 48h after removal of the patch one male showed score 1 for erythema (very slight erythema, barely perceptible). This effect was also observed in 2 control females. These alterations of the skin were considered not to be a sensitizing effect since effects were observed to the same extent in test and control animals: 16/20 test animals and 15/20 control animals showed scale formation on the treated skin. No animal showed a sensitization to the test substance "Mecetroniumetilsulfat 30%" applied as a 5% preparation (1.5% active component).

Toxicological results	CLP criteria
No animals sensitised to Mecetroniumetilsulfat 30%	Guinea pig maximization test
	Category 1A (H317)
	\geq 30% responding at \leq 0.1% intradermal induction dose or
	$\geq 60\%$ responding at 0.1% to $\leq 1\%$ intradermal induction dose
	Category 1B (H317)
	\geq 30% to < 60% responding at > 0.1% to \leq 1% intradermal induction dose or
	\geq 30% responding at > 1% intradermal induction dose

10.7.2 Comparison with the CLP criteria

10.7.3 Conclusion on classification and labelling for skin sensitisation

No classification/labelling for skin sensitisation is proposed for mecetronium ethyl sulphate [MES].

10.8 Germ cell mutagenicity

Method, guideline, deviations if any	Test substance,	Relevantinformationabout the study includingrationalefordoseselection (as applicable)	Observations	Reference
OECD 471 GLP: Yes Bacterial reverse mutation test	Mecetronium ethyl sulphate [MES] Purity: IUCLID technical dossier	Organism/cell type: S. typhimurium: TA 1535, TA 1537, TA 98, TA 100 Metabolic activation system: S9 mix from livers of Wistar rats which received i.p. 500 mg/kg bw Aroclor 1254 5 days before	described in this study the test substance did not induce gene mutation in bacteria. Reduced number of revertants/plate at concentration of 100μ g/plate in case of TA1535, TA1537 indicated cytotoxic	BODE Chemie (1992f)

Table 50: Summary table of mutagenicity/genotoxicity tests in vitro.

Method,	Test	Relevant information	Observations	Reference
guideline, deviations if any	substance,	about the study including rationale for dose selection (as applicable)		
comparable to OECD 471 GLP: yes Bacterial reverse mutation test	Mecetronium ethyl sulphate [MES] Purity: no data	preparation Positive control: Without metabolic activation (MA) 10 μg/plate sodium azide in TA100 and TA1535, 50 μg/plate 9-aminoacridine in TA1537, 10 μg/plate 4- nitro-1,2-phenylene diamine in TA98. With MA 3 μg/plate 2- aminoanthracene for all strains. Concentrations: Main study: 0.16, 0.8, 4.0, 20 and 100 μg/plate. Preliminary toxicity study (only TA100): 10, 32, 100, 320, 1000, 3200, 10000 μg/plate The undiluted test substance contained 30% active component and all concentrations used were based on this content of active component. Orhanism/cell type: S. typhimurium: TA 1538, TA 1535, TA 1537, TA 98, TA 100 Metabolic activation system: S9 mix from livers of male Wistar rats which received i.p. 500 mg/kg bw Aroclor 1254 5 days before preparation or after induction with Phenobarbital for 7 days (no data about the daily body dose) Positive control: For all strains the same substance was used with and without MA: TA98 and TA1538 50 µg/plate dichlorobenzidine TA100 50 µg/plate methylcholathrene TA1535 200 µg/plate methylcholathrene TA1537 100 µg/plate aminoacridine (no positive	Under the experimental conditions described in this study the test substance did not induce gene mutation in bacteria.	BODE Chemie (1981)

Method, guideline, deviations if anyTest substance,Relevant about the study including rationale for dose selection (as applicable)ObservationsMethod, guideline, deviations if anyTest substance,Relevant information dose selection (as applicable)Observations	Reference
any selection (as applicable)	
CONTROL WITH MAD	
Concentrations: 20, 100,	
500, 2500 μg/plate.	
Way of application: test substance solution (solvent dimethylsulphoxide [DMSO]) added to bacterial culture in medium plus MA system (or without MA)	
	tabolic BODE Chemie
mammalian chromosomeethyl sulphateOvary (CHO) cells Metabolicactivation: No clastogenic activity dose level in both independent sMetabolicActivationV V V	
aberration [MES] System (MA): rat liver SQ Valid positive control. Negative of	
test Purity: Purity: mix (no data about laboratory.	or this
OECD 473 IUCLID induction) Indonatory.	
GLP: yes dossier Concentrations: Given concentrations are related to Genotoxicity with metabolic activ	vation:
Solution the 30% solution of No clastogenic activity at any dos (soluble in Mecetronium etilsulfat. in both independent studies.	
(soluble in Mecetronium etilsulfat. in both independent studies. water and Solubility of the test positive control. Negative control	
ethanol) compound was measured: 5 the historical range of this laborate	ory.
29.99%mg could be dissolved in 1activeml medium (used as	
component, solvent), the pH value was density 0.999 7.00.	
g/ml, refraction index n^{2} Od 50 μ g/ml without MA and	
index n20d 1,373, pH $(300 \mu g/m)$ without MA and $0, 3.12-100 \mu g/m$ with MA	
7.3 (1% (mitotic index determined) after 18 or 28 h incubation)	
solution, no further data) Main study 1	
without MA 0, 1.5, 3, 6, 9,	
12 μ g/ml and with MA 0,	
2.5, 5, 10, 20, 30, 40 µg/ml, fixation after 18 or 28 h	
(totally 4 trials); after	
evaluation of cytotoxicity only a few doses chosen for	
determination of mutagenicity.	
Main study 2	
without MA 0, 2.5, 5, 7.5,	
10 μ g/ml (fixation time 18 h) or 0, 7.5, 10 (fixation	
time 28 h); with MA 0, 5,	
15, 25, 30 μg/ml (fixation time 18 h) or 0, 25.5, 30	
(fixation time 28 h); after	
evaluation of cytotoxicity only a few doses chosen for	

Method,	Test	Relevant information	Observations	Reference
guideline, deviations if	substance,	about the study including rationale for dose		
any		selection (as applicable)		
		determinationofmutagenicity.Examinations:Inpreliminarystudiescytotoxicity (mitotic index,mitosisper 1000 cells)determined;duplicateculturesforeachconcentration;2independentexperiments;concurrentsolvent(medium)andpositivecontrol;without MA 18 or28 h exposure of cells (0.2µg/mlcolcemid 2 h beforeend ofincubation);withMA 3 h exposure to the testsubstancefollowedbyincubationtime 18 or 28 h (colcemidtreatment see above);cellsperformedperformedformetaphaseanalysis of 100mitosisperconcentrationpertime);specificationspecificationofaberrationsin the results;mitosisper1000cellsdetermined (mitotic index);statisticalanalysisperformed.		
Mammalian cell gene mutation assay OECD 476 GLP: yes	Mecetronium ethyl sulphate [MES] Purity: IUCLID technical dossier Solution (soluble in water and ethanol) 29.99% active component, density 0.999 g/ml, refraction index n20d 1,373, pH 7.3 (1% solution, no	Organisms/cell type: Mouse lymphoma L5178Y TK+/- cells Metabolic Activation (MA) system: S9 mix from rat liver (no data about induction) Positive control: With MA 3 μg/ml benzo(a)pyrene; without MA 25 μg/ml methylmethanesulfonate Concentrations: Solubility of the test compound was measured: 5 mg could be dissolved in 1 ml medium (used as solvent), the pH value was 7.00. 1st assay Without MA: 0, 0.63, 1.25, 2.5, 5 μg/ml; with MA: 0,	Genotoxicity without metabolic activation: 1st assay Yes Negative control and positive control are valid and within the range of historical control data of this laboratory. The test substance induced dose dependent and statistically significant increases in the mutant frequencies. 2nd assay No Negative control and positive control are valid and within the range of historical control data of this laboratory. The test substance did not induce increases in the mutant frequencies.	BODE Chemie (1994a)

Method,	Test	Relevant information	Observations	Reference
guideline,	substance,	about the study including rationale for dose		
deviations if any		rationale for dose selection (as applicable)		
	further data)	3.13, 6.25, 12.5, 25.0 μg/ml		
		2nd assay	Genotoxicity with metabolic activation:	
		Without MA: 0, 2.5, 5, 7.5,	1st assay	
		10, 15 μg/ml; with MA: 0, 7.5, 10, 20, 30, 40 μg/ml	Yes	
		Examinations: 2 replicates per dose, 2 independent experiments; positive	Negative control and positive control are valid and within the range of historical control data of this laboratory.	
		control; negative control (not clearly stated but presumably no addition of	The test substance induced at the high dose level a statistically significant increase in the mutant frequency.	
		test substance or vehicle).	2nd assay	
		Cytotoxicity measured by determination of relative	No	
		survival in parallel experiments.	Negative control and positive control are valid and within the range of historical control data of this laboratory.	
			The test substance did not induce increases in the mutant frequencies.	
Mammalian cell gene mutation assay	Mecetronium ethyl sulphate [MES]	Organisms/cell type: Mouse lymphoma L5178Y/ TK+/- cells	Genotoxicity without metabolic activation:	BODE Chemie (2008)
OECD 476	Mecetronium	Metabolic Activation (MA) system	The test substance did not induce	
GLP: yes	ethylsulfate,	Positive control: With	increases in the mutant frequencies (MF).	
	CAS 3006- 10-8, provided as 29% (w/w)	metabolic activation (MA): 2.5 µg/mL Cyclophosphamide monohydrate (CP);	Negative control and positive control were valid and within the range of historical control data of this laboratory.	
	aqueous solution Purity (as active	without MA: 7.5 µg/mL Methyl methanesulfonate (MMS)	All MES-treated cultures exhibited MFs, which were within the normal range for negative controls and thus most likely represent spontaneous mutations based	
	substance): IUCLID technical	Concentrations: Test item MES is highly soluble in water (500 g/L).	on strong cytotoxic activity.	
	dossier	Dose range finding test: Without MA: 0, 1, 2.5, 5, 7.5, 10, 15, 30 µg/mL	Genotoxicity with metabolic activation: No	
		With MA: 0, 2.5, 5, 7.5, 10, 15, 30, 60 μg/mL Main tests, 4 h treatment with event MA (S0 min)	The test substance did not induce increases in the mutant frequencies (MF).	
		without MA (S9-mix): 0, 0.63, 1.25, 2.5, 3.75, 5.00, 7.50 µg/mL Main tests, 4 h treatment	Negative control and positive control were valid and within the range of historical control data of this laboratory.	
		with MA (S9-mix): 0, 2.5, 5.0, 10, 15, 20 µg/mL Way of application: Test substance "MES-solution	All MES-treated cultures exhibited MFs, which were within the normal range for negative controls and thus most likely represent spontaneous mutations based on strong cytotoxic activity.	

Method,	Test	Relevant information	Observations	Reference
guideline,	substance,	about the study including		
deviations if any		rationale for dose selection (as applicable)		
Unscheduled DNA synthesis (UDS) in mammalian cells in vitro comparable to OECD 482 GLP: yes	Mecetronium ethyl sulfate [MES] Purity: no data	29%"added to cell culture in medium (standard growth medium R10: 500 mL RPMI-1640, 50 mL HS, 50.000 μg streptomycin sulphate, 50.000 U penicillin G, sodium salt) plus MA system or without MA. Examinations: 2 replicates per dose, 2 independent experiments; positive control; negative control (vehicle RPMI-1640 + 5% horse serum (R5)). Cytotoxicity was measured by determination of relative survival in parallel experiments. Mutant frequency was determined by seeding approximately 2 x 103 cells/well in 96-well plates, using restrictive trifluorothymidine (TFT)- containing medium to select for the mutant phenotype. Organism/cell type: HeLa S3 cells (human cell line) Metabolic Activation (MA) system: Rat liver S9 mix; for induction Wistar rats received a single i.p. injection of 500 mg/kg bw Aroclor 1254 in corn oil, sacrificed the 5th day after application and liver supernatant prepared of homogenized livers. Positive control: 10 μM NQO (no further specification, presumably 4- nitroquinoline-N-oxide) without MA; 50 μM DCB (no further specification) with MA Concentrations: 0, 0.2, 0.02, 0.002, 0.0002 μg/ml Way of application: Test substance dissolved in DMSO and added to the medium	Cytotoxicity: MES, both in the absence and presence of S9-mix, induced marked concentration-dependent cytotoxicity, as judged by relative total growth (RTG) and suspension growth (SG). In contrast, plating efficiency (PE) and relative survival (RS) of survivor II plates were not altered significantly by MES treatment (except 3.75 µg/mL without and 5.0 µg/mL with S9-mix), as compared to the vehicle controls. There was predominantly slight reduction, but without concentration-dependency. Genotoxicity without metabolic activation: Valid positive control. No increase in radioactivity indicating no UDS and/or cytotoxic effects. Genotoxicity with metabolic activation: Only a weak effect in the positive control limiting the reliability of the results (no statistical evaluation). No increase in radioactivity indicating no UDS and/or cytotoxic effects. Cytotoxicity: Yes, reduced radioactivity at the high dose levels indicates cytotoxicity (not discussed by the authors).	BODE Chemie (1981a)

Method, guideline, deviations if any	Test substance,	Relevantinformationabout the study includingrationalefordoseselection (as applicable)	Observations	Reference
		Examinations: Liquid scintillation counter method; cells exposed for 2 h to the test substance in the presence of H3-thymidine (labelling of DNA); 3 cultures per dose level, no 2nd independent experiment; positive control; negative control: vehicle (DMSO) control. Number of cells evaluated: Radioactivity of cell DNA extract counted.		

Table 51: Summary table of mutagenicity/genotoxicity tests in mammalian somatic or germ cells in vivo.

Method, guideline, deviations if any	Test substance,	Relevant information about the study (as applicable)	Observations	Reference
Micronucleus test OECD 474 GLP: yes	Mecetronium ethyl sulphate [MES] Purity: IUCLID technical dossier Solution (soluble in water and ethanol); 29.99% active component, density 0.99 g/ml, refraction index n20d 1,373, pH 7.3 (1% solution, no further data)	Strain: Crl:NMRI BR	Under the conditions of this assay the test substance did not induce a significant increase in the number of micronuclei at a dose level up to 187 mg/kg bw. This dose did not induce cytotoxic effects in the bone marrow. However, 187 mg/kg bw did not reach the dose level recommended in the OECD guideline 474. The study is not valid due to significant methodological deficiencies.	<confidential> (1994b)</confidential>

Table 52: Summary table of human data relevant for germ cell mutagenicity.

Type of data/report	Test substance,	Relevant information about the study (as applicable)	Observations	Reference	
No data					

10.8.1 Short summary and overall relevance of the provided information on germ cell mutagenicity

Summary of results obtained in vitro:

- Bacterial reverse mutation test (Bode Chemie, 1992f): under the experimental conditions described in this study the test substance did not induce gene mutation in bacteria. Reduced number of revertants/plate at concentration of 100 μ g/plate in case of TA1535, TA1537 indicated cytotoxic effect. No evidence for mutagenic activity in the Salmonella microsome assay under study conditions, in concentrations ranging from 0.16 to 100 μ g/plate taking into account, that current guideline 471 not completely fulfilled.

- Bacterial reverse mutation test (Bode Chemie, 1981): under the experimental conditions described in this study the test substance did not induce gene mutation in bacteria.

- In vitro mammalian chromosome aberration test (Bode Chemie, 1994): the test substance did not induce increases in aberrations even at cytotoxic concentrations. Under the condition of this test system no clastogenic activity is detected with the test substance mecetronium ethyl sulphate [MES]. No chromosome mutagenic activity in a cytogenetic study.

- Mammalian cell gene mutation assay (Bode Chemie 1994a): in the first assay a clearly positive result even at non-cytotoxic concentrations was presented. In the 2nd assay no mutagenic activity was detected. No 3rd independent assay was conducted to clarify the contradictory results. The conclusions of the authors (not mutagenic) are not comprehensible.

- In vitro mammalian cell gene mutation assay (Bode Chemie, 2008): both with and without S9mix, mecetronium ethyl sulphate [MES] did not induce a relevant, dose-dependent increase in the mean frequency of TFT-resistant mutants. Under the conditions of this assay, mecetronium ethyl sulphate [MES] did not show evidence of inducing gene mutations in mouse lymphoma L5178Y/TK+/- cells.

- unscheduled DNA synthesis (UDS) in mammalian cells in vitro (Bode Chemie, 1981a): no indication for UDS activity under the given test conditions.

Summary of results obtained in vivo:

- Micronucleus test (1994b): the study is not valid due to significant methodological deficiencies (The concurrent negative and positive controls are valid. Under the conditions of this assay the test substance did not induce a significant increase in the number of micronuclei at a dose level up to 187 mg/kg bw. This dose did not induce cytotoxic effects in the bone marrow. However, 187 mg/kg bw did not reach the dose level recommended in the OECD guideline 474).

10.8.2 Comparison with the CLP criteria

Toxicological results	CLP criteria
Toxicological resultsTesting <i>in-vitro</i> :Bacterial mutation assay: negative results.Tests involving mammalian cells: generally negative results (only in one study in the first assay a clearly positive result even at non-cytotoxic concentrations was presented. In the 2nd assay no mutagenic activity was detected. No 3rd independent assay was conducted to clarify the contradictory results).Testing <i>in-vivo</i> : One test is available - micronucleus test: The study is not valid due to significant methodological deficiencies.	CLP criteria The classification in Category 1A is based on positive evidence from human epidemiological studies. Substances to be regarded as if they induce heritable mutations in the germ cells of humans. The classification in Category 1B is based on: - positive result(s) from in vivo heritable germ cell mutagenicity tests in mammals; or — positive result(s) from in vivo somatic cell mutagenicity tests in mammals, in combination with some evidence that the substance has potential to cause mutations to germ cells. It is possible to derive this supporting evidence from mutagenicity/genotoxicity tests in germ cells in vivo, or by demonstrating the ability of the substance or its metabolite(s) to interact with the genetic material of germ cells; or - positive results from tests showing mutagenic effects in the germ cells of humans, without demonstration of transmission to progeny; for example, an increase in the frequency of aneuploidy in sperm cells of exposed people. The classification in Category 2 is based on: - positive evidence obtained from experiments in mammals and/or in some cases from in vitro experiments, obtained from:
	- somatic cell mutagenicity tests in vivo, in
	- other in vivo somatic cell genotoxicity tests which are supported by positive results from in vitro mutagenicity assays.
	Note: Substances which are positive in in vitro mammalian mutagenicity assays, and which also show chemical structure activity relationship to known germ cell mutagens, shall be considered for classification as Category 2 mutagens.

10.8.3 Conclusion on classification and labelling for germ cell mutagenicity

No human data are available for mecetronium ethyl sulphate [MES], hence a classification in category 1A is not possible.

One available in-vivo study is not valid due to significant methodological deficiencies.

Taking into account the above mentioned information and on the basis of the negative results from in-vitro studies no classification and labelling of mecetronium ethyl sulphate [MES] for genotoxicity is proposed.

10.9 Carcinogenicity

Table 53: Summary table of animal studies on carcinogenicity.

guideline, deviations	Test substance, dose levels duration of exposure		Reference
		No data	

Table 54: Summary table of human data on carcinogenicity.

Type of data/report	Test substance,	Relevant information about the study (as applicable)	Observations	Reference		
	No data					

Table 55: Summary table of other studies relevant for carcinogenicity.

J I -		Relevant information about the study (as applicable)	Observations	Reference						
No data										

10.9.1 Short summary and overall relevance of the provided information on carcinogenicity

Table 56: Compilation of factors to be taken into consideration in the hazard assessment.

Species and strain	Tumour type and background incidence	Multi-site responses			Responses in single or both sexes	0	Route of exposure	MoA and relevance to humans			
No data											

Other existing data:

- data on genotoxicity: any evidence for genotoxic activity of mecetronium ethyl sulphate [MES],

- human experiences since 1964: repeated human exposure to a mixture which contains 0.2% mecetronium ethyl sulphate [MES] did not reveal any adverse effects. A mixture containing 0.2% MES has been widely used as a disinfectant by numerous customers during the last 40 years,

- data from other quaternary ammonium compounds available (Thorup, I. (2000)): alkyl dimethyl benzyl ammonium chloride was fed to rats in a two years study at dose levels of 0.015% to 0.5%. No indication for enhanced neoplasia was obtained. However, only limited organs were investigated. The tumorigenicity of benzalkonium chloride after dermal application was investigated in Female Swiss mice and New Zealand rabbits. The animals were treated twice a week on shaved dorsal skin under non-occlusive conditions with 8.5% or 17%. Neither local skin tumours nor systemic tumours were observed.

10.9.2 Comparison with the CLP criteria

There are no relevant data to compare with criteria (No experimental studies were performed to assess the carcinogenicity potential of substance).

10.9.3 Conclusion on classification and labelling for carcinogenicity

Classification and labelling is not proposed.

10.10 Reproductive toxicity

10.10.1 Adverse effects on sexual function and fertility

Table 57: Summary table of animal studies on adverse effects on sexual function and fertility.

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Referenc e
One- Generation Reproductio n Toxicity Study OECD 415 GLP: yes Species: rats Strain: Wistar rats Sex: male and female	Mecetronium ethyl sulphate [MES] 29% (aqueous solution) Duration of exposure before mating: 70 days Duration of exposure in general:	Parent males and females (F0) 10 mg/kg-group: No treatment related effects 40 mg/kg-group Table for reproductive toxicity study – Parent (F0) data Note: endpoints as specified before were assessed and found to be unrelated to treatment. Therefore they are deleted from this table. Only treatment related (or possibly treatment-related) data are stated. - = no treatment related data observed	BODE Chemie (2008a)

Method, guideline, deviations if any,	Test substance, dose le∨els duration of	Results								Referenc e			
species, strain, sex, no/group	exposure												
Number of animals per group: 24 males and 24 females	Fo, FI males, female F0- generation:				con l		Low (1 (1 mg/kg)	0 gday	De	lium ose 40 sgday)	High D (110 mg/k		
per group (total of 96 males and	Parent males: A 70-day pre- pairing	Parameter		Gene - ratio n	m	f	m	f	m	f	m	f	
96 females) Animal	period, during the pairing period and a	Mortality	Incidenc e	FO	-	-	-	-	-	1	-	4	
assignment to dosage groups: Parental	45-day after pairing period until necropsy, in	Food consumption	% compare d to control	FO	-	-	-	-	-	-	-7.4	- 13. 2	
animals (F0) (designated	total 120 days.	Body weight gain	% of con	trol									
as P in study report): 24 males	Parent females: A		Pre- pairing period	FO	-	-	-	-	-	-	83	90	
and 24 females per	70-day pre- pairing period, during		Gestatio n period	FO	-	-	-	-	-	-	-	76	
group; 1 control and three dose groups	the pairing, gestation and lactation	Clinical Observations Salivation	Incidenc e	FO	-	-	-	-	2	7	13	9	
	periods until day 21 post	Rales		FO	-	-	-	-	3	4	15	13	
	partum, one day before necropsy, in total max. 120 days.	Histopathologic examination Changes in the stomach Forestomach	Incidenc e	FO	-	-	-	-	Yes	Yes	Yes	Yes	
	F1-generation (F0-offspring)	Acanthosis/Hyperplas		FO	-	-	-	-	3	1	18	5	
	The F1-	ia Hyperkeratosis		FO	-	-	-	-	2	-	20	6	
	generation was	Edema		FO	-	-	-	1	3	-	5	4	
	potentially exposed to	Inflammation, acute Erosion		F0 F0	-	-	-	-	1	1	4	3	
	the test substance in	Ulceration		FO	-	-	-	-	1	-	-	1	
	uteri and through	Glandular stomach Erosion		FO	_	-	-	<u>-</u>	<u>-</u>	-	-	2	
	nursing during lactation.	Ulceration		F0	-	-	-	-	-	-	-	1	
		Mortality: One female was kil showing a raised rig										`ter	

Method,	Test	Results	Referenc
guideline,	substance,		e
deviations if any,	dose levels duration of		
species,	exposure		
strain, sex,			
no/group			
	tissues and	posture, ruffled fur and decreased activity. Although no macroscopical	
	organs were	findings were noted for this female, it cannot be excluded that an	
	collected at necropsy and	administration error had happened.	
	necropsy and fixed in	Clinical signs:	
	neutral phosphate	Few males (2: salivation, 3: rales) and females (7: salivation, 4: rales) had salivation and rales on single days.	
	buffered 4%		
	formaldehyde solution.	Four females had a hunched posture and ruffled fur during the pre-pairing period for maximal six days. One female showed additionally for one day ventral recumbency.	
	Histopatholog y was	Histopathology:	
	performed on	Irritative and degenerative lesions located in the forestomach	
	the organs for all high dose	represented by:	
	and control	- acanthosis,	
	F0 animals and for all	- squamous hyperplasia,	
	selected	- hyperkeratosis,	
	animals which died	- acute inflammation,	
	during the study. Organs	- edema,	
	demonstrating	- erosion,	
	pathological changes in	- ulceration.	
	these animals		
	were also examined in	110 mg/kg-group	
	the animals	Mortality:	
	from the	Two females were killed in extremis on day 24 post coitum and on day 2 post	
	lower dose groups.	partum. Two other females were found dead on day 15 post coitum and on day 2 post partum.	
		Clinical signs:	
	Microscopic examination of all tissues	In a number of males (13: salivation, 15: rales) and females (9: salivation, 13: rales) were noted during several days of the treatment period.	
	showing gross	Body weight gains:	
	pathological changes and of the	In males, mean body weight gain was reduced during the whole pre-pairing period and slightly reduced during the after pairing period.	
	reproductive organs of	In females, mean body weight gain was reduced in the pre-pairing and the gestation periods until the end of the lactation period.	
	infertile males and females	Food consumption:	
	were made, if necessary.	Mean food consumption was reduced throughout the whole treatment period in males and females.	
	Implantation	Organ weights:	
	sites were counted for	Mean absolute organ weights as well as organ/body weight ratios were not	
	101	1	

Method,	Test	Results	Referenc
guideline,	substance,	Acsuits	e
deviations	dose levels		· ·
if any,	duration of		
species,	exposure		
strain, sex,			
no/group			
		affected by exposure to the test item.	
	uteri were placed in a	Changes in testes and epididymides weights were considered to be incidental	
	solution of	and reflect the usual biological variability of individual values as no	
	ammonium	correlation were noted to microscopic findings.	
	sulphide to	Histopathology:	
	visualize	Irritative and degenerative lesions located in the forestomach represented by:	
	possible hemorrhagic	- acanthosis,	
	0	- squamous hyperplasia,	
	implantation	- hyperkeratosis,	
	sizes.	- acute inflammation,	
		- edema,	
		- erosion, - ulceration.	
		- ulceration.	
		Further, single high dose females had:	
		- minimal to slight erosion or	
		- ulceration of the glandular stomach.	
		At the and of the recovery period, no historythelesical test item related	
		At the end of the recovery period, no histopathological test item-related toxicological relevant changes in female rats were observed.	
		Reproduction	
		10 mg/kg-group: No treatment related effects	
		40 mg/kg-group: No treatment related effects 110 mg/kg-group: The mean number of implantations per litter and the	
		number of live pups as counted at first litter check were decreased.	
		r · r	
		F1 males and females	
		10 mg/kg-group: No treatment related effects 40 mg/kg-group: No treatment related effects	
		110 mg/kg-group	
		Mortality and clinical signs:	
		The total number of pups lost during the first 4 days was 24 compared to 6	
		dead pups in the control group. Among the total number of pups lost, one	
		total litter of 9 pups was found cannibalized on day 1 post partum. One other litter was found dead with 8 pups. In another litter, five unsuckled pups were	
		found dead on day 2 post partum (no milk in stomach). This was considered	
		to be a result of the moribund condition of the dams. Accordingly, the	
		viability index was decreased.	
		Body weight gains:	
		From day 7 post partum onwards body weight development was statistically significantly reduced (+598% compared to 702% in the control group during	
		the whole lactation period). This finding was considered to be test item-	
		related.	
		Table for reproductive toxicity study – Reproduction and Litter data	
		Note: endpoints as specified before were assessed and found to be unrelated	
		to treatment. Therefore they are deleted from this table. Only treatment related (or possibly treatment related) data are stated	
		related (or possibly treatment-related) data are stated.	
L	1		1

no/group	Results - = no treatment related data observed								
				control	Low Dose (10 mg/kg day)	Medium Dose (40 mg/kg day)	High Dose (110 mg/kg day)		
	Parameter		Gene- ration	m & f	m & f	m & f	m & f		
	Reproductive Per	formance							
	Number of implantation sites	% of control	FO	13.8	13.0	13.8	11.9*		
	Litter Data								
	Living pups at first litter check	% of males/females	F1	41/59	50/50*	45/55	53/47*		
	Postnatal loss (days 0-4)	Total pups affected	F1	6	10	4	24**		
	Viability index	%	F1	97.7	96.6	98.5	89.1**		
	Pup mean bodyweight (day 7)	g males+females	F1	14.3	14.3	14.2	12.9**		
	Pup mean bodyweight (day 14)	g males+females	F1	30.2	29.9	29.7	26.1**		
	Pup mean bodyweight (day 21) * or **: significan		F1	47.3	47.7	46.8	41.9**		

Table 58: Summary table of human data on adverse effects on sexual function and fertility.

Type of data/report	Test substance,	Relevant about the applicable)	information study (as	Observations	Reference				
No data									

Table 59: Summary table of other studies relevant for toxicity on sexual function and fertility.

. 1	Test substance,	Relevant about the applicable)	informatio study (n s	Observations	Reference				
No data										

10.10.2 Short summary and overall relevance of the provided information on adverse effects on sexual function and fertility

One-generation toxicity study was performed according to OECD 415. 192 (96 males and 96 females - 24 males and 24 females per dose group) Wistar rats were exposed by oral gavage to the test substance Mecetronium ethyl sulphate (MES) 29% (aqueous solution, vehicle (Milli-Q-Water) once daily.

The dose levels for the F0-generation were 0 (control), 10, 40 and 110 mg/kg bw/day.

F0 male animals were exposed to the test substance for a 70-day pre-pairing period, during the pairing period and a 45-day after-pairing period until one day before the scheduled sacrifice, in total 120 days.

F0 females received the test item during a 70-day pre-paring period and also during the pairing, gestation and lactation periods until one day before the scheduled necropsy, in total max 120 days.

Due to the occurrence of maternal toxicological effects, 10 females in groups 1 (vehicle control) and 4 (110 mg/kg bw/day) were tested for reversibility of the effects. Therefore, the females were given a 4 week treatment-free period (recovery period) and were mated again with untreated males. All females were allowed to give birth and rear their pups until day 4 post partum. One day after the pups the dams were sacrificed on day 5 post partum.

All animals were subjected to twice daily clinical observation. Body weight (daily) and food (weekly) consumption were measured over the treatment period. The regularity and duration of the estrus cycle was examined.

At necropsy, macroscopic observations and organ weights were recorded. A histopathological examination was performed on all reproduction organs and tissues. Reproduction parameters, breeding data and pup development were assessed.

At 10 mg/kg, no test item-related findings were noted.

At 40 mg/kg, single males and females had salivation and rales on single days during the treatment period. Histopathological changes were observed in the stomach in males and females at this dose level.

At 110 mg/kg, two moribund females were killed in extremis. Two other females were found dead. The reasons for deaths could not be established.

Several males and females had salivation and rales during single or multiple days of the treatment period.

Mean food consumption was reduced throughout the whole treatment period in males and females at this dose level.

In males, mean body weight gain was reduced during the whole pre-pairing period and slightly reduced during the after pairing period.

In females, mean body weight gain was increasingly reduced in the pre-pairing and the gestation periods until the end of the lactation period.

Histopathological changes were observed in the stomach in males and females, indicating local irritant effects.

The results of the recovery group revealed that all findings were completely reversible.

Reproduction data and pup development parameters indicated that the mean number of implantations per litter and the number of live pups noted at first litter check were decreased. Accordingly, the postnatal loss increased and the viability index was decreased.

Mean body weight development of the pups was statistically significantly reduced.

Since no test item-related effects on organ weights were observed and based on the histopathological findings in the stomach a local No-Observed-Adverse-Effect-Level (NOAELlocal) for the F0 parental animals was considered to be 10 mg/kg body weight/day.

The systemic No-Observed-Adverse-Effect-Level (NOAELsystemic) for the parental animals was considered to be 40 mg/kg body weight/day based on reduced body weight gain and clinical symptoms in males and females of the high dose group.

Based on postnatal loss and significantly reduced pup body weight development combined with maternal toxicity in the high dose group the No-Observed-Effect-Level (NOELreproduction) for reproduction (F1) was considered to be 40 mg/kg body weight/day.

10.10.3 Comparison with the CLP criteria

Toxicological results	CLP criteria
No human data are available for mecetronium ethyl sulphate [MES], hence a classification in category 1A is not possible. The available data does not provide evidence for toxic effects of mecetronium ethyl sulphate [MES] on fertility below doses causing maternal toxicity.	Category 1A: Known human reproductive toxicant Category 1B: Presumed human reproductive toxicant largely based on data from animal studies - clear evidence of an adverse effect on sexual function and fertility in the absence of other toxic effects, or - the adverse effect on reproduction is considered

not to be a secondary non-specific consequence of other toxic effects
Category 2:
Suspected human reproductive toxicant
- some evidence from humans or experimental animals, possibly supplemented with other information, of an adverse effect on sexual function and fertility - where the evidence is not sufficiently convincing to place the substance in Category 1.
If deficiencies in the study make the quality of evidence less convincing, Category 2 could be the more appropriate classification.
- the adverse effect on reproduction is considered not to be a secondary non-specific consequence of the other toxic effects

10.10.4 Adverse effects on development

Table 60: Summary table of animal studies on adverse effects on development.

Method, guideline, deviations if any, species, strain, sex, no/group	duration of exposure	Species Strain	Results	Referen ce
Teratogenici ty study in the rabbit OECD 414 GLP: yes Number of animals per group: 24 animals per group at initiation; 20 (vehicle control), 20 (4 mg/kg bw/day), 20 (12 mg/kg bw/day), 16 (30 mg/kg bw/day), 10 (40 mg/kg bw/day) dams evaluated.	m ethyl sulphate [MES] Colourless, viscous liquid, 29% active ingredient Exposure: Oral	Species: Rabbit Strain: Himalaya n	Maternal toxic effects Examination of dams control 1 out of 24 dams was not pregnant. 4 mg/kg bw/day this dose level caused no test substance related clinical effects and mortality. No effects were detected on body weight or body weight change. No effects were noted on food consumption relative to the control group. 12 mg/kg bw/day 2 out of 24 dams were not pregnant (within the normal range). 1 out of 21 dams aborted on gestation day (GD) 26 (considered as spontaneous). No effects were detected on body weight or body weight change. No effects were noted on food consumption relative to the control group. 30 mg/kg bw/day 2 out of 24 dams died prematurely on GD 22 or 28 (both with diarrhoea and lesions of the stomach). 5 further dams were sacrificed after abortion between GD 23 and 27; evaluation of individual test results revealed gastro-intestinal effects	BODE Chemie GmbH & Co. KG (2008b)

Method,	Test	Species	Results	Referen			
guideline, deviations if any, species, strain, sex, no/group	substance, dose levels duration of exposure	Strain					
			of the test substance in all 5 rabbits with abortions: 1 out of these 5 dams has stomach lesions; diarrhoea, partly haemorrhagic was noted in 3 rabbits, and the last one showed minimal or no discharge of faeces. One dam was without viable fetuses (haemorrhagic diarrhoea observed). Decreased (p<0.01) body weight gain of dams was obvious; the absolute and relative food intake was reduced (p<0.01). 40 mg/kg bw/day Mydriasis was observed in all dams from the 1st application onwards (starting 20-60 minutes after treatment and lasting 2-6 h). 8 out of 24 dams died prematurely on GD 18 or 27; evaluation of individual test results revealed that all of them had stomach lesions, 6/8 liquid content in the intestine and 6/8 diarrhoea. 4 further dams were sacrificed after abortion between GD 25 and 27; 3 out of these 4 dams had stomach lesions combined with liquid content in the intestine, the 4th had only a brownish liquid in the intestine; diarrhoea, was noted in 1/4 rabbits, 2/4 dams revealed minimal or no discharge of faeces. One dam was not examined. Decreased (p<0.01) body weight gain of dams; absolute and relative food intake was reduced (p<0.01). Necropsy of dams (summary) $\leq 12 mg/kg bw/day$ No test substance related changes of internal organs, placenta, gravid uterus weight and net body weight change. 30 mg/kg bw/day Gastric lesions and aerated intestine with brownish/liquid content (see Table below). Slight reduction in gravid uterus weight and reduction (p<0.01) in net body weight change. 40 mg/kg bw/day Severe gastro-intestinal lesions in deceased dams or dams with abortions as well as in individual dams surviving up to GD29 (see Table belowy); in nearly all of these dams the anogenital region was soiled with faeces. Table: Macroscopic findings in the stomach, intestine, spleen and liver of dams at necropsy (at gestation day 29 & prematurely deceased rabbits)				
			FindingControl4123040n=21mg/kgmg/kgmg/kgmg/kgmg/kgbwbwbwbwbwbw				

Method, guideline, deviations if any, species,	Test substance, dose levels duration of exposure	Species Strain			Results				Referen ce
strain, sex, no/group									
					n=20	n=21#	n=24#	n=22#	
			Stomach						
			Several/multiple haemorrhagic foci	0	0	0	1	12	
			Multiple ulcers	0	0	0	0	2	
			Mucosal detachment	0	0	0	2	0	
			Whitish layer	0	0	0	1	0	
			Intestine						
			Liquid brownish content	0	0	0	6	12	
			aerated	0	0	0	8	1	
			Spleen						
			Reduced size	0	0	0	0	4	
			Liver						
			pale	0	0	0	0	2	
			#: (including) pr	ematurel	y deceas	ed dams			
			Т	eratogenio	c/embryo	toxic effe	cts		
			The relevant repro- are given in the Tab		ita and d	ata on de	velopme	ntal toxicit	у
			\geq 40 mg/kg bw/day						
			No developmental of corpora lutea (number per group dam, distribution in per group), resorp horns, absolute nu group, early resor (individual data per mean per group, lit (individual data per litter mean per gr (number of alive distribution in uteri number alive per g and group) when c considered to be wi	determine , mean per a uterine h tions (nur mber per rptions, la r foetus, n r foetus, n r foetus, n oup, litter or dead ne horns, roup, mea ompared	d values er group orns, abs nber per group, n ate reson mean per per sex a nean per c mean p per dam absolute un % aliv to the co	: number), implan olute num dam, di nean per ptions), titter, me ober sex a , number number a re per gro ntrol. All	r per dat tations (ber per g stribution group, n weight ean per), weight an per se nd group per se live per g pup, mean	m, absolut number per group, mea 1 in uterin nean % per of placent group, litter cof foetuse x and litter p), foetuse x and dam group, mea 1 % per se	e r n e r a r s s ; s u, n x
			Malformations & V	-					

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Species Strain			Result				Referen ce
			No test substance effects were withi Exception is the e head. Fetal and lit meninx was eleva corresponding effe variation is also no due to methodolog reasons the subdui (random distributi	n the spon ffect dete ter incide ted at 30 ect was for oted in co gical shor ral haemo	ntaneous ra cted at sof nce of sub mg/kg bw/ ound at 40 ontrol and l tcomings of	ange in all t tissue ex dural haer /day. How mg/kg bw ow dose g during diss	treated gr amination norrhages ever, no y. Furtherm group and n section. Fo	oups. of the in the nore, this might be or these	
			Table: Reprodu	iction dat	ta				
			Finding	Contr ol n=21	4 mg/kg bw n=20	12 mg/kg bw, n=20	30 mg/kg bw, n=17	40 mg/kg bw, n=10	
			Corpora lutea total	177	164	161	127	75	
			Corpora lutea per dam	8.4	8.2	8.1	7.5	7.5	
			Total implantation sites	162	145	153	116	63	
			Implantation sites/dam	7.7	7.3	7.7	6.8	6.3	
			Total resorptions	18	5**	2**	8	3	
			Resorptions/da m	0.9	0.3	0.1	0.5	0.3	
			Total early resorptions	17	4**	1**	7	3	
			Early resorptions/da m	0.8	0.2	0.1	0.4	0.3	
			Total late resorptions	1	1	1	1	0	
			Late resorptions/da m	0.0	0.1	0.1	0.1	0.0	
			Mean% pre- implantation loss	9.3	12.1	5.7	8.1	18.4	
			Mean% post- implantation	10.0	4.4	1.3	8.7	3.8	

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Species Strain				Rest	ılts	1				Referen ce
			loss									
			Total liv foetuses	ve 144		140		151		108	60	
			Live foetuse per dam	es 7.2		7.0		7.6		6.8	6.0	
			Total dea foetuses laparatomy	ad 0 at		0		0		0	0	
			Viable fetuses	S		No influen e	ıc	No influer e	nc	No influenc e	No influenc e	
			Sex distribution			No influen e	nc	No influer e	nc	No influenc e	No influenc e	
			b) Developr									
			Finding	Contro 1 n=20	b	ng/kg	b١	g/kg) mg/kg v, n=16	40 mg/kg bw, n=10	
			Placental weight (m&f, litter mean)	5.01+- 0.89		.31+- .64		00+- 73		70+- 64#	5.43+- 1.17	
			Fetal weight (m, litter mean)	38.9+- 4.8		9.5+- .3	38 4.	3.9+- 1		9+- 9*#	38.5+- 5.5	
			Fetal weight (f, litter mean)	38.1+- 4.1		9.4+- .9	38 3.	3.9+- 4	33 *#	.4±6.3*	37.1+- 3.4	
			External malformati on & variation		N	lo test s	ubs	stance r	elat	ted finding	55	
			Skeletal malformati on		N	lo test s	ubs	stance r	elat	ted finding	<u>gs</u>	
			Skeletal variations & retardations		W	Vithin th	ne r	ange of	f co	ontrol grou	р	
			Visceral examinatio	No path variation		gical fii	ndi	ngs; no	tes	st substanc	e related	

Method, guideline, deviations if any, species, strain, sex, no/group	duration of exposure	Species Strain			Res	ults			Referen ce
			n Soft tissue of the head Soft tissue	No malf	ormations Total v		within the	range of	
			of the head Subdural haemorrha- ges of meninx	3 (4.2%, n=72)	control g 8 (11.4 %, n=70)		11** (20.8%, n=53)	1 (3.3%, n=30)	
			(fetal incidence) Subdural haemorrha- ges of meninx (litter	3 (15.0 %)	6 (30.0 %)	2 (10.0 %)	9* (56.3%)	1 (10.0 %)	
			incidence) *: p≤0.05; ** relevant, with					gically not	

Table 61: Summary table of human data on adverse effects on development.

Type of	Test	Relevant	information	Observations	Reference
data/report	substance,	about the applicable)	study (as		
			No	data	

10.10.5 Short summary and overall relevance of the provided information on adverse effects on development

Maternal toxicity

Local effects were found in the gastro-intestinal tract at ≥ 30 mg/kg bw/day. Prematurely death and abortion is suggested to be due to these local effects. The NOAEL for local maternal effects is 12 mg/kg bw/day.

At 40 mg/kg bw mydriasis was observed in all treated dams. This could be interpreted as a systemic effect and thus, the NOAEL for systemic effects would be 30 mg/kg bw.

However, some scepticisms concerning this effect seem appropriate. The mydriasis started with the first application at about 20 –60 min after gavage and disaapeared after serveral hours. No other effect related to the central nervous system occurred. Therefore, mydriasis could also be interpreted as stress-induced effect: rabbits are excited and feel unwell due to stomach irritation immediately following the gavage. This interpretation seems to be even more consistent with the overall results of this study.

Systemic maternal effects were recorded at 40 mg/kg bw/day. The mydriasis effect was observed in all treated rats of the high dose group starting with the 1st application. Surprisingly, no mydriasis was detected at 30 mg/kg bw/day in any rabbit at any application. The NOAEL for systemic effects seem to be 30 mg/kg bw/day however, there is some scepticism.

Developmental toxicity

No developmental effects of biological relevance were detected at $\leq 40 \text{ mg/kg bw/day}$. Abortions are considered to be secondary to local effects on the gastro-intestinal tract of dams. Generally, the evaluation of groups with treatment related death of dams is limited. Therefore, the NOAEL of 40 mg/kg bw/day has some uncertainties.

Toxicological results	CLP criteria
No human data are available for mecetronium ethyl sulphate [MES], hence a classification in category 1A is not possible. Mecetronium ethyl sulphate [MES] has no teratogenic properties. No developmental effects occurred below dose levels inducing severe maternal toxicity.	Category 1A: Known human reproductive toxicant Category 1B: Presumed human reproductive toxicant largely based on data from animal studies - clear evidence of an adverse effect on development in the absence of other toxic effects, or
	- the adverse effect on reproduction is considered not to be a secondary non-specific consequence of other toxic effects Category 2:
	Suspected human reproductive toxicant - some evidence from humans or experimental animals, possibly supplemented with other information, of an adverse effect on development and
	- the evidence is not sufficiently convincing to

10.10.6 Comparison with the CLP criteria

place the substance in Category 1.
If deficiencies in the study make the quality of evidence less convincing, Category 2 could be the more appropriate classification.
- the adverse effect on reproduction is considered not to be a secondary non-specific consequence of the other toxic effects

10.10.7 Adverse effects on or via lactation

Table 62: Summary table of animal studies on effects on or via lactation.

Method,	Test	Results	Reference
guideline,	substance,		
deviations	dose levels		
if any,	duration of		
species,	exposure		
strain, sex,	_		
no/group			
		No data	

Table 63: Summary table of human data on effects on or via lactation.

Type of data/report	Test substance,	Relevant information about the study (as applicable)	Observations	Reference
		No data		

Table 64: Summary table of other studies relevant for effects on or via lactation.

Type of study/data	Test substance,	Relevant information about the study (as applicable)	Observations	Reference
		No data	a	

10.10.8 Short summary and overall relevance of the provided information on effects on or via lactation

No information.

10.10.9 Comparison with the CLP criteria

No data.

10.10.10 Conclusion on classification and labelling for reproductive toxicity

No human data are available for mecetronium ethyl sulphate [MES], hence a classification in category 1A is not possible.

Mecetronium ethyl sulphate [MES] has no teratogenic properties. No developmental effects occurred below dose levels inducing severe maternal toxicity.

The available data does not provide evidence for toxic effects of MES on fertility below doses causing maternal toxicity.

No classification and labelling of mecetronium ethyl sulphate [MES] for reproductive toxicity is proposed.

10.11 Specific target organ toxicity-single exposure

Table 28: Summary table of animal studies on STOT SE.

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, route of exposure, dose levels, duration of exposure	Results	Reference
	There is no eviden	ce of specific target organ toxicity after single exposure of MES.	

Table 66: Summary table of human data on STOT SE.

Type of data/report		Releva	of exposure int information a plicable)	bout the study	Observa	tions	Reference
-	eneral population afety up-date:	on can b	be obtained from the	he biocidal produ	act containing 0.29	6 of MES as	BODE Chemie (2006)
drug reaction	The overall incidence of suspected drug reactions is very low (0.00018%). Any type of suspected drug reactions can be considered to be "very rare" (<0.01%). Skin irritation, suspected allergy and eye irritation are the commonly reported drug reactions, oral misuse occurred occasionally. <table> Table: Absolute and relative frequency of suspected drug reactions in connection with a mixture containing 0.2% MES between January</table>						
	2000 and Augu	1					
	Type of dru reaction	-	Number of incidents		quency per all d disinfections		
	Suspected aller	rgy	43	0.000	0006%		
	Skin irritation		41	0.000	0006%		
	Ocular irritatio	n	24	0.000	0003%		
	Oral misuse		7	0.000	0001%		
	Respiratory irritation	tract	2	<0.000)0001%		
	Diarrhea		1	<0.000	00001%		
	Burns		1	< 0.000	00001%		
	All		118	0.000	0018%	1	

Type of	Test	Relevant information about the study (as applicable)		Reference	
No data					

Table 67: Summary table of other studies relevant for STOT SE.

10.11.1 Short summary and overall relevance of the provided information on specific target organ toxicity – single exposure

No toxicity to a specific organ in the absence of lethality was observed in acute oral or dermal toxicity studies.

10.11.2 Comparison with the CLP criteria

There is no evidence of specific target organ toxicity after single exposure of mecetronium ethyl sulphate [MES]. There is no evidence from human cases or epidemiological studies that mecetronium ethyl sulphate [MES] can have potential to be toxic/harmful to human health following single exposure.

10.11.3 Conclusion on classification and labelling for STOT SE

Classification and labelling is not required.

10.12 Specific target organ toxicity-repeated exposure

Table 68: Summary table of animal studies on STOT RE.

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, route of exposure, dose levels, duration of exposure	Results	Reference
4-Week dose- range finding study for a 90- Day subchronic toxicity study of mecetronium ethylsulfate by repeated oral administration to Sprague- Dawley rats GLP: yes Species: rat Strain: Sprague- Dawley Number of animals per group: 5 m and 5 f per group	treatment: 4 weeks Dose: 0, 50, 150, 450 mg/kg bw; in	 Clinical signs: No treatment related effects were observed in the low dose group. In the mid dose group one female rat died at day 22 but other did not show any effects. Piloerection was seen in the high dose group at day 4, in addition reduced motility in 1 male and 1 female; on day 5 1 female showed reduced motility, ataxia and ptosis. All animals of the high dose group were in a poor condition on day 5, 2 were moribund (all surviving rats sacrificed on day 5). Mortality: 1 female in the mid dose group; 1 male and 2 females of the high dose group were found dead in the morning of day 5. Body weight gain: The body weight gain in the low dose groups and females of the mid dose group was not different from the control values. In the mid dose group males there was a slight decrease (3-9%) but not statistically significant. Food consumption: Food consumption was not influenced by the treatment in the low and mid dose group. However, a slight decrease (minus 12%) was observed in males at 150 mg/kg bw (not significant). Gross pathology: Macroscopical post mortem findings: in surviving rats no treatment related effects were seen in any group. Same results in rats which died during exposure period except the female rat of the mid dose group (heamorrhagic, distended and empty gastro-intestinal tract). LOAEL=150 mg/kg bw NOAEL = 50 mg/kg bw 	<confidential> (2001)</confidential>

	-		
90-Day toxicity	Test material:	Clinical signs : No treatment related effects were observed in	<confidential></confidential>
study of		the low dose group. In the mid dose group long-lasting piloeraction was reported starting at day 50 (20/20 rate at day	(2002)
mecetronium	ethyl sulphate	piloerection was reported starting at day 59 (20/20 rats at day 60). Piloerection was also seen in the high days group at day 20	
ethylsulfate by repeated oral	Purity: IUCLID	60). Piloerection was also seen in the high dose group at day 29 (4/10 m and 3/10 f) and day 30 (all rats) without reversibility.	
administration	technical dossier	(4/10 III and 5/10 I) and day 50 (all fats) without reversionity.	
via gavage to	Exposure: oral	Mortality: 3 male and 7 female rats in the high dose group	
Sprague-Dawley	-	died between day 34 and 73. At day 74 the dose was reduced to	
rats	Type: gavage	90 mg/kg bw and no further mortality was observed in the high	
	Duration of	dose group.	
OECD: 408	treatment: 90	Body weight gain: The body weight gain in the low and mid	
GLP: yes	days	dose groups was not different from the control values. Males of	
Species: rat	Energy of	the high dose group revealed a significant decrease from week	
species. Iai	Frequency of exposure: Once	1 to termination (11-20% below control value). A slight but not	
Strain: Sprague-	daily, 7 days per	significant decrease was observed in females of the high dose	
Dawley	week	group from week 6 onwards (1-12% below control value).	
Number of		Food consumption and compound intake: Food consumption	
animals per	Dose: 0, 15, 45,	was not influenced by the treatment in the low and mid dose	
group: 10 m and	135/90 mg/kg bw	group. In the high dose group males showed significant	
10 f per group	(until day 73 135 mg/kg bw in the	reduced food consumption at week 1 (not at week 2-13). A	
	high dose group,	transient decrease in food intake was seen in females at week	
	from day 74	1-8 (significant at week 1, 2, 6, and 7).	
	onwards only 90	Haematology: No treatment related effects in the low and mid	
	mg/kg bw due to	dose groups. Effects in males and females of the high dose	
	mortality in the	group indicate inflammatory responses: increased leucocytes	
	high dose group)	and a shift to the left in differential blood cell counts.	
		Clinical chemistry: No treatment related effects were recorded	
		on the parameters sodium, potassium, glucose, total	
		cholesterol, urea, creatinine, total protein, and albumin.	
		Changes in ALAT (males and females of the mid and high dose	
		goup) but not in ASAT and aP are discussed by the authors as	
		treatment related. The ALAT values in medium and high dose	
		group are slightly above the historical control range presented	
		by Charles River (18-45 U/l; no historical data of the	
		performing laboratory given by the authors). The increase in aP	
		values is within the historical control range (30-240 U/l;	
		Charles River, no laboratory data).	
		Organ weights: The relative and absolute organ weights	
		(including adrenals) were within the normal range in all	
		treatment groups.	
		LOAEL= 90 mg/kg bw	
		NOAEL = 45 mg/kg bw	

Table 69: Summary table of human data on STOT RE.

.

Type of data/report	Test substance	Route of exposure Relevant information about the study (as applicable)	Observations	Reference	
No data					

J I -	Test substance	Relevant information about the study (as applicable)	Observations	Reference	
No data					

Table 70: Summary table of other studies relevant for STOT RE.

10.12.1 Short summary and overall relevance of the provided information on specific target organ toxicity – repeated exposure

28-day toxicity study of mecetronium ethyl sulphate [MES] by repeated oral administration via gavage to Sprague-Dawley rats is the dose range finding study for the documented OECD guideline 408 study. 5 male and 5 female rats per group were gavaged with 0, 50, 150, 450 mg/kg bw/day (concentration 0, 1, 3, or 9% in water) for 28 days. Examinations are therefore limited to clinical signs, mortality, body weight gain, food consumption and macroscopical post mortem findings.

Under the conditions of this 28-days gavage study the NOEL was 50 mg/kg bw/day. 450 mg/kg bw/day resulted in mortality within a few days of exposure. There is evidence that the mid dose level is applicatively as the high dose level in a subchronic gavage study (135 mg/kg bw/day was chosen).

The 90-Day toxicity study of mecetronium ethylsulfate by repeated oral administration via gavage to Sprague-Dawley rats is performed according to OECD guideline 408. 10 male and 10 female rats received via gavage 0, 15, 45, 135/90 mg/kg bw/day (0.3, 0.9, 2.7/1.8% in water) for 90 days, 7 days a week.

The authors of the study stated that the NOEL was 15 mg/kg bw. They mentioned in the summary a slight increase in ALAT and the piloerection at a dose level of 45 mg/kg bw.

However, a NOAEL higher than 15 mg/kg bw can be considered. Historical data on ALAT activity have shown that the activity in the mid dose group is only slightly higher (48 versus 45 U/l) in comparison to historical control data and no correlate for this increase has been detected in further investigations indicating low toxicological importance of this observation.

It is questionable whether the piloerection in mid dose group is, however, treatment related since the incidence is 0/10, 2/10, 10/10 in males at day 58, 59, and 60, respectively and in females 0/10, 3/10, 10/10 at day 58, 59, and 60, respectively (persistent up to termination in males and females). Other reasons than the treatment might be considered since there is a suddenly occurring effect in all rats at the same time point (day 60). Furthermore, no other clinical signs were observed and the functional observation at the end of the exposure period revealed no treatment related effects. In acute oral toxicity studies piloerection was detected after a single application of 80 mg/kg bw in 10/10 rats (compare with piloerection in the high dose group).

In summary, in this study primarily local effects in the stomach were induced. Clear evidence for gastritis was given at the high dose level. Under the condition of this investigation the NOAEL was 45 mg/kg bw.

Minor items

The reliability of data on parameters determined at the end of the exposure period is limited in the high dose group due to low number of surviving animals.

Toxicological results	CLP criteria
Data on significant toxicity in humans are lacking and guidance values are not applicable.	Category 1 (H372): Substances that have produced significant toxicity in humans or that, on the basis of evidence from studies in experimental animals, can be presumed to have the potential to produce significant toxicity in humans following repeated exposure. Substances are classified in Category 1 for target organ toxicity (repeat exposure) on the basis of: reliable and good quality evidence from human cases or epidemiological studies; or observations from appropriate studies in experimental animals in which significant and/or severe toxic effects, of relevance to human health, were produced at generally low exposure concentrations. Equivalent guidance values for 28-day and 90-day studies: Oral, rat: 28-day: ≤ 30 mg/kg bw/d
On the basis of evidence from studies with repeated exposure in experimental animals at a moderate concentration, the observed effects not to have the potential to produce significant toxicity in humans (in accordance with Guidance to Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of substances and mixtures; Version 4.1 June2015). Hence, no classification for "STOT-RE" for oral exposure is proposed.	90-day: $\leq 10.0 \text{ mg/kg bw/d}$ Category 2 (H373):Substances that, on the basis of evidence from studies in experimental animals can be presumed to have the potential to be harmful to human health following repeated exposure.Substances are classified in category 2 for target organ toxicity (repeat exposure) on the basis of observations from appropriate studies in experimental animals in which significant toxic effects, of relevance to human health, were produced at generally moderate exposure concentrations.In exceptional cases human evidence can also be used to place a substance in Category 2.Equivalent guidance values for 28-day and 90-day studies:Oral, rat: 28-day: $10.0 < C \le 100.0 \text{ mg/kg bw/d}$ 90-day: $30.0 C \le 300.0 \text{ mg/kg bw/d}$

10.12.3 Conclusion on classification and labelling for STOT RE

Classification and labelling for STOT RE is not proposed.

10.13 Aspiration hazard

Table 71: Summary table of evidence for aspiration hazard.

 Test substance,	Relevant information about the study (as applicable)	Observations	Reference			
Not applicable						

10.13.1 Short summary and overall relevance of the provided information on aspiration hazard

Not applicable – mecetronium ethyl sulphate [MES] is a solid substance.

10.13.2 Comparison with the CLP criteria

Not applicable.

10.13.3 Conclusion on classification and labelling for aspiration hazard

Classification and labelling for aspiration hazard is not proposed.

11 EVALUATION OF ENVIRONMENTAL HAZARDS

11.1 Rapid degradability of organic substances

Table 72: Summary of relevant information on rapid degradability.

Method	Results	Remarks	Reference
OECD 301D	Composition of product: MES 30% in	Test duration extended	BODE Chemie (1995)
Closed Bottle	water	to 60 days	
test	Analytical parameter: Dissolved O ₂	The study is not GLP	
	concentration	compliant.	
	Initial TS concentration:	No information on	
	12.9 mg/L and 8.09 mg/L	nitrification.	
		Possible partial	
	Degradation:	microbial inhibition of	
		the test substance.	
	12.9 mg/L:		
	< 5% BOD of COD resp. ThOD after		
	29 days		
	< 5% BOD of COD resp. ThOD after		
	60 days		
	8.09 mg/L:		
	< 5% BOD of COD resp. ThOD after		
	29 days		
	< 5% BOD of COD resp. ThOD after		
	60 days		
	The test results indicate that MES is		
	not readily biodegradable.		
OECD 301A	Composition of product: MES 29% in	Study is not GLP	BODE Chemie (1999)
DOC Die Away	water	compliant.	
test		_	
	Initial TS concentration:	Test substance was	
	Replicate 1: 135 mg MES solution / 2	redosed on test day 1	

Method	Results	Remarks	Reference
	L on day 0 (= 10 mg DOC/L), re-	(All vessels containing	
	dosed with 150 mg / 2 L on day 1 (=	the test substance	
	12 mg DOC/L)	initially received MES	
	Replicate 2: 140 mg MES solution / 2	amounts corresponding	
	L on day 0 (= 11 mg DOC/L), re-	to 10 - 11 mg DOC/L.	
	dosed with 151 mg / 2 L on day 1 (= 12 mg DOC/L)	Vessels containing MES were redosed with 12 mg	
		DOC/L each, because	
	DOC removal after 28 days (based on	DOC concentration was	
	day 3 DOC value):	found to have decreased	
	Replicate $1 = 23.2$ %	to ~3.5 mg DOC/L after	
	Replicate $2 = 42.4$ %	24 hours, probably due	
	mean = 32.8 %	to adsorption processes.)	
	The test results indicate that MES is	No information on DOC	
	not readily biodegradable.	content and removal in	
	, ,	the blanks.	
OECD 301F	Composition of product: 29.4%	Analytical parameters:	Bode Chemie (2008c)
Manometric	solution in water	Oxygen consumption	
Respirometry Test	Initial TS apprentiation 20 and 100		
Test GLP: yes	Initial TS concentration: 29 and 100 mg a.s./L.		
GLI . yes	III5 4.0./ L.		
	The rote of degradation was		
	The rate of degradation was monitored by measuring the quantity		
	of oxygen required to maintain a		
	constant gas volume in the		
	respirometer flasks over a 28-d		
	period. The test item was applied at		
	concentrations of 29 mg/L and 100		
	mg/L. Sodium benzoate was used as		
	reference item at a concentration of		
	100 mg/L, along with a toxicity control at 29 mg MES /L as well as		
	100 mg MES /L, and 100 mg/L		
	sodium benzoate.		
	Additional assays were prepared with		
	the addition of silica gel, which is an		
	approved method to alleviate possible		
	inhibitory effects of cationic		
	surfactants on the inoculum.		
	The biodegradation of MES in the		
	static test was found to be 42% for a		
	concentration of 29 mg test item per		
	litre and 0% for a concentration of 100 mg test item per litre after 28		
	days applying the standard test		
	design.		
	In the presence of silica gel, 60% of		
	the test item in the 29 mg/L assays		
	and 50% in the 100 mg/L assays were		
	degraded at test end.		
	For both test item concentrations (29		
	mg/L and 100 mg/L), no		
	biodegradation above the threshold		
	value of 60% within a 10-day-window		

Method	Results	Remarks	Reference
	could be obtained, independent		
	whether silica gel was applied or not.		
OECD 310 GLP: no	Composition of product: MES 29 % in water. Initial TS concentration: 20 mg TOC/L (five additional flasks with 10 mg TOC/L)	Analytical parameter: Total inorganic carbon (TIC)	BODE Chemie (2011a)
	There was no degradation of the test item within 28 days (-10.3%). The negative degradation extent may be interpreted as inhibition effect to the inoculums. The five additional flasks with a concentration of 10 mg TOC/L only showed also negative degradation extents on day 28. The reference compound sodium		
	The felerence compound sodium benzoate reached the pass levels for ready biodegradability within 7 days The degradation extents in the inhibition control stayed on average below 25% during the whole test. On day 28 the mean degradation extent was -4.71%. Therefore the test item had toxic effects on the inoculum. This is in line with the negative degradation extents in the test item flasks.		
	The test results indicate the toxic effects of MES on the inoculum. MES is not readily biodegradable at the applied concentrations due to toxic effects. The study is acceptable as supporting information.		
OECD 310 GLP: no	Composition of product: MES 29% in water	Analytical parameter: Total inorganic carbon (TIC)	BODE Chemie (2011b)
	Initial TS concentration: 10 mg C/L (Assay A) and 20 mg C/L (Assay B)	Silica gel was used in all assays to reduce possible inhibitory effects	
	The degradation of Dimethylethylhexadecylammonium- ethylsulfate (MES) in the static test after 28 days on the basis of the ThIC of the test item initially applied was found to be on average 65 and 37 % for test assay A and B, respectively. However, 100 % (assay A) and 70 % (assay B) degradation were reached even after 14 days of incubation.		
	The decreased degradation rates at the end of the test can be explained by		

Method	Results	Remarks	Reference
	unexpected high IC values in the		
	inoculum blanks at this sampling date.		
	While IC content in the blanks		
	although strong varying maintained		
	nearly constant from day 7 to day 21, the values immed up by $2/2$ during		
	the values jumped up by 2/3 during		
	the last test week. In contrast, the mean increase of CO_2 production for		
	the test assays was clearly lower		
	during this last period as		
	biodegradation is nearly completed		
	after 14 days. However, from		
	experience it is known that studies		
	with rapidly degradable substances		
	can result in decreasing degradation		
	rates at the end of the tests, when test		
	item has been (fully) mineralized but		
	the inoculum blanks are still active.		
	Moreover, variance of TIC and thus		
	biodegradation value in test assay A		
	at the end is very high, due to an extreme low value in one replicate.		
	-		
	In conclusion, the 14 day values are		
	more relevant for the evaluation of this study and thus for the		
	biodegradation potential of MES.		
	As degradation at 20 mg C/L (assay B) is lower than for 10 mg C/L (assay		
	A), degradation rate was dependent		
	on test item concentration. This		
	dependancy can be explained by		
	probable toxic effects at higher		
	concentration although silica gel is		
	used to reduce these effects, and the		
	higher ratio of test substance to initial		
	cell concentration (inoculum		
	concentration). Therfore, this effect is		
	in agreement with theoretical considerations.		
	With degradation rates of 104 %		
	(assay A) and 70 % (assay B) at day		
	14, the threshold value of 60 % was surpassed within the 10-day window.		
	The degradation within the 10-day-		
	window could be expected to be > 60		
	% for both test assays. Due to		
	nonlinear degradation curves at the		
	beginning of a study, it can be		
	assumed that the 10-day window		
	starts at around day 4 for both assays.		
	No lag phase / adaptation phase was		
	noticeable in both assays.		
	The percentage degradation of the		
	reference item has exceeded the pass		
	level of 60 % by day 14.		
	The IC content in the inoculum blanks		
	at the end of the study exceeds the		
	requirements of the guideline.		

Method	Results	Remarks	Reference
	However, the background value of the		
	IC at day 0 in all vessels and in the		
	blank controls is relatively high and		
	already exceeds the required threshold		
	value. The source of such high value is unclear as deionized water has been		
	used as dilution water, and the		
	inoculum has been aerated over night		
	to purge the system of carbon dioxide.		
	However, decisive for the		
	biodegradation is not the TIC present		
	at the end, but the IC content built in		
	the inoculum blank in comparison to		
	the IC content built in the test vessels. Of course, if the starting value will be		
	subtracted the IC content built in the		
	inoculum blanks (at test end 24.1 mg		
	IC/L) exceeds still the threshold value		
	of 3 mg IC/L, but even when the IC		
	content built in the inoculum blanks is		
	above the threshold value, the results		
	in the test and reference assays during		
	the test are plausible at least for the 14 day values.		
	Overall, due to a degradation		
	achieving the threshold value of 60%		
	after 14 days and within a 10-day-		
	window, the test item		
	Dimethylethylhexadecylammonium-		
	ethylsulfate (MES) can be identified		
	to be readily biodegradable under the chosen test conditions.		
OECD 310	Composition of product: MES 29% in	Deviations: test duration	
GLP: no	water	of 14 days	BODE Chemie (2011c)
	All flasks containing the test		
	substance initially received MES		
	amounts corresponding to 10 mg		
	C/L. All setups were inoculated with a mixed inoculum from activated		
	non-adapted sewage sludge. In order		
	to check the influence of inoculum		
	concentration and washing of the		
	inoculum, three varities were		
	applied: A: 10 mg SS/L, washed, B:		
	4 mg SS/L, washed, C: 4 mg SS/L,		
	unwashed. Silica gel was used in all assays to		
	reduce possible inhibitory effects.		
	The degradation of		
	Dimethylethylhexadecylammonium-		
	ethylsulfate (MES) in the static test		
	was found to be 100, 87, and 76 %		
	for test assay A, B, and C,		
	respectively, after 14 days on the		
	basis of the ThIC of the test item		
	initially applied.		
	It was shown that degradation rate		
	was depending on inoculum		

Method	Results	Remarks	Reference
	concentration and on the		
	physiological properties of the		
	inoculum. Washing resulted in a		
	higher degradation rate.		
	The degradation within the 10-day-		
	window could be expected to be $>$		
	60 % for all test assays. With degradation rates of at least 87 %		
	(assay B) and 76 % (assay C), this		
	was confirmed for assays B and C.		
	No lag phase / adaptation phase was		
	noticeable in assay A. A lag phase /		
	adaptation phase of ca. seven days		
	was observed in the assays B and C,		
	which has to be blamed on the lower inoculum concentration in these		
	assays.		
	-		
	The IC content in the inoculum blanks at the end of the study		
	exceeds the requirements of the		
	guideline ($< 3 \text{ mg C/L}$). However,		
	the background value of the IC at		
	day 0 in all vessels and in the blank		
	controls is relatively high and		
	nearby the required threshold value.		
	The source of this background level is unclear as deionized water has		
	been used as dilution water, and the		
	inoculum has been aerated over		
	night to purge the system of carbon		
	dioxide and in the case of assay A		
	and B washed. It is expected that it		
	is technically difficult to achieve lower background values, as at		
	neutral and basic pH carbon dioxide		
	will be trapped from the		
	surrounding air. However, decisive		
	for the biodegradation is not the TIC		
	present at the end, but the IC content		
	built in the inoculum blank in comparison to the IC content built in		
	the test vessels. If the starting value		
	will be subtracted, the mean IC		
	content built in the inoculum blank		
	of test assay A (1.6 mg IC/L) at test		
	end was below the threshold value		
	of 3 mg IC/L. The IC content built		
	in the inoculum blanks of the assays B (4.3 mg IC/L) and C (6.6 mg		
	IC/L) at test end are above the		
	threshold value. However, the		
	results in test assays B and C are		
	plausible and are in line with test		
	assay A.		
	Due to a degradation achieving the		
	threshold value of 60% after 14 days		
	and within a 10- day-window, the test item		

Method	Results	Remarks	Reference
	Dimethylethylhexadecylammonium- ethylsulfate (MES) can be dentified to be readily biodegradable under the chosen test conditions and expected to be in general. The test results indicate that MES is readily biodegradable. The study is acceptable as supporting information.		
OECD 301B Ready Biodegradability Modified Sturm Test GLP: yes	Composition of product: MES 29% in water Due to the toxicity of the test item a test concentration of TOC 10 mg/L was chosen. All flasks containing the test substance initially received MES amounts corresponding to 40 mg/L test item. This corresponds to 12 mg/L MES or 7.5 mg C/L (nominal), or 7.4 mg C/L (measured). Additional replicates with addition of 10 mg/L humic acid (corresponding approximately to the test item concentration) to adsorb the test item and reduce the toxicity were set up. All setups were inoculated with an aqueous phase of non-adapted activated sludge from municipal STP. For the test item replicates without humic acid, the mean 10 % level (beginning of biodegradation) was reached on day 8. The 60 % pass level was not reached within 28 days. The mean biodegradation after 28 days was 48 %. For the test item replicates with humic acid, the mean 10 % level (beginning of biodegradation) was reached on day 5. The 60 % pass level was reached within 15 days and the 10-day-window was fullfilled. The mean biodegradation after 28 days was 97%. To check the activity of the test system, sodium benzoate was used as functional control. The percentage degradation of the functional control reached the pass level of 60 % within 6 days and a biodegradation of 97 % after 28 days. In the toxicity control containing both test and reference item (sodium benzoate) a biodegradation of 60 % was determined within 14 days and	Deviations: Due to the toxicity of the test item a test concentration of TOC 10 mg/L was chosen. Furthermore additional replicates with addition of 10 mg/L humic acid (corresponding approximately to the test item concentration) to adsorb the test item and reduce the toxicity were set up.	BODE Chemie (2013b)

Method	Results	Remarks	Reference
	reached 81 % after 28 days. The biodegradation of the reference item was not inhibited by the test item in the toxicity control. However, the net CO_2 production was delayed in comparison to the functional control. This effect indicates that the test item caused inhibitory effects on the bacteria.		
	The total CO_2 evolution in the inoculum control at the end of the test was 29.0 mg/L (validity criterion: < 40 mg CO_2/L after 28 days).		
	The IC content of the test substance suspension in the mineral medium at the beginning of the test was less than 5% of the TC (IC: 189 µg/L, TC: 7.40 mg/L after application of the test item).		
	In the presence of humic acid the test item is classified as readily biodegradable within 28 days and complying to the 10-day-window.		

11.1.1 Ready biodegradability

The quaternary ammonium compound Mecetronium ethyl sulphate [MES] has a high adsorption potential and is toxic to bacteria with $EC_0 = 5.9 \text{ mg/L}$. These substance characteristics generate several difficulties following standard conditions in test systems on ready biodegradability, and complicated the technically feasibility of such tests as well as the interpretation of the results. It is well known in the special case of cationic surfactants such as hexadecyl-trimethylammonium chloride, due to their inhibition to bacteria at relatively low concentrations, that adding silica gel at an optimal concentration balances the effects of toxicity with non-availability to the microorganisms (Painter et al., 2003). These results and the suitability of silica gel are also mentioned within the guideline OECD 310 (CO₂-headspace screening test) to reduce toxic effects on the inoculum. Similar results could be shown by van Ginkel et al. (2008) investigating the influence of silica gel or humic acid on the biodegradation of octadecyl-trimethylammonium chloride in the Closed Bottle Test.

Nevertheless, there are several studies on ready biodegradability of the test substance Mecetronium ethyl sulphate [MES] available.

In a Closed Bottle test according to OECD 301D (BODE Chemie (1995)) degradation was below 5% BOD for 8.09 mg/L and 12.9 mg/L test substance concentration after 29 and 60 days. However, oxygen consumption in the toxicity controls was slightly lower than in the corresponding procedure

controls. Therefore, a partial inhibition of bacterial degradation due to test substance toxicity cannot be excluded. Generally, the Closed Bottle Test is the most sensitive of the test systems for ready biodegradability with respect to bacterial toxicity.

In a DOC-Die-Away test according to OECD 301A (BODE Chemie (1999)) mean DOC removal was 32.8%. In the abiotic control the percentage elimination was 33%, and thus is in the same range as the elimination in the vessels with test substance. As the results of the toxicity control demonstrated that MES has no inhibitory effect to sewage sludge microorganisms, the elimination can be attributed to an abiotic removal, probably adsorption. This is conformed by the high adsorption potential of MES. However, the test substance concentration was reduced in all test vessels containing MES in an extent of approximately 60-70% within 1 day. Therefore, the test substance was re-dosed on day 1 and the DOC content of the test vessels has stabilised on day 3. The initial test substance concentrations for the two replicates were 10 and 11 mg DOC/L; re-dosing with 12 mg DOC/L. Due to the initial high adsorption of 60-70% the test system was not appropriate for the determination of the ready biodegradability of MES. Moreover, the expected toxic effects (EC₀ = 5.9 mg/L) could not be observed in the toxicity control. In conclusion, the results of this study on biodegradation are not reliable.

The results of these both older studies on biodegradation clearly indicate the two difficulties for performing ready biodegradation studies: the toxicity of the test substance against bacteria (including those of the inoculum) and the adsorption of the test substance on surfaces. Therefore, the standard test designs have to be adapted.

In a new study a Manometric Respirometry test according to OECD 301F (Bode Chemie (2008c)) was performed with and without silica gel. For both approaches two test item concentrations of 29 mg/L and 100 mg/L were applied. In the test with silica gel, biodegradation was 44.5% (29 mg/L) and 38.2% (100 mg/L) after 14 days. After 28 days biodegradation was observed to be 60.2% (29 mg/L) and 49.8% (100 mg/L). In the test without silica gel a biodegradation of 42.5% after day 28 was observed for 29 mg/L test item concentration, whereby degradation started earliest at day 20; no biodegradation was found for 100 mg/L. The prolongation of the lag phase in the test without silica gel clearly demonstrated the toxic effects of MES towards the inoculum. Hence, the use of silica gel in the test system was necessary; this is an approved method to alleviate possible inhibitory effects of cationic surfactants on the inoculum.

In a further study using the Modified Sturm Test according to OECD 301 B (BODE Chemie (2013a)) the effect of humic acid has been investigated on the biodegradation of MES in a concentration of 12 mg/L. For the test item replicates without humic acid, the mean 10 % level (beginning of biodegradation) was reached on day 8; the 60 % pass level was not reached within 28

days; the mean biodegradation after 28 days was 48 %. However, for the test item replicates with humic acid, the mean 10 % level (beginning of biodegradation) was reached on day 5; the 60 % pass level was reached within 15 days; the mean biodegradation after 28 days was 97%. Therefore, using humic acid the toxicity of MES in ready biodegradability tests could be reduced and MES meets the pass level as well as the 10 day window criterion.

Additionally following CO₂-headspace non-GLP screening tests according to OECD 310 have been performed, which can be used as supporting information.

In the CO₂-headspace screening test according to OECD 310 (BODE Chemie (2011b)) 15 test flasks with 20 mg TOC/L and 5 flasks with 10 mg TOC/L have been prepared. The IC content was determined after 7, 14, 21 and 28 days for the 15 test flasks (10 mg TOC/L) and at day 28 for the additional 5 flasks (10 mg TOC/L). The mean degradation of the test item was observed to be - 10.3% for the 15 flasks and was also negative for the additional ones. The mean degradation in the inhibition controls was -4.71% at day 28. These negative results demonstrate that the test item at concentrations > 10 mg TOC/L had toxic effects on the inoculum.

In the CO₂-headspace screening test according to OECD 310 (BODE Chemie (2011c)) two assays, each with 10 replicates, with test item concentrations of 10 mg C/L (assay A) and 20 mg C/L (assay B), were monitored over a period of 28 days. The test was performed using silica gel. Degradation was observed to be 100% for assay A and 80% for assay B. The biodegradation within a 10-day-window was expected to be > 60% in all assays. The degradation rates were 104 and 70% at day 14. However, IC content in the inoculum blanks was above the threshold value of 3 mg IC/L at test end. Nevertheless, the results in the test and reference assays were plausible. In conclusion, the test item mecetronium ethyl sulphate [MES] was regarded to be readily biodegradable under the chosen test conditions.

In order to check the influence of inoculum concentration and washing of the inoculum, in the CO₂headspace screening test according to OECD 310 (BODE Chemie (2011c)) different samples of activated sludge for the inoculum as well as silica gel were used. Three assays were prepared. For assay A and B, the sludge was washed in mineral medium and centrifuged. The supernatant was discarded. The concentrated sludge was suspended in mineral medium to a concentration of 1 - 3 g suspended solids/L. For assay C, the untreated sludge was suspended in mineral medium to a concentration of 1 - 3 g suspended solids/L. The concentration used in the test was 10 mg SS/L (A) and 4 mg SS/L (B and C). The test item concentration was 10 mg C/L in each assay. Biodegradation was observed to be 100% (assay A), 87% (assay B) and 76% (assay C).

The biodegradation within a 10-day-window was expected to be > 60% in all assays. The IC content in the inoculum blank of assay A was below the threshold of 3 mg IC/L. Therefore, the

validity criterion is fulfilled and the test is considered as valid. However, the IC content build in the inoculum blanks of the assays B (4.3 mg IC/L) and C (6.6 mg IC/L) at test end are above the threshold value, the results in these assays at test end are plausible and are in line with test assay A. In conclusion, the test item mecetronium ethyl sulphate [MES] was regarded to be readily biodegradable under the chosen test conditions.

The presented studies clearly demonstrate that the high adsorption potential and the potential toxicity of mecetronium ethyl sulphate [MES] may influence the results of the performed tests on ready biodegradability, and thus these substance properties have to be considered within the interpretation of the test results.

Overall, the results of the studies using humic acids or silica gel to reduce toxicity effects on biodegradation results indicate clearly that mecetronium ethyl sulphate [MES] could be regarded as readily biodegradable fulfilling 10-day-window.

Mecetronium ethyl sulphate [MES] belongs to the group of quaternary ammonium compounds (QAC`s), a group of cationic surfactants, which are structurally similar with respect to the embedded quaternary nitrogen and at least one long chain length.

Publicly available information on such QACs (Painter et al, 2003, OECD 310), van Ginkel et al. 2008), clearly demonstrate that only using silica gel or humic acid will result in an observation of sufficient biodegradation in the standardized ready biodegradability test systems. In Painter et al. (2003) and in OECD 310 the biodegradation of hexadecyltrimethylammonium chloride is given to be 75% using silica gel to reduce toxicity. Van Ginkel et al. (2008) investigated the biodegradation of octadecyltrimethylammonium chloride in the Closed Bottle Test using silica gel, lignosulphonic acid and humic acid. While without using such auxiliaries biodegradation could not be observed, the substance meets the pass level of 60% as well as the 10-day-window criterion using silica gel or humic acid.

Ambiguous results of early biodegradation studies with mecetronium ethyl sulphate [MES] are related to the high adsorption potential and the toxicity of MES towards the inoculum (closed bottle test and DOC-Die-away Test). However, more appropriate recent studies (manometric respiration test, Modified Sturm Test and various CO₂-headspace screening tests) demonstrate that the test substance can be regarded as readily biodegradable.

Overall, mecetronium ethyl sulphate [MES] has to be classified to be readily biodegradable fulfilling 10 day window.

In addition, for several monoalkyl quaternary ammonium compounds (QACs), which are structurally closely related to mecetronium ethyl sulphate [MES], primary and ultimate biodegradability was demonstrated. In a modified SCAS test, Games et al. (1982) found rates of > 88% ultimate degradation of radiolabelled C18-trimethylalkylammonium chloride after 7 days. Garcia et al. (2001) observed biodegradation of QACs over time by DOC determinations. In case of C16-trimethyl¬alkylammonium bromide, 100% primary biodegradation was reached after 6 days, and ultimate biodegradation was complete after 11 days. A more specific analysis was applied by Nishiyama et al. (1995). The authors used ion chromatography and 1H-NMR for the identification of degradation pathways and concluded that long-chain (C₈-C18) trimethylalkyl QACs are ultimately biodegradable. Identified initial degradation pathways were N-dealkylation, N-demethylation and ω -oxidation. Multiple further findings of biodegradability of QACs are discussed by Boethling (1984) and Ying (2006).

11.1.2 BOD5/COD

BOD₅/COD test are not available.

11.1.3 Hydrolysis

There are no tests available on the hydrolysis of mecetronium ethyl sulphate [MES] in aqueous solutions that would allow deriving a reaction rate for surface waters.

However, mecetronium ethyl sulphate [MES] dissociates in aqueous solution, generating the ethylsulphate anion and the mecetronium cation. Ethylsulphate then further hydrolyses to give ethanol and sulphuric acid. In contrast, the molecular structure of the mecetronium cation has no hydrolysable functional group. Therefore, the substance is not a candidate for noteworthy hydrolysis. Furthermore, the substance is marketed as a 29% aqueous solution and the solution proved to be stable under these conditions.

11.1.4 Other convincing scientific evidence

11.1.4.1 Field investigations and monitoring data (if relevant for C&L)

Field investigations and monitoring data are not available.

11.1.4.2 Inherent and enhanced ready biodegradability tests

Inherent and enhanced biodegradability test data are not available.

11.1.4.3 Water, water-sediment and soil degradation data (including simulation studies)

No further studies are available which deal with the rate and route of degradation in aquatic systems (incl. sewage treatment plants) and with the degradation in soil.

11.1.4.4 Photochemical degradation

Photolysis in water

There are no tests available on the photolysis of MES in aqueous solutions that would allow deriving a reaction rate for surface waters.

However, the molecular structure of MES has no chromophore. In addition, the UV spectrum does not show any significant absorption at wavelengths > 290 nm. The US EPA method OPPTS 835.2210 states that the test method is applicable to all chemicals that have a UV/absorption maximum in the range of 290-800 nm. Chemicals with UV/absorption maxima exclusively below 290 nm cannot undergo direct photolysis in sunlight. Therefore, the substance is not a candidate for noteworthy photolysis in sunlight and it is not necessary to perform the test.

Phototransformation in air

For MES the rate constant for indirect photolysis with OH radicals was estimated using the program AOPWIN v1.91. Ozone reaction was not estimated by the model. The calculation was based on $0.5 \cdot 106$ OH radicals per cm³ for a 24 hours-day according to the TGD (EC 2003, part II chapter 3, 2.3.6.3, p. 51). Specific degradation rate constants $43 \cdot 10^{-12}$ cm³ molecule⁻¹ s⁻¹ was calculated. The corresponding half-life is equal to 9.22 hours.

Because of the low vapour pressure and low Henry's law constant, no significant volatilisation to air is to be expected. Additionally, the amount which reaches the air compartment will most probably be washed out by rain. Therefore, degradation in the atmosphere is considered to be only of minor importance.

Conclusions:

The results suggest that MES is very rapidly degraded in air by photo-oxidative processes. Significant amounts of MES are not likely to persist in air.

11.2 Environmental transformation of metals or inorganic metals compounds

Table 73: Summary of relevant information on rapid environmental transformation.

Method	Results	Remarks	Reference
Not applicable			

11.2.1 Summary of data/information on environmental transformation

Not applicable.

11.3 Environmental fate and other relevant information

Adsorption/desorption

Adsorption of Dimethylethylhexadecylammonium-ethylsulphate on a reference soil LUFA 2.2 (loamy sand) was performed at 20 - 25°C at a soil/ solution ratio of 1:50 according to Tier 1 of the OECD Guideleine106 (BODE Chemie (2002a)).

Prior to the test selection of the optimal soil solution ratio out of three ratios (1:50, 1:16.7, and 1:5) was performed. For determination of the soil adsorption coefficient 1 g soil was weighed into 80 mL centrifuge tubes. Then samples were suspended with 49.5 mL of 0.01 M CaCl₂ solution (blanks were suspended with 50 mL of a 0.01 M CaCl₂ solution) and centrifuge tubes were closed with glass stoppers. For every test set two replicates and one blank (soil plus 0.01 M CaCl₂ solution) were prepared. In addition control samples were performed in every test set (test substance in 0.01 M CaCl₂ solution, no soil).

Samples were shaken overnight to establish soil-water equilibrium. Then 500 μ L (corresponding to 10 mg dimethylethylhexadecylammonium-ethylsulfat/L) of the test substance stock solution 1 was added and the tubes agitated on a mechanical shaker. After that, samples were centrifuged at 3500 min⁻¹ for 10 minutes. 1.5 ml of the supernatant aqueous solution was subjected to LC-MS-MS for determination of the concentration of the test substance.

For checking the sorption of the test substance on the test vessels the control samples were used. After test performance and transfer of the test aliquots to analytical determination the remaining aqueous solutions were removed and rinsed with water two times, remaining water was removed with a stream of nitrogen. 5 mL of methanol was pipetted into the test vessels and shaken for 10 min using a mechanical shaker. 1.5 mL of the methanol extracts were analysed by LC-MS-MS. There was no noticeable adsorption on the test vessels (2.2%).

The dimethylethylhexadecylammonium cation in aqueous solution was determined by LC-MS-MS. Therefore the determined adsorption coefficients Ka and Kaoc are valid for the dimethylethylhexadecyl-ammonium cation only.

The adsorption of the cation is extremely strong. This is in agreement with the very rapidly attained sorption equilibrium after 7 hours.

Adsorbed a.s. [%] > 96 after 7 hours

Ka > 1300 cm³/g (7 hours)

Kd Not determined

Kaoc > 60000 cm³/g (7 hours)

Ka/Kd Not applicable

Adsorption of the dimethylethylhexadecylammonium cation was found to be extremely high, so the cation is expected to be immobile in soil.

The adsorption/desorption behaviour of mecetronium ethyl sulphate [MES] was studied with five top soils. The determinations of soils IME 02-A (silt loam), IME 03-G (silt loam) and IME 06-A (silty clay loam) were performed in compliance with the principles of the Good Laboratory Practice at the testing facility. The determinations of soil LUFA 2.2 (loamy sand) and LUFA 3A (sandy silty loam) obtained from Landwirtschaftliche Untersuchungs- und Forschungsanstalt Speyer, Obere Langgasse 40, D-67346 Speyer (LUFA Speyer) were conducted in compliance with the principles of the Good Laboratory Practice by LUFA Speyer (BODE Chemie (2008d)).

The adsorption coefficients (KF) in the adsorption tests varied up to a factor of about 10 in a range between 1627 and 16 126. Normalization to the organic carbon content of the soils resulted in KOC values from 68 940 to 655 630. No significant correlation between organic carbon content and adsorption could be observed. In contrast, the correlation between adsorption and cation exchange capacity of the soils was $R^2 = 0.9909$. The 1/n values obtained from the adsorption test ranged between 0.5116 and 0.6560, indicating that the sorption of MES is nonlinear.

Adsorption kinetics showed that equilibrium conditions were achieved after 24 h.

Desorption was proven to be almost independent from agitation time. The desorption tests show a range of desorption coefficients (KF) between 1125 and 17 366. Normalization to the organic carbon content of the soils resulted in KOC values ranging from about 47 669 to 705 934. No correlation between desorption and organic carbon content of the soils could be observed. In contrast, the correlation between desorption and the cation exchange capacity of the soils was $R^2 = 0.9898$.

Results indicate that mecetronium ethyl sulphate [MES] was not only adsorbed by the soil organic matter but also by the clay mineral fraction. However, the good correlation of both adsorption and desorption coefficients (K_F^{ads} and K_F^{des}) indicates that ionic linkage may dominate the sorption mechanism. Mecetronium ethyl sulphate [MES] was found to sorb strongly onto the five test soils, and was poorly desorbed from the soils. Results indicate that ionic linkage to the clay mineral fraction is a more important sorption mechanism than binding to the soil organic matter.

Studies on activated sludge adsorption properties of mecetronium ethyl sulphate [MES] were performed according to the ISO-Guideline 18749 "Water Quality – Adsorption of substances on

activated sludge – Batch test using specific analytical methods" (BODE Chemie (2008e)). Test performance included range finding tests, the determination of the degree of adsorption at different time intervals (adsorption kinetic) with two initial test item concentrations (25 and 50 mg/L), and parental mass balance. In addition, tests with sterilized activated sludge were conducted. Basic Violet 4 was used as reference substance. A high adsorption of all tested components was reached very rapidly, i.e. after 1 hour. After 6 hours the degree of adsorption decreases slightly which may probably attributed to the modified surface active properties of the sludge caused by the test item's toxicity. Therefore, the results of adsorption test obtained at 24 h should not be taken into account. Adsorption was shown to be dependent on the concentration of the test substance. Therefore, results from the lower from the two tested concentrations (25 mg/L) should be preferred, as they are closer

to concentrations expected in waste waters. In addition, the mass balance showed satisfying recovery of the test substance at the lower test concentration (25 mg/L), but not at 50 mg/L. This finding may be explained by a lower extraction efficiency at the higher concentration level.

Overall, the arithmetic mean value of the distribution coefficients obtained after 1, 2, 4 and 6 hours at an initial concentration of 25 mg/L should be taken as the definitive test result.

In sterile samples the observed adsorption was comparable to the values of non-treated samples. The test with reference material demonstrated satisfying adsorption capacity of the sludge used for the test. Therefore, the results can be accepted.

Adsorbed a.s. [%]: 99.6 % (25 mg/L, mean 1 – 6 hours)

Ka: 232 000 L/kg

Kd: Not determined, not required by guideline ISO 18749

Kaoc: Not determined

Ka/Kd: Not applicable

Degradation products (% of a.s.): Not determined.

Conclusion: The high adsorption coefficients indicate that MES is immobile in soils and will strongly adsorb onto sewage sludge.

11.4 Bioaccumulation

Table 74: Summary of relevant information on bioaccumulation.

Method	Results	Remarks	Reference
		No data	

11.4.1 Estimated bioaccumulation

As with all other organic chemicals, in studies on surfactant bioconcentration the term 'BCF' refers to measurements at steady-state conditions, i.e., uptake and elimination processes have reached an equilibrium. Due to the time-consuming nature of steady-state experiments, though, many studies on bioconcentration have applied a kinetic approach. This means that uptake and (if performed) elimination phase durations are chosen without knowledge of the time to reach steady-state. Instead, the elimination of the test substance from the water phase is followed over time by appropriate analytical methods. Banerjee et al. (1984) and de Wolf and Lieder (1998) have shown that for organic chemicals this kinetic BCF (BCFkin) is a good estimate of the steady-state BCF, and a guideline for its application in standard testing is under development (ECETOC 2005). Arnot and Gobas (2006), on the other hand, drafted a catalogue of quality criteria for reliability of BCF studies. In this context they claimed that studies not approaching steady-state conditions should not be scored as fully reliable. With these somewhat contrasting statements in mind, a review on the available open literature on bioconcentration behaviour of quaternary ammonium compounds (QACs) was performed. Meylan et al. (1999) compiled experimental BCF data for 84 ionic compounds including seven QACs. None of these compounds exceeded a log BCF of 2.5 (BCF = 316 L/kg). Concurringly, for the QAC DODMAC BCFs between 31 and 256 L/kg were reported, depending on the test medium used (natural vs. laboratory water, hardness) (EC 2002).

The cation of mecetronium ethyl sulfate (MES) possesses a dimethyl-monoethyl ammonium headgroup and a C16-alkyl chain. No experimental data on the bioconcentration potential of MES are available.

Versteeg and Shorter (1992) reported BCFkin values for a mixture of C18- and C16- trimethyl ammonium chloride (TMAC), which is a related structure to the MES cation. For this mixture of two alkylchain lengths in pure laboratory water they found a relatively high BCFkin of 1962 L/kg, which is near to the criterion for bioaccumulative substances according to Annex XIII of REACH Regulation. Versteeg and Shorter (1992) demonstrated that the BCFkin of TMAC was dependent on the alkyl chain length as BCFkins of C12- and C8-TMAC were only 34 and 2 L/kg, respectively. Considering this strong influence of the alkylchain length on bioconcentration of monoalkyl QACs, it appears that the pure C16-compound MES, without C18-components, should have a BCFkin well below that of C16/18-TMAC.

Another factor abating the bioconcentration potential of MES compared to C16/18-TMAC, is the different structure of the hydrophilic head of the cation. Beside the C16-alkyl chain, MES possesses a dimethyl, monoethyl-structure, whereas TMAC is characterised by a trimethyl-structure. In their review on surfactant bioconcentration, Tolls et al. (1994) concluded from a number of studies that not only alkyl chain length but also the hydrophilic head-structure of QACs function as determinators of the bioconcentration potential. Since QACs with two or more chains generally

concentrate less in tissues than monoalkyl QACs, it can be concluded that also the slightly longer ethyl-moiety of the MES cation lowers its bioconcentration potential compared to C16/18-TMAC.

In test medium spiked with humic acids as an experimental surrogate for organic carbon in natural waters, Versteeg and Shorter (1992) found that the BCFkin of C16/18-TMAC was reduced from 1962 L/kg to values below 50. The authors also demonstrated that in natural surface waters of different origins, fish toxicity in terms of acute LC_{50} was reduced by factors between 4 and 7 compared to pure laboratory water. Thus, they concluded that also bioconcentration will be reduced by organic carbon contents in natural waters. It is reasonable to assume that a comparable relationship is valid for the MES cation, and we postulate that under field conditions bioconcentration of MES will also be dimished.

In regard of the evidence outlined above, it evolves that MES possesses a lower bioconcentration potential than C16/18-TMAC.

Another issue to be addressed in the context of bioconcentration is the question whether MES may accumulate in the food chain, thus provoking toxic effects in organisms at higher trophic levels, e.g., fish-eating birds or mammals - 'secondary poisoning'.

However, taking into account the above data, it appears rather improbable that MES will accumulate in the food chain, because no significant bioconcentration is expected. Furthermore, experimental proof exists that monoalkyl QAC cations may be readily metabolised and excreted ingestion. et al. (1973)found after Hughes that rats excreted radiolabelled ¹⁴C1]cetyltrimethylammonium bromide (which is identical to C16-TMAC, except for the anion) by 48% within 24 hours after intraperitoneal administration. Beside the parent compound, two metabolites were found in the bile and five metabolites in the urine. Pharmakokinetic data on MES after dermal absorption in rats show also, that about 66% of the incorporated MES (which was only around 1% of the total administered dose) was excreted within 72 hours.

Taken together, the above information demonstrates that MES is not a candidate for concern when bioaccumulation is regarded. Though structurally related to C16/18-TMAC, which is the QAC with the highest bioconcentration potential ever reported, sound scientific evidence is available to demonstrate that MES has a lower bioconcentration potential. Therefore, since even the reported BCFkin for C16/18-TMAC is not exceeding the trigger value for bioaccumulative substances of 2000 L/kg, it can be concluded that there is no serious concern for MES bioconcentration.

11.4.2 Measured partition coefficient and bioaccumulation test data

Mecetronium ethyl sulfate [MES] has a ionic structure and surface active properties. The methods proposed for the determination of the log Pow (TNsG on Data Requirements; EC, 2000) are OECD

107 and OECD 117. However, both methods are not suitable for the determination of the partition coefficient of surface active compounds. Therefore the experimental determination of the partition coefficient of MES by the proposed methods is technically not feasible.

As alternative the log Pow may be estimated from the individual solubilities in water and n-octanol (OECD, 1995).

This approach suggested to perform a study on solubility in n-octanol in order to be able to estimate the Kow by comparing the apparent solubilities of MES in n-octanol and water.

The study on solubility in n-octanol was performed according to CIPAC MT 181 and the solubility was found to be 168-202 g/L. The study on solubility in water was performed according to OECD 105 with a determined solubility of 500-1000 g/L.

From this results the Kow can be estimated as follows:

 $Kow = c_{n-octanol} / c_{water}$

As a worst case the highest solubility value of n-octanol and the lowest value of water are used for further calculation.

Kow = 202 g/L / 500 g/L

Kow: 0.404

From this the log Kow value is calculated:

Log Kow = -0.39

The log Kow for Mecetronium ethyl sulphate [MES] is lower than the trigger value of 4 for CLP Regulation and it shows a low potential for bioaccumulation.

11.5 Acute aquatic hazard

Table 75: Summary of relevant information on acute aquatic toxicity.

Method	Species	Test material	Results ¹	Remarks	Reference
Fish, Acute	Species/Strain	Mecetronium	LC ₅₀ : 0.06 mg/L	Concentrations	<confidential></confidential>
toxicity test	Leuciscus idus	ethyl sulphate	(96 hours,	were not	(1992g)
OECD 203	melanotus L.	[MES]	nominal)	confirmed by	
GLP – no	Ten fish were	27.5 - 30.5 %		analytical	
Test type: static	exposed to each	MES solution in	LC ₅₀ : 0.048	methods	
Duration of the	of the five	water	mg/L (time	Study is not GLP	
test: 96 hours	concentrations of		weighted	compliant,	
Test parameter:	the test substance		average)	These are only	
mortality	between 0.1 and			minor	
Sampling: every	0.3 mg/L and a			shortcomings and	
24 hours	control.			do not affect the	
Initial				overall	
concentrations of				significance of	
the test				the findings.	
substance: 0.1,				801	

	1	1		1	,
0.15, 0.2, 0.25 and 0.3 mg/L (nominal)					
Daphnia sp., Acute Immobilisation test OECD 202 GLP: yes Duration of test: 48 h Test parameter: immobility Sampling: at 24 and 48 hours Monitoring of TS concentration: Yes, at 0 and 48 hours	Species/strain: Daphnia magna STRAUS, no data on strain. Animals were exposed to five concentrations of MES, ranging from 6.25 to 100 μ g/L in a geometric series divided by factor 2, and a control group.	Mecetronium ethyl sulphate [MES] Purity: IUCLID technical dossier Initial concentration of test substance:0.100, 0.050, 0.025, 0.0125, 0.00625 (nominal)	EC ₅₀ : 0.019 mg/L (48 hours, nominal)	test was performed in closed carboys; however test substance is not volatile	<confidential> (2000)</confidential>
Daphnia sp., Acute Immobilisation test OECD 202 Duration of test: 48 h Test parameter: immobility Sampling: at 24 and 48 h Monitoring of TS concentration: Yes, at 0, 1, 2, 4, 8, 24 and 48 hours	Species/strain: Daphnia magna STRAUS (clone V) Animals were exposed to five concentrations of MES, ranging from 0.67 to 22.97 µg ai/L (time-weighted averages), and a control group. All concentrations were tested using 4 replicate treatments with 5 animals each.	Dimethylethylhe xadecylammoniu m-ethylsulfate (= Mecetronium ethyl sulphate, [MES]) 29.9 % aqueous solution	EC ₅₀ : 0.015 mg/L (48 hours, time weighted average))		BODE Chemie (2010)
Algae, Growth Inhibition Test OECD 201 GLP: yes Duration of the test: 72 hours Test parameter: cell multiplication inhibition (photometric measurement); calculation of biomass production and growth rate Sampling: after 24, 48, 72 hours	Species/Strain Desmodesmus subspicatus (formerly known as Scenedesmus subspicatus CHODAT)	Mecetronium ethyl sulphate [MES] Purity > 99% Initial cell concentration: $8.11 \cdot 104$ cells/mL (Control mean, main test) Test temperature; $21.9 - 23.2^{\circ}$ C pH 7.94 – 8.22 (initial) 8.01 - 10.39 (after 72 h) Aeration of dilution water: No	Biomass production (based on nominal values): NOEC = 0.004 mg/L, EC ₁₀ = 0.006 mg/L, EC ₅₀ = 0.025 mg/L, EC ₁₀₀ = 0.150 mg/L Growth rate (based on nominal values): NOEC = 0.011 mg/L,		<confidential> (2000a)</confidential>

Light intensity: 120 µE/m ² s within the range 400 – 700 nm Initial concentrations of test substance: 0.0, 0.01, 0.02, 0.04, 0.08, 0.16 mg a.i./L (nominal)	$EC_{10} = 0.015$ mg/L, EC_{50} = 0.054 mg/L, EC_{100} = 0.250 mg/L Growth rate (based on time weighted average): NOEC = 0.00014 mg/L, EC_{50} = 0.0039 mg/L
--	---

¹Indicate if the results are based on the measured or on the nominal concentration.

11.5.1 Acute (short-term) toxicity to fish

The test was performed according to the OECD guideline 203. Leuciscus idus melanotus L. was used as test organism.

Ten fish were exposed to each of the five concentrations of the test substance between 0.1 and 0.3 mg/L and a control. The test was performed at 20°C and 12:12 hours light: dark cycle in a medium made from drinking water and deionised water. Test duration was 96 hours and survival was assessed every 24 hours. Oxygen concentrations and pH were measured in the same intervals. No analyses on test substance residues were performed.

MES was found to be acutely very toxic towards Leuciscus idus melanotus L.

Table 76. Fish study – effect data (nmortality).

Test substance Concentration	wortanty								
(nominal)		Number				Percentage			
[mg/l]	24 h	48 h	72 h	96 h	24 h	48 h	72 h	96 h	
control	0	0	0	0	0	0	0	0	
0.1	0	0	0	0	0	0	0	0	
0.15	0	1	2	3	0	10	20	30	
0.2	1	2	4	5	10	20	40	50	
0.25	10	-	-	-	100	100	100	100	
0.3	10	-	-	-	100	100	100	100	

	48 h [mg/l]	95 % c.l.	96 h [mg/l]	95 % c.l.
LC ₀	0.10	No data	0.10	No data
LC50	< 0.25 but > 0.20	No data	0.20	No data
LC100	0.25	No data	0.25	No data

LC values are based on nominal concentrations

From the Batch-Number and the properties can be derived, that the test substance is the 30% aqueous solution of MES. It cannot be deduced whether the concentration was based on the MES concentration or the test solution concentration. Therefore, the results from the study are multiplicated with the factor 0.3 (30% solution) as a worst-case approach and presented in below. The results are based on the nominal concentrations.

In order to overcome the lack of test substance monitoring the "Kinetic Study" was initiated. From the kinetic data a time-weighted average concentration was calculated. This TWA was then used to derive the actual effect data. For this, the nominal EC_{50} was divided by the %-initial TWA value.

 $LC_0 0.03 \text{ mg/L}$ (96 hours, nominal)

0.024 mg/ L (time weighted average)

LC50 0.06 mg/L (96 hours, nominal)

0.048 mg/ L (time weighted average)

LC100 0.075 mg/L (96 hours, nominal)

0.058 mg/ L (time weighted average)

All validity criteria according the test guideline OECD 203 are met within the study. For details see the following table.

Table 77. Fish study – validity criteria.

	fulfilled	Not fullfilled
Mortality of control animals <10%	X	
Constant conditions should be	Х	
maintained as far as possible throughout		
the test (static system)		
Concentration of dissolved oxygen in all	Х	
test vessels $> 60\%$ saturation		
Concentration of test substance $\geq 80\%$ of	No data	
initial concentration during test		

11.5.2 Acute (short-term) toxicity to aquatic invertebrates

The first test was performed according to the OECD guideline 202 part I. The water flea Daphnia magna STRAUS (Crustacea: Cladocera) was used as the test organism on acute toxicity of MES towards invertebrates (<confidential> 2000).

Animals were exposed to five concentrations of MES, ranging from 6.25 to 100 μ g/L in a geometric series divided by factor 2, and a control group. Prior to the definite test two range finding experiments were conducted. All concentrations were tested using 4 replicate treatments with 5 animals each. The test was performed at 20°C and a 16:8 hours light:dark cycle in a fully artificial

medium according to DIN 38412, part 11. Immobilisation was assessed at 24 and 48 hours, physico-chemical water parameters and test substance concentrations were measured at 0 and 48 hours.

Analytical monitoring of the test substance was performed according to "Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung, DIN 38409 Part 20: Bestimmung der Disulfinblau-aktiven Substanzen".

MES was found to be acutely toxic towards daphnia at relatively low concentrations (see Table below).

Test substance Concentration	Im	Immobile Daphnia					
(nominal) [mg/l]	Number		Percentage		O_2	рН	Temp.
[mg/1]	24 h	48 h	24 h	48 h	[mg/l] 48 h	48 h	[°C] 48 h
Control			0	0	7.8	7.43	20.2
0.100	N. 1.	4.5	100	100	7.8	7.77	20.2
0.050	No da		60	100	7.8	7.69	20.2
0.025	U	given in		100	7.8	7.61	20.2
0.0125	report		0	5	7.8	7.59	20.2
0.00625			0	0	7.8	7.53	20.2

Table 78. Daphnia study - effect data (immobilisation).

	EC50	95 % c.l.	EC ₀	EC100
24 h [mg/l] (nominal)	0.038	No data	0.01	0.1
48 h [mg/l] (nominal)	0.019	No data	0.006	0.025

However residue analysis of MES was unsuccessful because the method proved to be not sensitive enough for the concentration range tested. All results refer therefore to the nominal concentrations.

A chronic study on daphnia reproduction (<confidential> (2008f)) was monitored by an appropriate and validated LC/MS-MS method. These data can also be used for the interpretation of the present results. Due to the adsorption behaviour of MES, the actual concentrations are probably lower than nominal.

All other validity criteria according the test guideline OECD 202 are met within the study. For details see the following table:

Validity criteria	fulfilled	Not fullfilled
Immobilisation of control animals <10%	X	
Control animals not staying at the surface	X	
Concentration of dissolved oxygen in all test vessels >3 mg/l	X	
Concentration of test substance $\geq 80\%$ of initial concentration during test	No valid data	

Table 79. Daphnia study – validity criteria.

The second test was performed according to the OECD guideline 202 (2004). The water flea Daphnia magna (Crustacea: Cladocera) was used as the test organism on acute toxicity of MES towards invertebrates (<confidential> 2010).

Animals were exposed to five concentrations of MES, ranging from 0.67 to 22.97 μ g ai/L (timeweighted averages), and a control group. All concentrations were tested using 4 replicate treatments with 5 animals each. The test was performed at 20°C in the dark. Immobilisation was assessed at 24 and 48 hours, physico-chemical water parameters and test substance concentrations were measured at 0, 1, 2, 4, 8, 24 and 48 hours.

The evaluation of the concentration-effect-relationships and the calculations of effect concentrations were based on the theoretical mean concentrations (time weighted average, according to OECD guideline 211) of the test item.

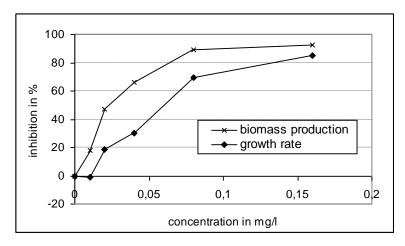
Analytical monitoring of the test substance was performed by LC/MS-MS (LOQ = $0.1 \mu g/L$).

MES was found to be acutely toxic towards daphnia at relatively low concentrations (See Table below).

Test substance Concentration	Im	mobile	Daphr	nia			
(time weigthed	Nun	Number		Percentage		pН	Temp.
average) [µg ai/L]	24 h	48 h	24 h	48 h	[mg/L] 48 h	48 h	[°C] 48 h
Control	0	0	0	0	8.1	8.6	20.2
0.67	0	0	0	0	8.3	8.6	20.2
1.55	0	0	0	0	8.5	8.6	20.2
5.16	2	3	10	15	8.5	8.6	20.2
9.72	3	6	15	30	8.5	8.6	20.2
22.97	5	13	25	65	8.7	8.7	20.2

Table 80. Daphnia study - effect data (immobilisation).

	EC50	95 % c.l.	EC 10	EC20
48 h [μg ai/L] (time weighted average)	15.65	11.22 - 26.95	4.52	6.92


11.5.3 Acute (short-term) toxicity to algae or other aquatic plants

"Alga, Growth Inhibition Test":

The green alga Desmodesmus subspicatus (formerly Scenedesmus subspicatus CHODAT) was used as the test organism on toxicity tests of MES towards algae, and the test was performed according to the OECD guideline 201 (<confidential> 2000a).

Algae were exposed to five concentrations of MES ranging from 0.01 to 0.16 mg/L in a geometric series divided by factor 2, and a control group. Prior to the definite test, two range finding experiments were conducted. All concentrations were tested using 7 replicate treatments with mean initial cell densities in the main test of $6.6 \cdot 104$ to $8.39 \cdot 104$ cells/mL. The test was performed at $21.9 - 23.2^{\circ}$ C under continuous illumination in a fully artificial medium according to OECD 201. However, the NaHCO₃ concentration was twice the recommended value of the guideline. Cell densities were assessed at 24, 48 and 72 hours using a spectrophotometric method at 578 nm, previously calibrated. Physico-chemical water parameters and MES concentrations were measured at 0 and 72 hours. MES concentrations were analysed according to "Deutsche Einheitsverfahren zur Wasser-, Abwasser,-, und Schlammuntersuchung, DIN 38409 Part 20: Bestimmung der Disulfinblau-aktiven Substanzen".

Mecetronium ethyl sulphate [MES] was found to be very toxic towards D. subspicatus (see graph below).

Graph 1. Alga Growth Inhibition Test: concentration/response curve.

However residue analysis of MES was unsuccessful because the method proved to be not sensitive enough for the concentration range tested. All results in this study refer therefore to the nominal concentrations. All other validity criteria according to the test guidline OECD 201 are met within the study. A clear concentration-response relationship can be established from the study results. In order to overcome the shortcomings regarding test substance monitoring the "Kinetic Study" was initiated. From the kinetic data a time-weighted average concentration was calculated. This TWA was then used to derive the actual effect data. For this, the nominal EC_{50} and NOEC was divided by the respective %-initial TWA value.

11.5.4 Acute (short-term) toxicity to other aquatic organisms

No data available.

11.6 Long-term aquatic hazard

Method	Species	Test material	Results ¹	Remarks	Reference
Fish, Early- life Stage Toxicity Test OECD 210 GLP: yes Test type: Flow- through Duration of the test: 35 days Test parameters: Hatching rate, mortality/sur	Species Species/ Strain: Danio rerio (Zebrafish)	Test material Mecetronium ethyl sulphate [MES] MES 29% (solution in water) Concentrations: Adult zebrafish were exposed to nominal concentrations of 5, 50 and 500 µg MES/L in a semi- static test design for 96 h	Results¹ NOEC: 0.555 μg MES/L (adverse effect on survival, mean measured concentration) LOEC 2.95 μg MES/L (adverse effect on survival, mean measured concentration)	Remarks	Reference <confidential> (2012)</confidential>
vival, growth (body length and weight) and behavioural abnormalitie s Daphnia magna Reproductio n Test OECD 211	Species/St rain: Daphnia magna	Mecetronium ethyl sulphate [MES] 29.2 % solution in water	NOEC 0.19 μg /L (parental survival), time weighted average concentration		<confidential> (2008f)</confidential>
GLP: yes Test type: Semi static Duration of the test: 21 days Test parameter: At the end of the test, the total number of living			LOEC 0.24 µg/L (parental survival), time weighted average concentration EC ₅₀ Calculation not possible for TWA corrected values		

Table 81: Summary of relevant information on chronic aquatic toxicity.

r			
offspring			
produced per			
parent			
animal alive			
at the end of			
the test was			
assessed.			
The parental			
mortality,			
time to first			
brood and			
offspring			
number were			
used to			
calculate the			
intrinsic rate			
of population			
increase as			
integrative			
parameter			
relevant for			
population			
effects.			

¹Indicate if the results are based on the measured or on the nominal concentration

11.6.1 Chronic toxicity to fish

The influence of MES on the early life stages of the zebrafish Danio rerio was investigated (<confidential> 2012).

The study was conducted under flow through conditions according to the OECD guideline 210. Freshly fertilised eggs of Danio rerio from laboratory own breeding were exposed to five concentrations of MES, untreated control replicates were run in parallel. Each treatment group consisted of 4 replicates with totally 60 fertilised eggs. The hatching rates were determined 4, 5 and 6 days after fertilisation. In addition, survival rates were estimated after 14, 21, 28 and 35 days. At test end, fish lengths and dry weights of replicate fish groups were determined. The MES concentrations in the test solutions were measured at test start and at least weekly thereafter.

The hatching success on day 4 post fertilisation (pf) was found to be reduced at 10.8 μ g MES/L. However, on day 5 and 6 pf no significant difference compared to control could be detected revealing that the total hatching number was not significantly reduced after 6 days. The survival was not significantly affected on day 14 and 21 pf. On day 28 pf and on day 35 pf, the survival was found to be significantly reduced at 2.95 and 10.8 μ g MES/L, respectively. Growth, measured as weight and length of fish at test end, was not reduced at all test item concentrations. However, weight and length was found to be significantly enhanced at 0.555, 2.95 and 10.8 μ g MES/L.

Taken together, MES was found to have very low adverse effects on early fish stages at the tested concentrations. The only parameter negatively affected was post hatch survival with values even

being above the requested post hatch success of ≥ 70 % (i.e. minimum post hatch was 74.5 % at 2.95 µg/L mean measured concentration). The numerical results are given below; all concentrations refer to the mean measured concentrations.

	Mean measured concentration [µg/L]					
	contr ol	0.154	0.404	0.555	2.95	10.8
Hatching day 4 pf [%]	23.3	40.0	15.0	6.7	8.3	3.3 *)
Hatching day 5 pf [%]	55.0	81.7	56.7	46.7	51.7	58.3
Hatching day 6 pf [%]	100	100	98.3	98.3	98.3	96.7
Post hatch survival, day 14 pf [%]	93.3	98.3	91.5	93.3	86.3	94.9
Post hatch survival, day 21 pf [%]	91.7	91.7	81.5	86.4	77.9	82.6
Post hatch survival, day 28 pf [%]	91.7	91.7	81.5	86.4	74.5 *)	77.4 *)
Post hatch survival, day 35 pf [%]	90.0	91.7	76.4	86.4	74.5 *)	77.4 *)
Length, day 35 pf [cm]	1.08	1.11	1.13	1.20 #)	1.16 #)	1.12 #)
Dry weight, day 35 pf [mg]	2.5	2.7	2.8	3.8 #)	3.5 #)	3.0 #)

Table 82. Effect data: Hatch, survival and growth.

pf = post fertilisation

*) Statistical significant negative deviation compared to control with p<0.05, Williams test. fertilization

[#]) statistical significant positive deviation compared to control, p<0.05, Williams test, one-sided greater

All relevant validity criteria according to the Guideline are met within the study. For details see the following table:

ionowing table.

Table 83. Fish study - effect data (immobilisation).

	fulfilled	Not fullfilled
Concentration of dissolved oxygen $> 60\%$ saturation throughout the test	X	
Difference of water temperature < 1.5% between test chambers or successive days at any time during test; temperature within range for specific test species	X	

verall survival of fertilized eggs in controls (and vlvent controls) \geq value, specified for the specific st speciesX		
Test substance concentrations maintained within \pm 20% of mean measured values		Х
No effect on survival nor any other adverse effect found in solvent control	Not applicable	
Further criteria for poorly soluble test substances	Not applicable	

Although the concentration of MES could not be maintained throughout the test within \pm 20% of mean measured values this is considered to not impair the integrity, quality and reliability of the study results. All possible technical effort was made to keep the test substance concentration at nominal levels for example using only glass material for all analytical steps, performing immediate chemical analyses of all samples and including additional sampling throughout the test. Also, the flow through system was extensively adjusted approximately one month prior to test start including several analytical measurements. This was performed to ensure the right test concentrations and the correct adjustment of the dosing pump system. MES is not volatile from aqueous solutions, therefore this removal mechanism could not influence the test results. Possible substance losses due to biodegradation are unlikely in the flow-through system. However, the high adsorptivity of the test substance may influence the test substance concentrations. From other aquatic studies it is known that MES is difficult to recover due its high potential for clustering and adsorption, resulting in an irregular distribution in the test vessels. Since all effect data are based on mean measured values the study gives reliable results.

11.6.2 Chronic toxicity to aquatic invertebrates

The influence of MES on the reproduction of aquatic invertebrates, represented by Daphnia magna, was investigated (<confidential> 2008f). A 21 day semi-static exposure to mecetronium ethyl sulphate [MES] at different concentrations with renewal of the test solutions daily was conducted according to the OECD guideline 211. Untreated control replicates were run in parallel. Each treatment group consisted of 10 replicates with one daphnid each (individual exposure). Effects on survival, growth (adult length at test termination) and reproductive performance were investigated. Test substance concentrations were measured at representative fresh and aged test solutions.

Mecetronium ethyl sulphate [MES] was found to be very toxic towards adult daphnids survival, but no effects on reproduction and growth were observable.

Analytical measurements during the reproduction test revealed that the MES concentrations were not stable during the test period. The mean measured test item concentrations of the freshly prepared test solution of the active substance (initial concentrations once a week) were between 100% and 195% of nominal concentrations. During the time interval until renewal of the test solution, active substance concentrations decreased considerably to 5 - 47% of nominal at the four highest concentrations (0.81 - 16.00 μ g/L nominal).

This behaviour of the test substance was nearer elucidated by the "kinetic study", which supported the earlier results from the reproduction test. In the "kinetic study" test substance elimination over time was closely followed and new time weighted means were calculated, taking into account the elimination kinetics of MES in this particular test system.

The key endpoints of this study, NOEC and LOEC for parental survival, was calculated as follows: The initial measured concentration of the NOEC and LOEC level from the reproduction study (0.59 μ g/L and 1.0 μ g/L, respectively) were multiplied with the % TWA values for that concentration level from the kinetic study (32.6% and 24.2%, respectively). Calculation of the EC₅₀ was not possible for TWA corrected values basing on the kinetic study. However, this is only of minor importance because the key endpoint for long-term studies is the NOEC.

Time-weighted mean test concentrations higher than 0.19 μ g a.s./L (NOEC) did affect survival (viability) of adults. A concentration depending effect occurred. No further clinical signs were observed for the survived individuals.

Mecetronium ethyl sulphate [MES] is not volatile from aqueous solutions, therefore this removal mechanism could not influence the test results. Possible substance losses due to biodegradation are unlikely in the semistatic system. However, the high adsorptivity of the test substance may influence the test substance concentrations.

11.6.3 Chronic toxicity to algae or other aquatic plants

The relavant information are include in Table 75 (Summary of relevant information on acute aquatic toxicity) and in Point 11.5.3 of these report.

11.6.4 Chronic toxicity to other aquatic organisms

No data available.

11.7 COMPARISON WITH THE CLP CRITERIA

11.7.1 Acute aquatic hazard

The lowest available L(E)C₅₀ value relevant for classification of mecetronium ethyl sulphate [MES] is the 72 h EC₅₀ of 0.0039 mg a./L obtained for Growth Inhibition Test on algae (OECD 201). Based on this lowest L(E)C₅₀ value MES fulfils the criteria L(C)E₅₀ \leq 1 mg/L for classification as

Acute Aquatic Category 1, H400 (Very toxic to aquatic life) with M-factor of 100 due to 72 h EC_{50} in the range $0.001 < L(E)C_{50} \le 0.01$ mg/L (Table 4.1.3 of Annex I of CLP).

11.7.2 Long-term aquatic hazard (including bioaccumulation potential and degradation)

The log Kow for mecetronium ethyl sulphate [MES] is lower than the trigger value of 4 for CLP Regulation and it shows a low potential for bioaccumulation.

The lowest NOEC/EC₁₀ is the 72 hours NOEC of 0.00014 mg a.i./L obtained for algae in Growth Inhibition test on algae (OECD 201). Available NOECs values for fish and daphnia are higher (the value of 35 days NOEC for fish and the value of 21 days NOEC for Daphnia magna are in the same range as the value of NOEC for algae). The lowest endpoint for MES fulfils the criteria NOEC/ECx $\leq 0.01 \text{ mg/L}$ (for substance readily biodegradable – see conclusion in Point 11.1.1) for classification as Aquatic Chronic 1, H410 (Very toxic to the aquatic organisms with long lasting effects) with an M-factor of 10 due to the NOEC value in the range 0.0001 mg/L < NOEC/ECx $\leq 0.001 \text{ mg/L}$ (Table 4.1.3 of Annex I of CLP).

11.8 CONCLUSION ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS

Aquatic Acute 1, H400 M=100 Aquatic Chronic 1, H410 M=10

12 EVALUATION OF ADDITIONAL HAZARDS

12.1 Hazardous to the ozone layer

Table 84. Summary table of data concerning hazardous properties of the substance for the ozone layer.

Type of study/data		Relevant information about the study (as applicable)	Observations	Reference		
No data						

12.1.1 Short summary and overall relevance of the provided information on ozone layer hazard

According to Regulation EC (No) 1272/2008 a substance has to be considered as hazardous to the ozone layer if it is listed in Regulation EC (No) 2037/200. MES is not listed in Regulation EC (No) 2037/2000.

12.1.2 Comparison with the CLP criteria

There is no data to compare with criteria classification as hazardous to the ozone layer.

12.1.3 Conclusion on classification and labelling for hazardous to the ozone layer

Mecetronium ethyl sulphate [MES] is not classified and labelled as hazardous to the ozone layer.

13 ADDITIONAL LABELLING

Supplemental hazard information in accordance with Annex II of the CLP Regulation – not required.

14 REFERENCES

BODE Chemie (1978) Prüfung von <confidential> im Augenreiztest am Kaninchen. Pharmatox GmbH, Bericht Nr. 1-3-95-78 (unpublished).

BODE Chemie (1981) Salmonella/microsome assay of ethyl-hexadecyl-dimethylammonium ethylsulfate. Microtest Research, University of York, July 25, 1981 (unpublished).

BODE Chemie (1981a) Testing of compound ethyl-hexadecyl-dimethylammonium ethylsulfate (EHDE) for induction of DNA repair synthesis in HeLa cells in vitro. Microtest Research, University of York, July 25, 1981 (unpublished).

BODE Chemie (1987) 14C-mecetroniumetilsulfate: percutaneous absorption in the rats. Hazleton UK, Report No. 5532-549/2 (unpublished).

<confidential> (1992) Acute oral toxicity test of "Mecetroniumetilsulfat 30%" in rats. IBR Forschungs GmbH, Project No.: 10-04-1153/00-92 (unpublished).

<confidential> (1992a) Acute oral toxicity test of "Mecetroniumetilsulfat 4%" in rats. IBR Forschungs GmbH, Project No.: 10-04-1155/00-92 (unpublished).

<confidential> (1992b) Acute dermal toxicity test of "Mecetroniumetilsulfat 4%" in rats. IBR Forschungs GmbH, Project No.: 10-04-1156/00-92 (unpublished).

<confidential> (1992c) Acute dermal toxicity test of "Mecetroniumetilsulfat 30%" in rats. IBR Forschungs GmbH, Project No.: 10-04-1154/00-92 (unpublished).

<confidential> (1992d) Acute dermal irritation/corrosion test of "Mecetroniumetilsulfat 0.2%" in rabbits. IBR Forschungs GmbH, Project No.: 10-03-1708/00-92 (unpublished).

<confidential> (1992e) Guinea pig maximization test of skin sensitization with "Mecetroniumetilsulfat 30%". IBR Forschungs GmbH, Project No.: 10-05-1701/00-92 (unpublished).

BODE Chemie (1992f) Final report mutagenicity testing: Salmonella/ microsome test (Ames-test), test article Mecetroniumetilsulfate. IBR Forschungs GmbH, Project No.: 96-00-1703/00-92 (unpublished).

BODE Chemie (1992g) Fischtest, akute Toxizität. Institut für gewerbliche Wasserwirtschaft und Luftreinhaltung e.V. (IWL), Report No. Lab 803/4652/2.000 (unpublished).

<confidential> (1993) Acute dermal irritation/corrosion test of "Mecetroniumetilsulfat 4%" in rabbits. IBR Forschungs GmbH, Project No.: 10-03-1705/00-92 (unpublished).

BODE Chemie (1994) Final report of in vitro chromosome aberration assay with Mecetroniumetilsulfat in CHO cells. Labor L&S GmbH, Study No. 12300103 (unpublished).

BODE Chemie (1994a) Final report of gene mutation assay in mouse lymphoma L5178Y TK+/- cells to trifluorothymidine-resistance with Mecetronium etilsulfat. Labor L&S GmbH, Study No. 12300113 (unpublished).

BODE Chemie (1994b) Final report in vivo micronucleus test of mecetronium etilsulfat in mice. Labor L&S GmbH, Study No. 12300123 (unpublished).

BODE Chemie (1995) Bestimmung der biologischen Abbaubarkeit von MES Lösung 30%-ig in Wasser im Closed-Bottle-Test. Institut für gewerbliche Wasserwirtschaft und Luftreinhaltung e.V. (IWL), Report No. Lab 95/72/9788/9.400 (unpublished).

BODE Chemie (1999) Biologische Abbaubarkeit gemäß OECD 301 A, Prüfung der leichten biologischen Abbaubarkeit von Produkten: MES-Lösung 29%. Institut Fresenius, Chemische und Biologische Laboratorien GmbH, Report No. 99TE007585 (unpublished).

BODE Chemie (1999a) Stability report <confidential> (VP 83/227).

<confidential> Study on the acute toxicity towards Daphnia of Mecetronium etilsulfate (powder) according to the OECD-test guideline 202, Part I ("Daphnia sp., Acute Immobilisation Test"). Institut Fresenius Chemische und Biologische Laboratorien GmbH, Report No. IF-99/21392-00 (unpublished).

<confidential> Study on the 'toxicity towards algae of Mecetronium etilsulfate (Powder). Institut Fresenius, Chemische und Biologische Laboratorien GmbH, Report No. IF-99/21391-00 (unpublished).

<confidential> 4-Week dose-range finding study for a 90-Day subchronic toxicity study of mecetronium ethylsulfate by repeated oral administration to Sprague-Dawley rats. LPT Laboratory of Pharmacology and Toxicology KG, Report No. 14438/01 (unpublished).

BODE Chemie (2001a) Hexadecylethydimethylammoniumethylsulfat: Surface tension Report-Nr.: 20011311.01.

<confidential> 90-Day subchronic toxicity study of mecetronium ethylsulfate by repeated oral administration to Sprague-Dawley rats. LPT Laboratory of Pharmacology and Toxicology KG, Report No. 14284/01 (unpublished).

BODE Chemie (2002a) Estimation of the adsorption behaviour of Dimethylethylhexadecylammoniumethylsulfate. Study report. Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), GLP-Code: BOD-001/7-13, December 2nd 2002.(unpublished)).

BODE Chemie (2002b) Determination of the melting temperature of hexadecyl ethyl dimethyl ammonium methylsulphate according to EC council directive 92/69/EEC, A.1. and OECD guideline no. 102 Study No.: 01 50 40 822 A.

BODE Chemie (2002c) Determination of the boiling temperature of hexadecyl ethyl dimethyl ammonium methylsulphate according to EC council directive 92/69/EEC, A.2. and OECD guideline no. 103: Study Nr.: 01 50 40 822 B.

BODE Chemie (2002d) Determination of the density of hexadecyl ethyl dimethyl ammonium methylsulphate according to EC council directive 92/69/EEC, A.3. and OECD guideline no. 109 Study No.: 01 50 40 822 C from September 20,2001.

BODE Chemie (2002e) Determination of the water solublity of dimethylethylhexadecylammoniumethylsulfate according to OECD Guideline 105, flask method, Test Report: BOD-001/7-14 from December 02, 2002.

BODE Chemie (2006) <confidential>, Periodic Safety Update Report, observation period from January 1, 2000 until August 31, 2005; Dr. Christine Köpke-Wettmarshausen & Dr. Günter Kampf, BODE Chemie GmbH & Co. KG (unpublished).

BODE Chemie (2007) MES: Dissociation constant pKa (OECD 112).

BODE Chemie (2008) In vitro mammalian cell gene mutation test in mouse lymphoma L5178Y/TK+/- cells with MES. Ziemann, C., Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), 30625 Hannover, Germany, Fraunhofer ITEM Study No. 17G08019, Report date 18 November 2008 (unpublished).

<confidential> Mecetronium ethyl sulphate (MES) 29% (aqueous solution): One-generation reproduction toxicity study in the rat; Senn, C, Flade, D., Schaetti, P; RCC Ltd, 4414 Füllinsdorf and 4452 Itingen, Switzerland, RCC Study Number: B10056, Report date 19 August 2008, (unpublished).

<confidential> (2008b) Prenatal developmental toxicity study of mecetronium ethyl sulphate in rabbits by oral administration. LPT Laboratory of Pharmacology and Toxicology GmbH & Co. KG, Report No. 18610/04 (unpublished).

Bode Chemie (2008c) Manometric Respirometry Test, Ready Biodegradability of Mecetronium ethyl sulphate by Activated Sludge. Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME); GLP-Code BOD-005/3-15 (unpublished).

BODE Chemie (2008d) Determination of the Adsorption of Dimethylethylhexadecyl-ammoniumethylsulfate according to the OECD Guideline 106 and the requirements of the EU Test method C.18 (2001/59/EC). Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME); GLP-Code BOD-005/7-13 (unpublished).

(BODE Chemie (2008e) Adsorption of Dimethylethylhexadecylammonium-ethylsulfate on activated sludge according to the ISO-Guideline 18749 "Water Quality – Adsorption of substances on activated sludge – Batch test using specific analytical methods". Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME); GLP-Code BOD-005/7-93 (unpublished)).

<confidential> Daphnia magna, Reproduction test (OECD 211), Semi-static exposure. Effect of Dimethylethylhexadecylammonium-ethylsulfate on the reproduction of Daphnia magna. Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME); GLP-Code BOD-005/4-21 (unpublished).

<confidential> Daphnia magna, Acute Immobilisation Test (OECD 202) - Static exposure - Effect of Dimethylethylhexadecylammonium-ethylsulfate on the immobilisation of Daphnia magna. Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), Report No. BOD-005/4-20/G.

BODE Chemie (2010a) Mecetroniumethylsulfat Batch No.: 104665 Flammability (Solids) A.10.

BODE Chemie (2010b) Mecetroniumethylsulfat Batch No.: 104665 Explosive properties A.14.

BODE Chemie (2010c) Mecetroniumethylsulfat Batch No.: 104665 Solubility in organic solvents CIPAC MT 181.

BODE Chemie (2011a) Biodegradability in the CO₂-headspace test according to OECD 310 (03/2006), MES-Lsg 29 % (Mecetronium ethylsulfate). Hydrotox GmbH, Report No. 2379.1, June 8th, 2011 (unpublished).

BODE Chemie (2011b) Study Report; CO₂-headspace Test; Ready Biodegradability of Dimethylhexadecylammonium-ethylsulfate by Activated Sludge; Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME); non GLP; Report No.: 2011-10 BOD-01, 11th October 2011 (unpublished).

BODE Chemie (2011c) Study Report; CO₂-headspace Test; Ready Biodegradability of Dimethylhexadecylammonium-ethylsulfate by Activated Sludge; Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME); non GLP; Report No.: 2011-10 BOD-02, 11th October 2011 (unpublished).

<confidential> Zebrafish (Danio rerio), Early Life Stage Toxicity Test, flow through conditions. Test item: Dimethylethylhexadecyl-ammonium-ethylsulfate (MES). Study director: Matthias Teigeler, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), Germany; GLP-Code BOD-005/4-18/A (unpublished).

BODE Chemie (2013a) Mecetroniumethylsulfate (MES) Ready Biodegradability Modified Sturm Test. Silke Fiebig, DR.U.NOACK-LABORATORIEN, Project-No. 120926FK, Study-No. AST15296, 02.Oktober 2013 (unpublished).

BODE Chemie (2013b) 1st Amendment to the report Mecetroniumethylsulfate (MES) Ready Biodegradability Modified Sturm Test. Silke Fiebig, DR.U.NOACK-LABORATORIEN, Project-No. 120926FK, Study-No. AST15296, 21.Oktober 2013 (unpublished).

Boethling RS (1984) Environmental fate and toxicicty in wastewater treatment of quaternary ammonium compounds. Water Res 18:1061-1076.

Games LM, King JE, Larson RJ (1982) Fate and distribution of a quaternary ammonium surfactant, octadecyltrimethylammonium chloride (OATC), in wastewater treatment. Environ Sci Technol 16: 483-488.

Garcia MT, Ribosa I, Guindulain T, Sánchez-Leal J, Vives-Rego J. (2001) Fate and effects of monoalkylquaternary ammonium surfactants in the aquatic environment. Environ Pollut 111:169-175.

Hendersen N.D. (1992) A review of the environmental impact and toxic effects of DDAC Prepared for: Environmental Protection division BC environment, Ministry of Environment, Lands and Parks, Victoria, British Columbia.

Hughes R. D., Millburn P., and Williams R.T.(1973) Molecular weight as a factor in the excretion of monoquaternary ammonium cations in the bile of the rat, rabbit and guinea pig. Biochem J. 1973; 136(4): 967–978.

IPCS (1999) Quaternary Ammonium Compounds; International Programme on Chemical Safety, Poisons Information Monograph G022 (Group PIM).

Neef C., R. Oosting R., and Meijer D.K.F. (1984) Structure-pharmacokinetics relationship of quaternary ammonium compounds: Elimination and distribution characteristics. Naunyn-Schmiedeberg's Arch Pharmacol (1984) 328:103 – 110.

Nishiyama N, Toshima Y, Ikeda Y (1995) Biodegradation of alkyltrimethylammonium salts in activated sludge. Chemosphere 30:593-603.

Painter HA, Reynolds P and Comber S (2003). Application of the headspace CO₂ method (ISO 14 593) to the assessment of the ultimate biodegradability of surfactants: results of a calibration exercise. Chemosphere, 50, 29-38 (published).

Thorup, I. (2000) Evaluation of health hazards by exposure to quaternary ammonium compounds. The Institute of Food Safety and Toxicology, Danish Veterinary and Food Administration.

van Ginkel CG, Gancet C, Hirschen M, Galobardes M, Lemaire P and Rosenblom J, 2008. Improving ready biodegradability testing of fatty amine derivatives. Chemosphere, 73, 506-510 (published).

Ying GG (2006) Fate, behavior and effects of surfactants and their degradation products in the environment. Environ Int 32:417-431.

15 ANNEXES

IUCLID file.