Regulation (EU) No 528/2012 concerning the making available on the market and use of biocidal products

Evaluation of active substances

Assessment Report

Folpet

Product type PT 7

(Film preservatives)

Italy

October 2014

Table of Contents

1.	STA	FEMENT (OF SUBJECT MATTER AND PURPOSE	2
	1.1.	Procedure	FOLLOWED	2
	1.2.	PURPOSE OF	THE ASSESSMENT REPORT	2
2.	OVE	RALL SUI	MMARY AND CONCLUSIONS	4
	2.1.	Presentatio	ON OF THE ACTIVE SUBSTANCE	4
		2.1.1.	Identity, Physico-Chemical Properties & Methods of Analysis	4
		2.1.2.	Intended Uses and Efficacy	5
		2.1.3.	Classification and Labelling	5
	2.2.	SUMMARY C	of the Risk Assessment	6
		2.2.1.	Human Health Risk Assessment	6
		2.2.1.1.	Hazard identification	6
		2.2.1.2.	Effects assessment	8
		2.2.1.3.	Exposure assessment	8
		2.2.1.4.	Risk characterisation	11
		2.2.2.	Environmental Risk Assessment	18
		2.2.2.1.	Fate and distribution in the environment	18
		2.2.2.2.	Effects assessment	24
		2.2.2.3.	PBT and POP assessment	28
		2.2.2.4.	Exposure assessment	29
		2.2.2.5.	Risk characterisation	35
		2.2.3.	Assessment of endocrine disruptor properties	45
	2.3.	O VERALL CO	INCLUSIONS	46
AP	PEND	IX I: LIS	T OF ENDPOINTS	56
		Chapter 1	1: Identity, Physical and Chemical Properties, Classification and Labelling	56
		Chapter 2	2: Methods of Analysis	59
		Chapter 3	3: Impact on Human Health	61
		Chapter 4	4: Fate and Behaviour in the Environment	66
		Chapter !	5: Effects on Non-target Species	69
		Chapter (6: Other End Points	72
		IX II: LIS	ST OF INTENDED USES	73
AP	PEND	IX III: LI		74

1. STATEMENT OF SUBJECT MATTER AND PURPOSE

1.1.Procedure followed

This assessment report has been established as a result of the evaluation of the active substance folpet as product-type PT 7 (film preservatives), carried out in the context of the work programme for the review of existing active substances provided for in Article 89 of Regulation (EU) No 528/2012, with a view to the possible approval of this substance.

Folpet (CAS no. 133-07-3) was notified as an existing active substance, by Makhteshim Agan International Co-ordination Center (MAICC Brussels), hereafter referred to as the applicant, in product-type PT 9.

Commission Regulation (EC) No 1451/2007 of 4 December 2007¹ lays down the detailed rules for the evaluation of dossiers and for the decision-making process.

In accordance with the provisions of Article 7(1) of that Regulation, Italy was designated as Rapporteur Member State to carry out the assessment on the basis of the dossier submitted by the applicant. The deadline for submission of a complete dossier for folpet as an active substance in Product Type PT 9 was [date], in accordance with Annex V of Regulation (EC) No 1451/2007.

On 13 July 2009, Italian competent authorities acting for Italy as the Rapporteur Member State (RMS) received a dossier from the applicant. The RMS accepted the dossier as complete for the purpose of the evaluation on 2010.

On June 2011, the RMS submitted to the Commission and the applicant a copy of the evaluation report, hereafter referred to as the competent authority report (CAR).

In order to review the competent authority report and the comments received on it, consultations of technical experts from all Member States (peer review) were organised by the Agency. Revisions agreed upon were presented at the Biocidal Products Committee and its Working Groups meetings and the competent authority report was amended accordingly.

1.2.Purpose of the assessment report

The aim of the assessment report is to support the opinion of the Biocidal Products Committee and a decision on the approval of folpet for product-type PT 7, and, should it be approved, to facilitate the authorisation of individual biocidal products. In the evaluation of applications for product-authorisation, the provisions of Regulation (EU) No 528/2012 shall be applied, in particular the provisions of Chapter IV, as well as the common principles laid down in Annex VI.

For the implementation of the common principles of Annex VI, the content and conclusions of this assessment report, which is available from the Agency web-site shall be taken into account.

¹ Commission Regulation (EC) No 1451/2007 of 4 December 2007 on the second phase of the 10-year work programme referred to in Article 16(2) of Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. OJ L 325, 11.12.2007, p. 3

Italy	Folpet	PT 7
•	· · · · · · · · · · · · · · · · · · ·	

However, where conclusions of this assessment report are based on data protected under the provisions of Regulation (EU) No 528/2012, such conclusions may not be used to the benefit of another applicant, unless access to these data for that purpose has been granted to that applicant.

2. OVERALL SUMMARY AND CONCLUSIONS

2.1. Presentation of the Active Substance

2.1.1. Identity, Physico-Chemical Properties & Methods of Analysis

CAS-No.	133-07-3
EINECS-No.	205-088-6 (Annex I index number: 613-045-00-1)
Other No. (CIPAC, ELINCS)	CIPAC 75
IUPAC Name	N-(trichloromethylthio) phthalimide
	N-(trichloromethanesulfenyl)phthalimide
Common name, synonym	Folpet
Molecular formula	C9H4Cl3NO2S
Structural formula	NSCCI,

Pure folpet is a white crystalline solid with a reported melting point of 179 - 180 °C. At 20 °C, the vapour pressure of the pure compound is very low. Its solubility in water is 0.8 mg/L at room temperature and it is slightly soluble in a range of organic solvents, particularly those of moderate polarity. It has a medium range octanol/water partition coefficient. Folpet is non-flammable, non-explosive and is not an oxidising agent. In the dry state, it is stable at room temperature, but it is hydrolysed in an aqueous solution at a rate that depends on the pH. In alkaline solution, this breakdown is rapid, occurring within minutes. The hydrolysis products are carbon dioxide, hydrochloric acid, hydrogen sulphide, phthalamic acid, and phthalic acid.

Adequate methodology exists for the determination of the active substance in the technical active substance and in soil, water and air. Analytical methods are provided for water which include determination of metabolites because the targeted analyte (folpet) does not exist in water.

is an impurity present in technical folpet at between

w/w. It is proposed that undergoes similar metabolic processes to folpet. In the rat, absorbed folpet is converted to phthalamic acid via phthalimide by the loss of the trichloromethylthio moiety.

folpet, it is expected that the resulting in

and a trichloromethyldithio moiety. As in the case of that is initially formed undergoes hydrolytic attack

The trichloromethyldithio moiety is most likely to form a conjugate to with GSH, which will undergo the same excretory process as the thiophosgene-GSH conjugate formed from the parent folpet. It is also possible that the

since the

metabolic pathway is expected to be very similar to folpet, the toxicity is also expected to

be very similar.

Test substances used in the toxicology and ecotoxicology tests cover the reference specification.

2.1.2. Intended Uses and Efficacy

The assessment of the biocidal activity of the active substance demonstrates that it has a sufficient level of efficacy against the target organism(s) and the evaluation of the summary data provided in support of the efficacy of the accompanying product, establishes that the product may be expected to be efficacious.

Folpet is used as a film preservative (PT 7) for use in products including paints, mastics, sealants, fillers and adhesives showing a preservative effect (e.g. wallpaper paste). Products containing folpet may be used by professionals (decorators and builders) and non-professionals. Typical application is manual (by brush, roller or spray apparatus).

In addition, in order to facilitate the work of Member States in granting or reviewing authorisations, , the intended uses of the substance, as identified during the evaluation process, are listed in <u>Appendix II</u>.

2.1.3. Classification and Labelling

The current classification and labelling for folpet according to Regulation (EC) No 1272/2008 is as follows:

Classification accore	Classification according to Directive 67/548/EEC				
Hazard(s)	Xn	Harmful			
	N	Dangerous for the environment			
Risk Phrase(s)	R20	Harmful by inhalation			
	R36	Irritating to eyes			
	R40	Limited evidence of a carcinogenic effect			
	R43	May cause sensitisation by skin contact			
	R50	Very toxic to aquatic organisms			
Safety Phrase(s)	S2	Keep out of the reach of children			
	S36/37	Wear suitable protective clothing and gloves			
	S46	If swallowed, seek medical advice			
		immediately and show the container or label			
	S61	Avoid release into the environment. Refer to			
		special instructions/Safety data sheets			
Classification accord	ling to Regulation	n (EC) No 1272/2008			
Hazard Statement	GHS07				
Codes	GHS08				
	GHS09				
Hazard Class,	Acute Tox. 4	H332: Harmful if inhaled			
category code and	Eye Irrit. 2	H319: Causes serious eye irritation			
Hazard statement	Skin Sens 1	H317: May cause an allergic skin reaction			
	Carc. 2	H351: Suspected of causing cancer			
	Aquatic Acute 1	H400: Very toxic to aquatic life. M factor 10.			

Folpet

2.2.Summary of the Risk Assessment

2.2.1. Human Health Risk Assessment

2.2.1.1. Hazard identification

Folpet technical was of low toxicity by the oral and dermal routes, but was harmful by inhalation and is classified as R20. Folpet was toxic by the intraperitoneal route, however this is not a relevant route of exposure for PT7. Folpet technical was non-irritant to the skin in a guideline, single application study. However, at high doses in a multiple application study irritation was seen. Moderate ocular irritation occurred when applied to the eye, but signs persisted in some animals to termination, and the material is classified as (R36) 'Irritating to eyes'. In a guinea pig maximisation test folpet technical caused positive delayed sensitivity and is classified as (R43) 'May cause sensitisation by skin contact'.

The dramatic decrease in toxicity of oral versus intraperitoneal doses demonstrates that the skin and GI tract are effective barriers to absorption.

Study	Species	Results	Classificat ion Directive 67/548/E EC	Classificati on Regulation (EC) No 1272/2008	Reference
Acute oral toxicity	Rat	LD50 > 2000 mg/kg bw	-	-	(1992a)
Acute dermal toxicity	Rabbit	LD50 > 2000 mg/kg bw	-	-	(1982)
	Rat	LD50 >2000 mg/kg	-	-	(1991)
Acute inhalation toxicity	Rat	LC50 =1.89 mg/l	R20	Acute Tox. 4	(1993)
Acute skin irritation	Rabbit	Non-irritant	-	-	(1993)
Acute eye irritation	Rabbit	Moderate irritant	R36	Eye Irrit. 2	(1992b)
Skin sensitisation (Magnusson & Kligman)	Guinea pig	Positive	R43	Skin Sens 1	(1993)
Acute intraperitoneal toxicity	Rat	LD50 =36-40 mg/kg bw	-	-	(1981)

Summary of acute toxicity studies with folpet

The proposed classification is in respect of the biocidal product. Folpet has also been classified as R40 (Cat. 3 carcinogen) according to Directive 67/548/EEC, Carc 2 according to Regulation (EC) No 1272/2008. The active substance folpet is used as an in-can preservative in paint at a maximum in use concentration of 2g/kg (0.2%). The dilution in

the treated article is therefore less than the <1% w/w cut-off specified in Article 3 of Directive 1999/45/EC, such that the classification for harmful, irritant, sensitising and possible carcinogen do not apply to the treated articles.

Folpet is rapidly absorbed, widely distributed and rapidly excreted after oral administration. The most toxicologically significant pathway is the potential to degrade to the highly reactive metabolite thiophosgene. Metabolism by hydrolysis or by reaction with thiols results in the formation of phthalimide, which is further metabolised to phthalamic acid, phthalic acid and phthalic anhydride Comparison of in vivo rat and in vitro rat and human data for Folpan 50 SC and Folpan 80 WDG showed that dermal penetration of the undiluted formulations as supplied was 0.07% and 0.95%, respectively. At an in-use spray concentration of 1.25 g a.s./L, dermal absorption was 6.54% and 9.19% absorption for Folpan 50 SC and Folpan 80 WDG, respectively. At an in-use spray concentration of 7.5 g a.s./L, dermal absorption was 6.24% and 4.22% for Folpan 50 SC and Folpan 80 WDG, respectively. Excretion of absorbed material was rapid and analysis of the material in the skin showed that the absorbed material was predominantly in the form of known metabolites of folpet, with little or no parent material actually absorbed.

In short term studies, rats and mice tolerated oral doses of folpet more readily than the dog with the 90 days NOAEL in the rat being 1000 ppm. A NOAEL for 90 days in the dogs was not established but the 52 weeks NOAEL was 10 mg/kg bw/d. Treatment was associated with reduced bodyweight gain and food consumption at higher dose levels. Treatment was also associated with histopathological changes in the gastrointestinal tract associated with the irritant nature of folpet: hyperkeratosis of the oesophagus, hyperkeratosis and acanthosis in the non-glandular stomach in rats, vomiting and diarrhoea in dogs, with none-specific clinical chemistry findings and organ weight changes associated with reduced body weights. Folpet appeared to be less well tolerated in the rat by dermal administration, principally because of irritation. A LOAEL of 1 mg/kg bw/d was determined for local effects in a 28-day dermal toxicity study.

In mutagenicity studies, folpet was not mutagenic in vivo, but showed apparent mutagenic activity in certain in vitro assays. Folpet and its analogue captan have been shown to be capable of causing base pair substitution and frame-shift mutations in bacterial reverse mutation assays and mutations in in vitro mammalian forward mutation assays. Cytogenetic changes in mammalian cell lines in vitro were also seen as was DNA damage in bacteria, non-mammalian eukaryotes and in some mammalian cell lines. Mutagenicity was greatly reduced in the presence of S-9 mix, mammalian blood, glutathione or cysteine in bacteria and in mammalian cell lines in vitro, indicating that detoxification occurs with metabolic activation and in intact organisms. Negative results were obtained in in vivo mammalian mutation assays and chromosomal damage assays. This would indicate that in intact organisms there are mechanisms which react with the parent compound thus abolishing its genotoxic activity. Data from mammalian studies with folpet and the closelyrelated captan support the conclusion that the trichloromethylthio side chain (common to both molecules) is the active part of the molecule and that it is detoxified by glutathione and other endogenous thiols. Captan, and by inference, folpet do not interact directly with DNA in vivo.

Folpet is not carcinogenic in the rat at levels up to 5000 ppm. Folpet is carcinogenic in mice at levels of 1000 ppm and greater; high dose levels were associated with increased incidence of carcinoma in the duodenum, and hyperkeratosis of the skin, oesophagus and stomach, hyperplasia of the duodenum, hyperplasia of the jejunum and dose-related neoplasms in the duodenum, stomach and jejunum. These data are consistent with the nature of folpet's interaction in the mammal i.e. folpet is an irritant. In the mouse this irritation causes changes to the architecture of the gastro-intestinal tract that are associated with the eventual tumour development. In the rat, irritation is seen primarily in the upper gastro-intestinal tract (e.g. oesophagus and non-glandular stomach), but these changes are not associated with tumour enhancement. As tumours are produced via an irritation mechanism, the appropriate risk assessment involves a margin of exposure evaluation (i.e. a threshold phenomenon). Folpet is not teratogenic to the rat or rabbit. No effects on reproductive parameters, fertility or presence of foetal malformations were evident in two multi-generation studies in the rat. Treatment was associated with reduced bodyweight gain in adults and offspring, and reduced food consumption in adults. Histopathology revealed hyperkeratosis of the non-glandular stomach consistent with findings in short-term studies in rats.

Classification of folpet for reproductive toxicity (pre-natal developmental toxicity) has previously been considered plant protection products approval and harmonised classification and labelling process. Folpet C&L is included in Annex VI to CLP Regulation. No new data are available, therefore no change in classification is proposed.

Folpet is a film preservative used in various products including paints, mastic, sealants, fillers and adhesives. Therefore, any exposure of the end user arising from this usage pattern is to the active substance folpet.

2.2.1.2. Effects assessment

A long-term (chronic) AEL of 0.1 mg/kg bw/d is derived for folpet based on the NOAEL of 10 mg/kg bw/d from the 1-year dog study and supported by the 2-year rat study. A standard assessment factor of 100 is considered to be appropriate. Correction for the extent of gastrointestinal absorption is not required.

A medium-term AEL of 0.1 mg/kg bw/d is derived for folpet based on the maternal NOAEL of 10 mg/kg bw/d from the rabbit developmental toxicity study. A standard assessment factor of 100 is considered to be appropriate. Correction for the extent of gastrointestinal absorption is not required.

An acute AEL of 0.2 mg/kg bw/d is derived for folpet based on the developmental NOAEL of 20 mg/kg bw/d from the rabbit developmental toxicity study. A standard assessment factor of 100 is considered to be appropriate. Correction for the extent of gastrointestinal absorption is not required.

AEL	Value	Study	Endpoint	Assessment factor
Chronic AEL	0.1 mg/kg bw/d	1-year dog 2-year rat	10 mg/kg bw/d	100
Medium-term AEL	0.1 mg/kg bw/d	Rabbit developmental toxicity	10 mg/kg bw/d (maternal NOAEL)	100
Acute AEL	0.2 mg/kg bw/d	Rabbit developmental toxicity	20 mg/kg bw/d (developmental NOAEL)	100

Folpet: proposed AEL values

While folpet is not classified as a skin irritant based on the results of a skin irritation study, Folpet is classified as skin sensitiser Cat 1 according to CLP Regulation (Reg. (EC) n. 1272/2008). The levels of folpet achieved in the end-use product of 2 g/kg (0.2 %) are much lower than the concentrations used in the Maximisation study. Considering the CLP sub-categories (Skin Sens. 1A and 1B), folpet would not be classified as a strong sensitiser based on the results of the maximisation study and is therefore considered to have low to moderate potency as a sensitiser.

2.2.1.3. Exposure assessment

Human exposure assessments have been conducted where EU guidance is available. Assessments have been made in accordance with the Technical Notes for Guidance (TNsG) for Human Exposure to Biocidal Products, Guidance on Exposure estimation (June 2002 and June 2007)^{2}. Exposure assessments are based on default values.

Folpet is used as a preservative in products at a maximum in use concentration of 2 g a.s./kg (0.2%). Products can be used by professional and non-professional users. The uses of folpet as a film preservative, together with relevant assumptions based on EU guidance are summarised in the table below:

Film	User	Application method	Usage assumptions
preservative	Professional	Spraying	360 minutes, daily
(P17)		Brush and roller	360 minutes/day
	Non-professional	Brush and roller	4 hours/day; 2-5 days per year

Products for application by spray will not be available to non-professionals.

It is assumed that brush/roller cleaning will occur. Suggested values for cleaning are 5 minutes for a hand-washing a paint brush and 10 minutes for a paint roller, where water-based products are used (TNsG for PT7.02).

The potential for exposure to folpet is summarised in the table below and considered in more detail in the subsequent text.

Exposure path	Industrial use	Professional and non professional use	General public	Via the environment
Inhalation	Not relevant	Potentially significant	Negligible	Negligible
Dermal	Not relevant	Potentially significant	Negligible	Negligible
Oral	Not relevant	Negligible	Negligible	Negligible

Folpet is not volatile (vapour pressure = 2.1×10^{-5} Pa at 25°C), therefore the exposure to vapour will be minimal. However inhalation exposure to folpet in aerosolised product may occur under some application types, such as spray application. Primary oral exposure to folpet is likely to be minimal, therefore the dermal route will be the most important route of exposure.

Professional exposure

Italy

The potential exposure of professionals applying biocidal products containing folpet by brush/roller or by spraying, based on default values in EU TNsG document Part 2 June 2002, is assessed below. This exposure scenarios used are a representation of a realistic worst-case situation.

The following points have been taken into consideration:

² Technical Notes for Guidance (TNsG) for Human Exposure to Biocidal Products, Guidance on Exposure estimation (final June 2002), European Commission, DG Environment, Ref: B4-3040/2000/291079/MAR/E2.

Technical Notes for Guidance (TNsG) for Human Exposure to Biocidal Products, (June 2007). Document endorsed at the 25th meeting of representatives of Members States Competent Authorities for the implementation of Directive 98/8/EC concerning the placing of biocidal products on the market (19-21 June 2007).

[taly	Folpet	PT 7	
1.	It is assumed that 100% of dermal exposure is absorbed through clothing.		
2	If PDE is needed, aloves will reduce exposure of bands by 90% (EII Guidance		

- If PPE is needed, gloves will reduce exposure of hands by 90% (EU Guidance Document Section 2.3 of Part 2, June 2002). Protective impermeable coveralls are assumed to reduce exposure of the whole body (excluding hands) by 95%.
- 3. It is assumed that 100% of inhalation exposure is absorbed. For dermal absorption of the active substance folpet a value of 10% is used (to be consistent with the EU review of folpet as a plant protection product under Directive 91/414/EEC).
- 4. Operator body weight (professional users) is assumed to be 60 kg.

Professional users are fully trained as part of their job and handle such end use products on a day to day basis.

Results of assessment

Exposure assessment of professional operators using products containing to folpet at a concentration of 2 g a.s./kg:

- Brush and roller application (with and without gloves scenario), based upon the highest data for hand exposure (uncertainty is high) and on the 75th percentile for body exposure and inhalation exposure (uncertainty is moderate).
- Paint spraying (with gloves only and with gloves + coverall scenario), based upon 75th percentile for hand, body and inhalation exposure (uncertainty is moderate).

Scenario	Systemic exposure (mg/kg bw/d)
	Folpet
Brush and roller application (no gloves):	0.224
Brush and roller application (gloves):	0.062
Paint spraying (no gloves)	0.54
Paint spraying (gloves; no RPE)	0.3
Paint spraying (gloves + coverall; no RPE)	0.0218
Brush washing (no gloves)	0.00057
Cleaning of spray equipment (no gloves)	0.0000072

Total systemic exposure is shown in the table below.

Non-professional exposure

The assessment to non-professional users is based on EU default values.

Products for application by spray will not be available to non-professionals.

The potential exposure of non-professional users applying biocidal products containing folpet by brush/roller, based on default values in EU TNsG document Part 2 June 2002, is assessed below. This exposure scenarios used are a representation of a realistic worst-case

situation.

The following points have been taken into consideration:

- 1. It is assumed that 100% of dermal exposure is absorbed through clothing.
- It is assumed that 100% of inhalation exposure is absorbed. For dermal absorption of the active substance folpet a value of 10% is used (to be consistent with the EU review of folpet under Directive 91/414)
- 3. Operator body weight (average for non-professional male and female users) is assumed to be 60 kg.

Operator body weight is assumed to be 60 kg (average for non-professional male and female users).

Results of assessment

Total systemic exposure to folpet of non-professional operators using products containing the active substance at a concentration 2 mg a.s./kg without gloves based upon the highest data for hand exposure (uncertainty is high) and on the 75th percentile for body exposure and inhalation exposure (uncertainty is moderate), is shown in the table below.

Scenario	Systemic exposure (mg/kg bw/d)
	Folpet
Brush and roller application (no gloves):	0.15

Secondary exposure

Indirect exposure to non-users is assumed to be negligible, however the potential for exposure resulting from a number of worst-case scenarios are considered below:

Exposure scenario	Systemic exposure (mg/kg bw)
	folpet
Laundering contaminated overalls (acute)	0.016
Dermal contact with wet product by child (acute)	0.17
Oral ingestion child (acute)	0.041
Inhalation exposure child (acute)	0.0008
Dermal contact with surface bloom on preserved mastic (acute)	0.025

2.2.1.4. Risk characterisation

Professional use

The potential exposure of professional users during use of paints, mastic, sealants, fillers or adhesives containing the preservative folpet is assessed and summarised in the table below.

Use scenario	Systemic exposure to folpet		
	(mg/kg bw/d)	% AEL*	
Brush and roller application (no gloves):	0.224	240	
Brush and roller application (with gloves):	0.062	62	
Paint spraying (no gloves)	0.54	540	
Paint spraying (gloves only)	0.3	300	
Paint spraying (gloves + coverall no RPE)	0.0218	22	
Paste application	Likely to be acceptable	<100	

*Folpet medium-term AEL= 0.1 mg/kg bw/d

Considering professional users working 360 min each day for brush and roller application and 360 min/day for spray application, with no gloves, worst-case default exposure values on a daily basis achieved 224% and 540 of the AEL respectively, respectively; however it has to be underlined that, for professional users³, in the case of products that are sensitizers and/or irritants (Folpet is classified as R 43: may cause sensitization by skin contact) the actual exposure data has to be used with the provision that users will have to wear gloves.

If exposure estimates were based on more realistic values (considering gloves and coverall) the exposure would be correspondingly lower resulting in lower risk to professional workers. The exposure is based on daily working rates and therefore the combination of any individual tasks is not applicable.

In conclusion, exposure levels resulting from the intended professional uses of products containing the film preservative folpet on a daily basis are therefore estimated to be below the AEL when PPE such as gloves and coverall are worn.

Folpet is not classified as a skin irritant based on the results of a skin irritation study, according to CLH Folpet is classified as skin sensitiser Cat 1. The levels of folpet achieved in the end-use product of 2 g/kg (0.2 %) are below the threshold for classification of the product according to Directive 99/45/EEC

Risk characterisation: professional uses

Exposure Scenario	PPE	Estimated systemic exposure (mg/kg bw/d folpet)	Relevant NOAEL (mg/kg bw/d)	MOE	% AEL
Brush and roller	None	0.224		45	224
application (Painting Model 1)	Gloves	0.062	10	89	112

³ Professional users have access to Material Safety Data Sheets (MSDS) and may have some basic knowledge about classification and labeling. The workers are trained and skilled in the main objectives of their occupation and may have some experience and skill in the use of personal protective equipment (PPE) if that is necessary for their normal work

Bruch (rollor (DUED)	None	0.014	714	14
Brush/roller (PHED)	Gloves	0.002	5000	2
Bruch washing	None	0.00057	17544	0.6
Brush washing	Gloves	0.00006	1666666	0.06
	None	0.54	18	540
Paint spraving	Gloves	0.3	33	300
	Gloves & coverall	0.0218	459	22
Airless spraying	None	0.0005	20000	0.5
(PHED)	Gloves	0.0004	25000	0.4
Cleaning spray equipment	None	0.0000072	1388889	0.007

Exposure Scenario	PPE	Estimated systemic exposure (mg/kg bw/d folpet)	Relevant NOAEL (mg/kg bw/d)	MOE	% AEL Acute*	
Brush and	None	0.224		90	112	
roller application (Painting Model 1)	Gloves	0.062	·		322	31
Brush/roller	None	0.014		1429	7	
(PHED)	Gloves	0.002	20	10000	1	
Brush washing	None	0.00057		35087	0.3	
	Gloves	0.00003		66667	0.02	
	None	0.54		37	270	
	Gloves	0.3	-	67	150	
Paint spraying	Gloves & coverall	0.0218	-	917	11	
Airless	None	0.0005		40000	0.3	
spraying (PHED)	Gloves	0.0004]	50000	0.2	
Cleaning spray equipment	None	0.0000072		2777778	0.004	

* Folpet acute AEL = 0.2 mg/kg bw/d

Non-professional use

The potential exposure of non-professional users during use of products containing the preservative folpet is assessed and summarised in the table below.

*the acute AEL for folpet is 0.2 mg/kg bw/d

The intended uses for non-professional users during use of paint containing the preservative folpet on a daily basis are below the AEL when based on worst-case default values. The exposure assessment has been conducted considering non professional uses working 4 hours each day, with no gloves⁴, and 100% dermal exposure through clothing. Based on these assumptions and worst-case default exposure values the exposure estimate is 150% the AEL. Considering the exposure assessment the use of paint containing the preservative folpet for non professionals is not supported.

Risk characterisation: non-professional uses

Exposure Scenario	PPE	Estimated systemic exposure (mg/kg bw/d folpet)	Relevant NOAEL (mg/kg bw/d)	MOE	% AEL*
Brush and roller application	None	0.15	20	133	75

* Folpet acute AEL =0.2 mg/kg bw/d

Indirect exposure as a result of use

Potential indirect exposure is most likely to occur via inhalation of volatile components from freshly painted surfaces following use. However, the inhalation risk to users (professional and non-professional) without any respiratory protection using the products on a day to day basis is minimal. Therefore, it is considered that any incidental exposure to non-users will be of a lesser concern.

The most likely route of indirect exposure may be either via washing of contaminated overalls or via dermal contact with wet paint (see Section IIB 3.2.4)

Since the two scenarios considered for secondary exposure (e.g.: Laundering contaminated overalls and Dermal contact with wet product by child) are both acute scenarios, the acute AEL of 0.2 mg/kg bw should be used as an appropriate endpoint. The acute AEL is appropriate for use as reference value for the protection of the sensitive sub-population (i.e. pregnant mothers). The value represents a conservative/protective position of a small child of 15kg and as such therefore represents a worst-case.

⁴ Non-professional users are usually consumers - who may or may not read a product label. There is an expectation - but little guarantee - that non-professionals will comply with instructions for use of a product. They have no access to controls or formal PPE, though they may use household protective equipment.

	Systemic exposure			
Exposure scenario	(mg/kg bw)	% AEL *		
Laundering contaminated overalls	0.016	8		
Dermal contact with wet product by child	0.17	85		
Oral ingestion child	0.041	20		
Inhalation exposure child	0.0008	0.4		
Dermal contact with surface bloom on preserved mastic	0.025	12.5		

* the acute AEL for folpet is 0.2 mg/kg bw

Indirect acute exposure levels resulting from the intended use of folpet as a film preservative are therefore estimated to be below the acute AEL when based on worst-case default values.

Risk characterisation: secondary exposure

Exposure Scenario	Estimated systemic exposure (mg/kg bw/d folpet)	Relevant NOAEL (mg/kg bw/d)	MOE	% Acute AEL
Laundering contaminated overalls	0.016		1250	8
Dermal contact with wet product by child	0.17		118	85
Oral ingestion child	0.041	20	488	21
Inhalation exposure child	0.0008		25000	0.4
Dermal contact with surface bloom on preserved mastic	0.025		800	12.5

Combined exposure

Professional and non-professional users are potentially at risk of exposure from several sources during or after use of products containing folpet. The following combined exposure scenarios for professional and non professional uses are taken into consideration:

- Professional uses
 - o Brush and roller application exposure and brush washing

Spray application and cleaning spray equipment

- Non professional uses
 - Brush and roller application exposure and brush washing

Exposure scenario	Estimated systemic exposure (mg/kg bw/d folpet)	Combined estimated exposure (mg/kg bw/d folpet)	Relevant NOAEL (mg/kg bw/d)	MOE	% AEL*
Brush and roller application	0.062 ¹	0.0625	10	160	63
Brush washing	0.00057				
Spray application	0.0218 ²				
Cleaning spray equipment	0.0000072	0.0218	10	459	22

* Folpet medium-term AEL =0.1 mg/kg bw/d

¹ with the use of gloves

² with the use of impermeable coveralls and gloves

Exposure scenario	Exposure scenario Exposure (mg/kg bw/d folpet)		Relevant NOAEL (mg/kg bw/d)	MOE	% AEL*
	N	lon professiona	l uses		
Brush and roller application	0.15	0.1505	20	133	75

Folpet acute AEL =0.2 mg/kg bw/d

Based on the calculations the combined exposure to paints containing folpet following brush and roller application, and brush washing, as well as, spray application and cleaning spry equipment, lead to exposure levels below the AEL.

Local dermal risk assessment

Folpet is not a skin irritant, but is classified as a sensitiser. The skin sensitisation study (Maximisation design) performed with folpet (Rees, 1993b) used an intradermal induction concentration of 10%. The study showed a 100% positive response following challenge with a concentration of 50% folpet and a 75% response following challenge with 10% folpet. The levels of folpet achieved in the end-use product of 2 g/kg (0.2 %) are much lower than the concentrations eliciting positive responses in this study. Additionally, the concentrations of folpet are below the threshold for classification of the product according to Directive 99/45/EEC.

While folpet is not classified as a skin irritant based on the results of a skin irritation study, repeated dermal application in a 28-day study resulted in significant local effects in all groups (0.5 mg/ml; 1 mg/kg bw/d and above). The findings of this study, in which folpet was repeatedly applied for 6 hour periods in mineral oil under occlusive conditions are not considered to be of direct relevance to the human risk assessment. Ready-to-use products

(PT6, PT7) typically contain folpet at levels of 0.2%; risk assessment for professional workers requires the use of gloves. It is therefore considered very unlikely that the normal use of folpet products would result in a level of dermal contamination resulting in local irritation. Moreover, all studies had been evaluated according to CLP and no classification is required.

17

2.2.2. Environmental Risk Assessment

2.2.2.1. Fate and distribution in the environment

Ready biodegradation

In a ready biodegradability test folpet was applied to the inoculum at 1.0 mg/L, *i.e.* at approximately the solubility limit. Under these conditions, there was a lag phase of ca 4 days, but the plateau – signifying substrate exhaustion – was effectively reached by day 19. CO_2 production reached 60% within 28 days and within 10 days of crossing the 10% threshold. When the physical constraints of bioavailability to the inoculum are removed, (i.e. when exposure is at environmentally relevant concentrations) folpet meets the criteria for classification as readily biodegradable fulfilling the 10 day window criteria.

Biodegradation in aquatic systems

The behaviour of folpet in the aquatic environment was investigated in two dissimilar water/sediment systems (silty clay and sandy loam) in a study conducted at 20°C to SETAC 1995/BBA Part IV, 5-1 guidelines. In each test, folpet was rapidly degraded in both the overlying water and the whole system, with DT_{50} values of 0.014 to 0.018 days (equating to a worst-case value of 0.4 hours). The equivalent range of degradation rates at the EU average temperature of 12°C can be estimated to be 0.03 to 0.04 days.

Folpet was metabolised to carbon dioxide (51 to 54% AR after 100 days) as a principal metabolite. Low recoveries (<90% AR) were obtained at most sampling intervals, partly due to the loss of carbon dioxide during sample processing. Reference to the production of methane from the anaerobic biodegradation of phthalates is reported in the literature⁵ and it is considered that such metabolism had taken place in the anaerobic sediment layer. As the rate of carbon dioxide production was steady throughout the study, it is thought likely that the rate of methane production was also steady throughout the study and the reason for the low mass balance. The study is acceptable because degradation of folpet is very fast in the study (<1d) and the low mass balances were observed after 1 day.

The major metabolites (>10% AR) recovered from the water phase were phthalimide (max. 20.4 to 26.0% AR at 4 h), phthalamic acid (max. 13.3% AR at 1h), phthalic acid (max. 26.3 to 37.5% AR at 1d), benzamide (max. 10.2% AR at 1 d) and 2-cyanobenzoic acid (max. 39.7% AR at 1d). These metabolites were all readily degraded in the surface water phase and the whole system.

A summary of the degradation rates is provided in the following table. The estimated degradation rates at 12°C are also shown.

⁵ Shelton, D. R., Boyd, S. A., and Tiede, J. M. (1984). Anaerobic biodegradation of phthalic acid esters in sludge. Environmental Science and Technology, 18, 93-97.

Compound	Medium	DT ₅₀ (days) at 20°C	DT ₅₀ (days) at 12°C
Phthalimide	Silty clay aqueous phase	0.54	1.15
	Silty clay total sediment/water	0.58	1.23
	Sandy loam aqueous phase	0.59	1.25
	Sandy loam total sediment/water	0.65	1.38
Phthalamic	Silty clay aqueous phase	3.55	7.54
acid	Silty clay total sediment/water	3.98	8.46
	Sandy loam aqueous phase	5.50	11.69
	Sandy loam total sediment/water	6.09	12.94
Phthalic acid	Silty clay aqueous phase	1.38	2.93
	Silty clay total sediment/water	1.41	3.00
	Sandy loam aqueous phase	6.36	13.51
	Sandy loam total sediment/water	6.45	13.70
Benzamide	Silty clay aqueous phase	1.63	3.46
	Silty clay total sediment/water	1.63	3.46
	Sandy loam aqueous phase	а	а
	Sandy loam total sediment/water	а	а
2-	Silty clay aqueous phase	0.33	0.70
Cyanobenzoic	Silty clay total sediment/water	0.36	0.76
aciu	Sandy loam aqueous phase	0.67	1.42
	Sandy loam total sediment/water	0.72	1.53

Degradation rate (D150) for the major metabolites of topet in water/sequinent system
--

^a Insufficient data for analysis.

The main metabolites encountered in the sediment were phthalimide (max. 5.9% AR) and phthalic acid (max. 3.8% AR). Sediment unextracted residues increased to *ca* 25% AR between day 7 and day 14 but were declining at the end of the study at 100 days. Unextracted residues were shown to be mainly associated with the humin fraction, probably due to phthalate formation. The decline of unextracted residues is most probably due to anaerobic degradation of the bound phthalates resulting in methane production (not collected in the study resulting in low mass balance).

Overall, folpet is not considered to be persistent in the aquatic environment.

Exposure of the aquatic environment following the biocide use of folpet under PT7 will be predominantly via disposal/run-off to drain and processing through STP. Under these circumstances the possibility of folpet entering natural waters and sediment is extremely remote.

Biodegradation in Soil

Folpet, is rapidly degraded in a range of aerobic soil types at temperatures of 20 and 25°C under laboratory conditions, with first-order DT_{50} values in the range of 0.2 to 4.3 days. The degradation of folpet under aerobic conditions at a lower temperature of 10°C was measured to be 3.8 days in a silt loam soil (corresponding value at 20°C was 0.8 days). The equivalent range of soil degradation rates at the EU average temperature of 12°C can

be estimated to be 0.4 to 14.3 days. However, the data suggest that factors other than temperature (e.g. soil pH) have a significant influence on soil degradation. Levels of bound residues initially accumulated to a level of 31.2% AR at day 14, but subsequently declined resulting in substantial mineralisation to CO₂. (up to 60% AR after 90 days).

Overall, folpet is not considered to be persistent in soil.

The compounds phthalimide (max 65% AR after 5 days), phthalamic acid (max 16.7% AR after 1 day) and phthalic acid (max 16.6% AR after 1 day) are the major (>10% AR) degradation products of folpet in soil. These compounds are also rapidly degraded in soil with DT_{50} values in the range of 0.5 to 4.8 days, 0.4 days and 0.6 to 4.1 days, respectively at 20°C. The equivalent range of soil degradation rates at the EU average temperature of 12°C can be estimated to be 1 to 10 days, 0.9 days and 1.3 to 8.7 days, respectively.

Overall, phthalimide, phthalamic acid and phthalic acid are not considered to be persistent in soil.

The environmental fate and distribution of folpet has previously been reviewed at EU level under Directive 91/414/EEC, with Italy as the RMS. Conclusions of this review are published in the EFSA Scientific Report (2009) 297, 1-80 (Conclusion on the Peer Review of Folpet) and the following FOCUS normalised degradation rates for folpet, phthalimide and phthalic acid in soil were agreed and have been used in the modelling of environmental exposure for PT7:

Folpet DT_{50} (20°C) = 4.68 days (mean value concluded in the EFSA scientific report)⁶. Phthalimide DT_{50} (20°C) = 7.88 days (mean value concluded in the EFSA scientific report). Phthalic acid DT_{50} (20°C) = 1.37 days (mean value concluded in the EFSA scientific report).

A study investigating degradation of folpet under anaerobic conditions was performed using US EPA guidelines and involved initial incubation under aerobic conditions (4 days) following by flooding and incubation under anaerobic conditions for a further 60 days. Under these conditions, the degradation of folpet in the soil layer was slower compared to fully aerobic conditions, with a maximum DT_{50} value of 13.5 days. Degradation resulted in the metabolites phthalimide (max 50.6% AR at the start of the anaerobic phase of the study) and phthalic acid (max 13.3% after 60 days of the anaerobic phase). The DT_{50} value for the degradation of phthalimide in the soil layer, under anaerobic conditions, was estimated to be 33.6 days. A second study (supporting information) was conducted which exposed soil to anaerobic conditions for 365 days. Folpet had completely degraded in this study at the time of the initial sampling (7 days) and levels of phthalic acid/phthalamic acid (not chromatographically separated) reached 44.6% AR after 112 days. A metabolite not observed under aerobic conditions, 2-cyanobenzoic acid, was also present at low levels (maximum 5.7% AR). Substantial mineralisation to carbon dioxide was observed in both studies (maximum 26.3% AR after 60 days in the US EPA study and 78.8% after 365 days in the supporting study). CO₂ evolution was not as rapid as compared to fully aerobic conditions.

No laboratory degradation studies have been carried out using a labelled thiophosgene moiety of folpet, however an estimate of the behaviour of this moiety may be made from studies on the closely related compound, captan, which has an identical side chain. These studies, which are discussed and concluded in the EFSA Scientific Report (2009) for Folpet, indicate that the thiophosgene side-chain is likely to be degraded rapidly, resulting in extensive mineralisation to carbon dioxide (up to 80 to 91% AR after 28 to 30 days). Thiophosgene is expected to be unstable because of rapid hydrolysis to thiocarbonic acid and the EFSA expert conclusion was that free thiophosgene will not reach significant levels in soil. This conclusion is considered more robust for the biocidal use of folpet since soil exposure will always be via a secondary route (STP) and residues of folpet in soil are not expected under actual conditions of use.

Soil photolysis of folpet was studied in a sandy loam soil type at 25°C, using both natural and artificial sunlight sources. In the soil samples exposed to natural sunlight and those irradiated

⁶ The correct DT_{50} value is the geometric mean = 1.3 days at 20°C. The equivalent DT_{50} at 12°C = 2.47 days using TGD equation 25. The EFSA agreed endpoint represents a worst-case value and has been used in the risk assessment.

with an artificial light source, the degradation observed in the dark controls was comparable to that of the exposed samples. In dark control and irradiated samples, phthalimide was the principle degradation product (maximum 43.6% AR after 31 days for natural sunlight irradiation and maximum 40.0% AR after 31 days in the corresponding dark control). The results indicate that photodegradation is not a significant route of degradation for folpet.

Field soil dissipation data show that degradation of folpet and phthalimide is rapid with the DT_{50} estimated to be less than 3 days for each substance. Highest residues were detected in the 0-15 cm soil horizon, with little or no movement to lower soil horizons. The field dissipation data confirms the results obtained from laboratory tests and shows that folpet and phthalimide (the principle soil metabolite) do not accumulate in soil.

A summary of the soil degradation data is shown in the following tables.

Componen t	DT ₅₀ (days)	DT ₉₀ (days)	Method of calculation	Soil Properties
Folpet	2	7 ^a	25°C Not stated.	US Sandy Loam pH = 6.8, OC = 1.03%
	4.3	14 ^a	25° C 1^{st} order kinetics, r ² = 0.97	US Sandy Loam pH = 5.4, OC = 1.16%
	3.8	12.8	20°C 1 st order kinetics, $r^2 =$ 0.995	UK Loamy Sand pH = 4.8 , OC = 0.9%
	0.8	2.8	20°C 1 st order kinetics, $r^2 =$ 0.986	UK Silty Loam pH = 6.2 , OC = 2.6%
	0.2	0.7	20°C 1 st order kinetics, $r^2 =$ 0.999	UK Clay Loam pH = 7.5, OC = 3.9%
	3.8	12.6	10° C 1^{st} order kinetics, r ² = 0.998	UK Silty Loam pH = 6.2 , OC = 2.6%
Phthalimide	Minor me	etabolite	25°C	US Sandy Loam pH = 6.8, OC = 1.03%
	7.84	40.02	25°C $\sqrt{1^{st}}$ order kinetics, r ² = 0.76	US Sandy Loam pH = 5.4, OC = 1.16%
	4.8	16.1	20°C 1 st order kinetics, $r^2 =$ 0.876	UK Loamy Sand $pH = 4.8, OC = 0.9\%$
	1.7	5.8	20°C 1 st order kinetics, $r^2 =$ 0.992	UK Silty Loam pH = 6.2 , OC = 2.6%
	0.5	1.7	20°C 1 st order kinetics, $r^2 =$ 0.984	UK Clay Loam pH = 7.5, OC = 3.9%
	3.2	10.6	$10^{\circ}C$ 1 st order kinetics, r ² = 0.977	UK Silty Loam pH = 6.2 , OC = 2.6%

Summary of	aerobic la	aboratory	soil de	gradation	rates	of folpet	and	major
metabolites								

Componen t	DT ₅₀ (days)	DT ₉₀ (days)	Method of calculation	Soil Properties
Phthalic acid	Minor metabolite		25°C	US Sandy Loam pH = 6.8, OC = 1.03%
	Minor metabolite		25°C	US Sandy Loam pH = 5.4 , OC = 1.16%
	4.1	13.7	20°C 1 st order kinetics, $r^2 =$ 0.892	UK Loamy Sand pH = 4.8, OC = 0.9%
	1.0	3.2	20°C 1 st order kinetics, $r^2 =$ 0.954	UK Silty Loam pH = 6.2 , OC = 2.6%
	0.6	2.1	20°C 1 st order kinetics, $r^2 =$ 0.999	UK Clay Loam pH = 7.5, OC = 3.9%
	1.8	5.9	10° C 1^{st} order kinetics, r ² = 0.855	UK Silty Loam pH = 6.2 , OC = 2.6%
Phthalamic acid	Minor metabolite		25°C	US Sandy Loam pH = 6.8 , OC = 1.03%
	0.4	1.3	20°C 1 st order kinetics, $r^2 =$ 0.999	UK Silty Loam pH = 6.2 , OC = 2.6%
	0.8	2.7	10°C 1 st order kinetics, $r^2 = 0.973$	UK Silty Loam pH = 6.2 , OC = 2.6%

a Estimated visually.

Summary of anaerobic laboratory soil degradation rates of folpet and major metabolites

Component	DT ₅₀ (days)	DT ₉₀ (days)	Method of calculation	Soil Properties
Folpet	14.6	48.5ª	25°C 1 st order kinetics, r ² = 0.980 anaerobic whole system	US Sandy Loam pH = 5.4, OC = 1.16%
	13.5ª	65ª	25°C anaerobic soil phase only	US Sandy Loam pH = 5.4, OC = 1.16%
Phthalimide	33.6ª	110ª	25°C anaerobic soil phase only	US Sandy Loam pH = 5.4, OC = 1.16%
Phthalic acid	Minor metabolite		25°C	US Sandy Loam pH = 5.4, OC = 1.16%
Phthalamic acid	Minor metabolite		25°C	US Sandy Loam pH = 5.4, OC = 1.16%

а

Extrapolated from the study data by the applicant.

<u>Hydrolysis</u>

Folpet hydrolyses rapidly in sterile water and the rate of hydrolysis increases rapidly with pH.

Hydrolysis half-life data for folpet was measured at a temperature of 25°C, at pH5, pH7 and pH9 under sterile conditions and the measured rates were: 2.6 hours at pH5 1.1 hours at pH7 and 0.019 hours at pH9. Hydrolysis half-life data for folpet was also measured at 25°C and 40°C, at pH4, pH7 and pH9 under sterile conditions and the measured rates were: 6.51 hours at pH4 and

Folpet

25°C, 1.06 hours at pH4 and 40°C, 0.70 hours at pH 7 and 25°C, 0.18 hours at pH 7 and 40°C. At pH9 the rate of reaction was too rapid to measure. The equivalent hydrolysis degradation rates at the EU average temperature of 12°C can be estimated to be: pH4 = 17.1 hours (mean), pH5 = 8.7 hours, pH7 = 2.7 hours (mean) and pH9 = 0.1 hours. At pH 5 the predominant degradate is phthalimide but there is a shift towards phthalic acid which becomes the predominant degradate at pH 9. Kinetic analysis suggested that hydrolysis takes place both from folpet and phthalimide at higher pH values and from folpet only at low pH values. The metabolite phthalimide is also rapidly hydrolysed. The measured rates were: 5.49 hours at pH4/100°C, 7.45 hours at pH7/40°C, 1.99 hours at pH9/25°C and 0.28 hours at pH9/40°C. The equivalent hydrolysis degradation rates at the EU average temperature of 12°C can be estimated to be: pH4 = 3695 hours, pH7 = 88 hours and pH9 = 5.0 hours (mean).

Hydrolysis is therefore the primary route of degradation for folpet in the aquatic environment.

<u>Photolysis</u>

The instability of folpet towards chemical hydrolysis, even at low pH, means that photolysis is not a significant degradation pathway in the aquatic environment. The results of an aqueous photolysis study, where very similar degradation results are found in the absence or presence of ligh, confirm this conclusion.

Adsorption

The adsorption/desorption coefficient of folpet cannot be reliably estimated by methods, such as the batch equilibrium method, because of rapid degradation in soil and in aqueous media. The lowest estimated adsorption/desorption coefficient is 304 mL/g. The adsorption/desorption coefficient of phthalimide, the major soil metabolite, was estimated in five soils of European origin using the batch equilibrium method. The Koc values determined for phthalimide were in the range 55.7 to 293.1 mL/g. The Koc values for phthalamic acid and phthalic acid were not determined experimentally, however QSAR estimates for these metabolites range from 1.206 to 80.85 L/kg. In addition, the results of an aged soil leaching study with radiolabelled folpet suggest that folpet and its soil degradation products are unlikely to leach significantly through soil, with less than or equal to 0.1% of applied radioactivity found in the leachate.

Bioaccumulation

The logKow of folpet is 3.017. Based on a laboratory study in which bluegill sunfish were exposed to folpet at artificially maintained concentrations, the whole fish BCF was 56, with a subsequent depuration DT_{50} of 0.63 days. The low measured BCF value of folpet indicates a low potential for bioaccumulation, even under worst-case, unrealistic exposure conditions. The environmentally relevant entities that arise from the biocidal uses of folpet are its degradation products rather than the parent active substance. Log Kow estimates obtained using the KOWWIN model in EPISUITE are all lower than that of the parent compound and below the trigger of 3.0. It may therefore be concluded that the breakdown products of folpet also pose negligible potential for bioaccumulation.

Volatilisation

The Henry's Law constant for folpet is 8×10^{-3} Pa.m³.mol⁻¹. Folpet is a solid with a relatively high melting point and low vapour pressure and can therefore be considered as non-volatile. Concentrations in air are expected to be negligible during use and disposal and folpet degrades rapidly in air due to reaction with hydroxyl radicals with a half-life between 6.16 hours (QSAR estimation) and 1.02 days (EPA AOP v1.92 model based on 0.5 x 10^6 OH/cm³ and a 24 hour day). In the absence of exposure to air-borne residues, non-target organisms are considered not to be at risk from folpet in the atmosphere and a detailed assessment of risk is therefore not presented for the atmospheric compartment.

Thiophosgene

One of the products formed in the breakdown of folpet is thiophosgene (SCCl₃), however its

tendency to hydrolyse rapidly and its high reactivity with other substances likely to be present in wash-waters, leachates, drains and sewers mean that it is unstable and that exposure of biota in aquatic and terrestrial compartments of the environment to thiophosgene will not occur. Thiophosgene is therefore not considered to be an environmentally relevant degradate of folpet. Carbon dioxide is ultimately formed from the thio(trichloromethyl) side chain and at higher pH values this tends to remain in solution as carbonate. The intermediate degradates from the thio(trichloromethyl) side chain have not been identified but it is postulated in the EFSA review report for folpet that these intermediates are the sodium salt of trichloromethylsulfenic acid and trichloromethylmercaptan.

2.2.2.2. Effects assessment

Aquatic organisms

Aquatic ecotoxicology studies performed with folpet have been conducted with exposure regimes that fall into two types.

The first type entails exposure under flow-through or semi-static conditions (in the latter case with a short interval between media renewals), with the aim of counteracting hydrolysis and maintaining consistent exposure to the active substance at concentrations at or near nominals and in accordance – in this respect – with conventional test guideline requirements. These tests provide endpoints that serve to establish the intrinsic toxicity of folpet to aquatic biota and they fulfil the requirements for the classification of the active substance.

The second type entails exposure under static or static renewal conditions (in the latter case with an extended interval between media renewals), whereby the concentration of folpet declined as a result of hydrolysis, either unavoidably because of the practical constraints of the test design (e.g. algal studies, where flow-through or semi-static exposure regimes cannot be implemented for technical reasons) or deliberately, as in the case of static acute fish tests, where the exposure pattern was intended to simulate intermittent episodes of unintended surface water contamination via direct spray drift inputs potentially arising from the use of folpet as a plant protection product. In these studies exposure would have been to the hydrolysis products of folpet for most of the test duration, following a brief initial phase of exposure to the active substance. Some chronic toxicity studies were performed at intervals of e.g. 7 days to represent worst-case agricultural practice (*i.e.* the regime with the shortest separation between treatments), so that the exposure was also to the hydrolysis products for most of the time, punctuated by short, transient spikes of exposure to folpet a.s. at test initiation and immediately following each renewal.

In the acute timescale, fish were marginally the most sensitive group of aquatic organisms to the parent active substance. O. mykiss was identified as the most sensitive species in the flow-through toxicity tests (96-hour LC_{50} : 15 µg a.s./L, mean measured), however 96-hour LC₅₀ endpoints of 233 and 1260 μ g folpet-equiv/L (nominal) were obtained for the same species under static conditions. The lowest fish 96-hour LC_{50} for fish under static conditions was 98 µg folpet-equiv/L (*S. trutta*). The similarity of the 24-hour and 96-hour LC_{50} values in the static acute toxicity study O. mykiss indicates an absence of latency; *i.e.* most of the mortality occurred during the initial phase of exposure to folpet. This effect is replicated in the other acute, static tests with other fish species, implying that the hydrolysis degradates of folget are less acutely toxic to fish than the parent active substance. This is confirmed by acute toxicity studies performed with fish exposed to phthalimide, phthalic acid, phthalamic acid, benzamide and 2-cyanobenzoic acid that gave 96-hour LC₅₀ endpoints in the range 38000 to > 100000 μ g/L. All the relevant degradation products of folpet that may be formed by various processes - including hydrolysis - are therefore less acutely toxic to fish than the parent active substance, by several orders of magnitude.

Similar results have been obtained in studies with aquatic invertebrates. *D. magna* was the most sensitive invertebrate species in flow-through acute toxicity tests (48-hour EC_{50} : 20 µg

a.s./L, mean measured), whereas a 48-hour EC₅₀ of > 1460 µg folpet-equiv/L (mean measured initial concentration) was provided by a study performed with *D. magna* under static conditions. By comparison, acute EC₅₀ endpoints for *D. magna* exposed to phthalimide, phthalic acid, phthalamic acid, benzamide and 2-cyanobenzoic acid range from 39000 to > 100000 µg/L, demonstrating that the degradation products of folpet – including those that are formed by hydrolysis - are markedly less acutely toxic to aquatic invertebrates than the parent compound.

Comparable trends are evident in the outcomes of long-term aquatic toxicity studies. *D. magna* was the most sensitive sensitive species to folpet under flow-through conditions (21 day NOEC: 1.8 μ g a.s./L, mean measured. In a semi-static 21-day study a NOEC of 55 μ g/L was obtained for the same species with regime of a 7-day interval between media renewals. Fish exhibited similar responses. NOEC values of 11 and 8.1 μ g folpet/L (mean measured) were obtained for *P. promelas* in two early life stage studies conducted under flow-through conditions, whereas a growth test with juvenile *O. mykiss* exposed to folpet under semi-static conditions (three media renewals/week) provided a 28-day LC₅₀ of 110 μ g a.s./L, nominal (a higher value than the flow-through acute endpoint for the same species) and a NOEC of 19 μ g folpet/L. The difference in long-term NOECs for fish between the studies that employed flow-through and semi-static exposure appears relatively small compared to that indicated for invertebrates, however this is a reflection of the higher frequency of media renewal and hence longer exposure to intact folpet a.s. that occurred in the 28-day *O. mykiss* study, compared to the 21-day semi-static reproduction test with *D. magna*.

Algal growth inhibition studies are necessarily conducted under static conditions and the active substance rapidly dissipated in the study of the effects of folpet on *D. subspicatus*. The 72-hour E_rC_{50} and corresponding NOEC values were > 10000 and 700 µg a.s./L (nominal). Similar studies performed with *P. subcapitata* exposed to phthalic acid, phthalamic acid, benzamide and 2-cyanobenzoic acid gave 72-hour E_rC_{50} endpoints in the range > 10000 to > 100000 µg/L. The relevant products of folpet dissipation therefore exhibit low toxicity to algae.

No studies have been performed to determine the chronic aquatic toxicity of the individual metabolites of folpet in isolation, however it is likely that they are each much less toxic than the parent active substance, mirroring the differential evident between folpet and its degradates in terms of their acute aquatic toxicity endpoints. The reduction in toxicity of folpet observed in long-term studies that employed static-renewal exposure conditions (where the parent active substance would have undergone rapid hydrolysis), compared to that seen in studies where flow-through conditions were employed, is qualitatively similar to the differences seen in the acute toxicity endpoints. This supports the contention that the chronic aquatic toxicity of the hydrolysis degradates is also much lower than that of folpet a.s.

Intact folpet a.s. is not expected to enter the aquatic compartment of the environment following its proposed uses in PT7. The potential exposure of aquatic biota is expected to be limited to folpet degradates, which all have a low K_{OC} (modelled EPISUITE KOCWIN estimates for phthalimide, phthalic acid, phthalamic acid, benzamide and 2-cyanobenzoic acid range from 1.2 to 80.9 L/kg), which implies a low affinity for organic matter. The environmentally relevant residues of folpet are therefore unlikely to partition to sediment and tests to determine the toxicity of folpet and its metabolites to sediment-dwelling organisms are therefore considered unnecessary and have not been performed.

Biological sewage treatment plant (STP) processes

Two studies with inocula from domestic catchment STPs have tested the effects of folpet on microbial processes involved in aerobic biological waste-water treatment. The first investigated the effect of folpet on the rate of oxygen uptake (total respiration, *i.e.* carbonaceous oxidation and nitrification combined) by activated sludge and the second specifically addressed effects on nitrifying microorganisms, which are generally the most sensitive group. The test systems were dosed with direct additions of folpet a.s. and

Folpet

although some hydrolysis will have occurred under the test conditions, the endpoints provided by these tests reflect an initial exposure to the parent active substance that represents the highly improbable worst-case compared to the likely exposure of STP microflora in the context of the proposed uses of folpet in PT7. The 3-hour EC₅₀ and NOEC for inhibitory effects of folpet on activated sludge respiration (OECD 209) were > 320 and 10 mg folpet/L (nominal), respectively. The 4-hour EC₅₀ and NOEC for inhibition of nitrification in activated sludge (ISO 9509) were > 1000 and 32 mg folpet (nominal), respectively. These outcomes indicate that nitrification is not more susceptible to inhibition by folpet than the carbonaceous respiration processes of heterotrophic microorganisms.

Terrestrial organisms

The 14-day LC₅₀ of folpet to *E. foetida* was greater than 1000 mg/kg dry soil, equivalent to > 882 mg a.s./kg on a wet weight basis. The sublethal effects of folpet were assessed using two formulations of folpet (a suspension concentrate (SC) and a water dispersible granule (WDG)), both containing nominally 80% folpet. The lowest NOEC for sublethal effects was reported to be 5.18 mg folpet-equiv/kg dry soil, converted from the test treatments expressed in terms of application rates, incorporation to depth of 5 cm and a dry soil bulk density of 1500 kg/m³. This corresponds to a value of 4.57 mg folpet-equiv/kg wet soil, assuming a moist soil density of 1700 kg/m³ as prescribed by the EU TGD.

The inhibition of soil microbial function in the presence of a suspension concentrate (SC) plant protection product containing folpet was tested under laboratory conditions in two field soils over a period of 63 days, with intermediate measurements made after 3 hours and 14 and 28 days. Two treatments based on agricultural application rates were used, equating to concentrations of 1.062 and 10.62 mg folpet/dry soil, converted from the applied rates by assuming incorporation to depth of 10 cm and a dry soil bulk density of 1500 kg/m³. These concentrations correspond to values of 0.937 and 16.54 mg folpet-equiv/kg wet soil, assuming a moist soil density of 1700 kg/m³ as prescribed by the EU TGD. Nitrifying activity indicated by the formation of oxidised inorganic nitrogen (nitrite and nitrate combined) diverged from the untreated control by less than $\pm 10\%$ at both folpet concentrations in both soils and at all timepoints. There was no consistent dose-response in the magnitude of the effect. Dehydrogenase activity was suppressed to similar extents throughout the incubation in both soils and the effect was consistently greater at the higher folpet concentration. After 28 days, dehydrogenase activity was reduced by 1.6% and 2.9% relative to the untreated controls at the lower folget concentration and by 14.6% and 17.5% at the higher. The overall NOEC for effects on the activity of soil microflora is therefore set at 0.937 mg folpet-equiv/kg wet soil, where suppression of nitrification and dehydrogenase activity after 28 days remained below 10%.

It is expected that the relevant metalites of folpet were formed in moist soil under the conditions of the laboratory tests performed with the active substance, and that their influence is therefore accommodated in the endpoints reported for folpet a.s. Based on the evidence provided by the aquatic toxicity studies, the relevant metabolites of folpet are expected to be less toxic than the parent active substance.

Further studies have been performed to address the long-term toxicity of the hydrolysis metabolites phthalimide and phthalic acid to representatives of three groups of terrestrial organisms: earthworms, soil microflora and terrestrial plants. The soil microflora studies investigated the effect of each metabolite on carbon transformation, based on the findings of the OECD 209 and ISO 9509 studies performed with activated sludge which showed that nitrogen transformation was less susceptible to inhibition by folpet than combined respiratory processes. The terrestrial plant studies addressed the effects of soil-mediated exposure on seed germination and seedling development of two monocot and four dicot species.

The lowest long-term endpoint for phthalimide is the 28-day earthworm NOEC of 56.7 mg/kg dry artificial soil. The soil used in the study contained the standard 10% organic matter (peat), however the adsorption/desorption coefficient of phthalimide has been estimated in five soils of European origin using the batch equilibrium method, with Koc

values determined for phthalimide in the range 55.7 to 293.1 mL/g. Phthalimide therefore has a low tendency to bind to organic matter and the test conditions employed in this study are unlikely to have resulted in under-estimation of the long-term toxicity of phthalimide to earthworms. Adjustment of the endpoint to compensate for the unusually high organic matter content of the test soil is considered to be unnecessary.

Assuming a dry soil bulk density of 1500 kg/m³, the earthworm long-term NOEC of 56.7 mg/kg dry soil corresponds to 50.03 mg phthalimide/kg wet soil with a bulk density of 1700 kg/m³ as prescribed by the EU TGD.

The lowest long-term endpoint for phthalic acid is the calculated EC_{10} of 44.3 mg/kg based on a reduction in the fresh weight of cropped biomass of *D. carota* seedlings in an emergence and seedling development study. (The calculated EC_{10} undercuts the corresponding NOEC of 64 mg/kg dry soil for the same species). The soil used was LUFA 2.2, classified (DIN) as a loamy sand soil with a carbon content of 1.77%. The adsorption/desorption coefficient of phthalic acid estimated by the KOCWIN model in EPISUITE is 80.85 L/kg and the model database contains an experimentally determined log K_{oc} value of 1.07. Phthalic acid therefore has a low tendency to bind to organic carbon. The test conditions employed in this study are consequently unlikely to have resulted in under-estimation of the potential effects of phthalic acid on soil-mediated exposure of terrestrial plants at the sensitive germination and root/shoot development stages. Adjustment of the endpoint to compensate for the organic matter content of the test soil is unnecessary.

Assuming a dry soil bulk density of 1500 kg/m³, the EC_{10} of 44.3 mg/kg dry soil corresponds to 39.09 mg phthalic acid/kg wet soil with a bulk density of 1700 kg/m³ as prescribed by the EU TGD.

Effects of folpet on other terrestrial organisms

Toxicity endpoints are also available from studies performed with other groups of terrestrial organisms although their exposure is not foreseen following the use of folpet in PT7. These are outlined below.

No mortalities or treatment-related abnormalities were observed in an acute toxicity test with honey bees (*A. mellifera*). The acute LD_{50} endpoints for contact and oral exposure were > 200 and > 236 µg folpet/bee, respectively.

Folpet was applied post-emergence (direct foliar exposure) as a water-dispersible plant protection product formulation to a range of crops (monocots and dicots) in a field study, with single applications at rates of up to 8.0 kg a.s./ha. There were no observations of phytotoxicity or effects on plant vigour.

Folpet exhibited low acute oral and short-term dietary toxicity to birds. The acute oral LD_{50} of folpet to bobwhite quail was greater than 2510 mg/kg bw (males and females). The noeffect level (NOEL) was 631 mg/kg bw, based on a slight, initial decrease in body weight at 1000 mg./kg bw and above, followed by a compensatory increase in body weight by the end of the test. The short-term dietary LC_{50} of folpet to bobwhite quail was greater than 5000 mg/kg diet. The NOEC was also 5000 mg/kg diet, based on an absence of effect at the single concentration tested. The short-term dietary LC_{50} of folpet to mallard duck was greater than 5000 mg/kg diet. The NOEC was also 5000 mg/kg diet, based on an absence of effect at the single concentration tested.

An eight week screening study with bobwhite quail indicated that there were no significant effects on adult birds or on reproductive performance up to a concentration of 4640 mg folpet/kg diet. In one-generation reproduction studies with bobwhite quail and mallard duck there were no significant effects on reproductive parameters at 1000 mg a.s./kg diet, the highest concentration tested. In both studies there were slight, significant effects on hatchling body weight at 100 mg a.s./kg diet and above, however these were slight and inconsistent and unrelated to dose. In the mallard duck study there were slight significant

reductions in adult food consumption at 100 to 1000 mg a.s./kg diet. These were considered to be unrelated to treatment as there were no permanent treatment-related effects on adult body weight and food consumption reductions occurred inconsistently. The long-term NOEC for folpet is 1000 mg a.s./kg diet.

2.2.2.3. PBT and POP assessment

<u>Persistence</u>

Since folpet can be classified as readily biodegradable, is degraded in aquatic systems with a DT_{50} value of ca 0.4 hours and is also degraded in soil with a DT_{50} value of less than 4.3 days, it cannot be considered to fulfil the P criterion.

Bioaccumulation

The B criterion in the TGD is fulfilled when a substance has a bioconcentration factor (BCF) of > 2000 or, if BCF data is not available, when the log Kow > 4.5. The highest recorded BCF value for folpet is 56, measured in whole fish, which is lower than the limit value of 2000. Since a BCF value is available and below the limit value, folpet cannot be considered to fulfil the B criterion.

<u>Toxicity</u>

The T criterion used in the TGD is a chronic NOEC for aquatic organisms of < 0.01 mg/L or, if no long-term data is available, the criterion is $L(E)C_{50}$ to aquatic organisms < 0.1 mg/L. For mammals, the T criterion is fulfilled when the substance is classified as carcinogenic (Cat 1 or 2), mutagenic (Cat 1 or 2) or toxic for reproduction (Cat 1, 2 or 3) or when there is evidence of chronic toxicity.

The long-term effects of folpet have been determined for fish (two early life-stage studies) and for *D. magna* with NOEC values of 8.1 to 11 μ g/L and 2.1 μ g/L, respectively. However, these studies were conducted under flow through conditions. Due to the rapid hydrolysis of folpet there is no potential for prolonged exposure of aquatic organisms and therefore studies conducted under flow through conditions are not considered to represent realistic exposure in the environment and therefore the end points should not set these studies. From static tests the lowest fish (*S. trutta*) 96-hour LC₅₀ was 98 μ g folpet/L.

Based on consideration of intrinsic toxicity, without taking account of realistic exposure, the worst case NOEC value is < 0.01 mg/L and the worst-case LC_{50} is < 0.1 mg/L. Folpet is therefore considered to fulfil the T criteria for aquatic organisms.

It should be noted that folpet is rapidly hydrolysed under environmental conditions and that its metabolites are relatively non-toxic compared to the parent active substance. Short term L/EC₅₀ endpoints for fish, invertebrates and algae for phthalimide, phthalic acid, phthalamic acid, benzamide and 2-cyanobenzoic acid all range from > 10 mg/L to > 100 mg/L. The hydrolysis products of folpet do not fulfil the criteria for classification in the aquatic environment.

Folpet is not classified as carcinogenic (Cat 1 or 2), mutagenic (Cat 1 or 2) or toxic for reproduction (Cat 1, 2 or 3). However, results from a chronic exposure to mice indicated potential for inducing gastric carcinomas although this effect was not replicated in rats and there is no evidence for folpet induced human carcinogenicity. Folpet does not show evidence of chronic toxicity, as identified by the classifications T, R45, R48, R60 and R61 or Xn, R48, R62, R63 and R64. The toxicity of folpet to mammals is low, with an LD50 for rat of >2,000 mg/kg bw.

Since none of the above toxicological thresholds are met, folpet is not considered to fulfil the T criterion for mammals.

<u> POP</u>

Folpet is a solid with a relatively high melting point and low vapour pressure and can therefore be considered as non-volatile. Concentrations in air are expected to be negligible during use and disposal and folpet degrades rapidly in air due to reaction with hydroxyl radicals with a half-life between 6.16 hours (QSAR estimation) and 1.02 days (EPA AOP v1.92 model based on 0.5×10^6 OH/cm³ and a 24 hour day). Based on this information folpet is not considered to be a persistent organic pollutant.

2.2.2.4. Exposure assessment

<u>Aquatic</u>

The uses considered for folpet in PT7 applications provide no potential for direct entry of the active substance into the aquatic compartment.

The biocidal uses of folpet are expected to result in the discharge of folpet residues into drains and sewers and subsequent transport to sewage treatment plants (STPs). In reality, the biocidal uses of folpet will generate effluents in which the parent active substance is completely hydrolysed before and/or during biological treatment: either in-use, during transport in the drain/sewer system or during primary settlement of the STP influent before entering the secondary (biological) treatment phase. The hydraulic retention time of influents through secondary treatment at STPs, followed by settlement prior to discharge of the final, treated effluent to the receiving water course is in the order of several hours. Given that the hydrolysis DT₅₀ of folget is measured in minutes and that folget is expected already to be hydrolysed before it reaches secondary treatment processes, it may be assumed (regardless of the degree to which folpet and its hydrolysis products may be biodegraded during biological treatment) that no parent active substance will be present in final STP effluents at the point at which they are discharged into receiving waters. Consequently, exposure of aquatic biota to the intact parent active substance is not expected to occur following the proposed uses in PT7 that entail drain disposal followed by STP. Exposure will instead be to the principal hydrolysis degradates rather than folget itself.

Alternatively, releases may occur by weathering and leaching processes from – for example – surfaces painted with coatings containing folpet, or from films, sealants or plastic items containing folpet. In these situations, however, the processes are expected to be gradual and to occur only when the relevant surfaces are wetted. Rapid hydrolysis will occur in tandem with the leaching process. Exposure of biota in surface waters receiving such leachates will therefore be to the principal hydrolysis degradates of folpet rather than to the active substance itself.

<u>Terrestrial</u>

Folpet residues that become bound to sludge solids during waste-water treatment may enter the soil compartment if STP sludge is applied to land. However, bearing in mind the rationale provided above, the residues in STPs will be folpet degradates rather than the parent active substance. Moreover, modelled K_{OC} values for the breakdown intermediates of folpet are all relatively low and also lower than that of folpet a.s., suggesting that the degradates have only a weak affinity for organic matter and STP sludge, and that this indirect route is therefore unlikely to result in significant contamination of soil with folpet residues.

Alternatively, releases may occur by weathering and leaching processes from – for example – surfaces coated with paint treated with folpet, or from films, sealants or plastic items containing folpet. In these situations, however, the processes are expected to be gradual and to occur only when the relevant surfaces are wetted. Rapid hydrolysis of folpet will occur in tandem with the leaching process. Exposure of biota in surface run-off soak-away systems and soils receiving such leachates will therefore be to the principal hydrolysis degradates of folpet rather than to the active substance itself.

Releases of folpet may occur also during the application of the formulated product.

Environmental risk in the aquatic compartment (incl. sediment)

Given the exposure considerations that are outlined above, the environmental risk assessment for the aquatic compartment needs to take account of the facts that:

- a) the exposure arising from the various PT7 biocidal uses of folpet is continuous and therefore chronic in character, and;
- b) since none of the biocidal uses of folpet facilitates direct entry of the active substance into surface waters, exposure will be to foplet's hydrolysis metabolites rather than the intact parent active substance.

Consequently the PNEC for the aquatic compartment must be derived from chronic aquatic toxicity endpoints to correspond to the relevant environmental exposure. These entities have not been tested individually and chronic toxicity endpoints are therefore unavailable for each of the relevant metabolites. Toxicity data are available that show that the metabolites of folpet are several orders of magnitude less acutely toxic to fish and invertebrates (which are both much more sensitive than algae) than the parent compound and it would be reasonable to expect that the metabolites are also substantially less toxic to aquatic biota than folpet a.s. following long-term exposure.

Of the available data, the most appropriate basis for the PNEC derivation are therefore the endpoints provided by long-term studies conducted with folpet, but under static-renewal conditions where the renewal interval was long enough to permit complete hydrolysis of the active substance. The pattern of exposure achieved under these conditions would therefore have been to the hydrolysis products of folpet for most of the test duration, punctuated by brief, transient phases of exposure to folpet immediately after test initiation and each media renewal. Since folpet was intermittently present in these test regimes, the observed toxicity is considered to have been greater than it would have been had the exposure been to the hydrolysis products alone, and from the point of view of representing long-term metabolite toxicity these endpoints are therefore worst-case. The conservatism of this approach is indicated by the acute toxicity data set, where endpoints obtained for folpet under static conditions that permitted hydrolysis were (albeit higher than) still closer to those of folpet when tested under flow-through conditions, than to the very much higher endpoints for each of the metabolites tested individually.

Consequently the PNEC derived from end points provided by the static-renewal studies dosed with folpet is considered to be highly protective with respect to the exposure that is expected to occur in the aquatic compartment following the biocidal uses of folpet in PT7.

Surface water (PNEC_{water})

As noted above, since no long-term endpoints are available for the relevant metabolites of folpet, the data that serve as the most appropriate basis for the PNECwater derivation are NOECs provided by long-term studies conducted with folpet, but under static-renewal conditions where the renewal interval was long enough to permit complete hydrolysis of the active substance. The relevant values are presented in the table below.

Test organism	Time-scale, exposure regime	Endpoint	Toxicity (µg/L)			
Fish						
Oncorhynchus mykiss	28 days (s-s) ^a , 3 NOEC renewals/week		19 (nom)			
Invertebrates						
Daphnia magna	21 days (s-s) ^a , 7 d renewal	NOEC	55 (m.m.i.)			

Key long-term aquatic toxicity endpoints for folpet used to derive PNECwater

Test organism		Time-scale, exposure regime	Endpoint	Toxicity (µg/L)
		Algae		
Desmodesmus subspicatus		72 hours (s) ^b	NOEC	700 (nom.)
s: static exposure;				
s-s:	semi-static exposure;			
m.m.i.	based on me	an measured initial concentration(s);	
nom.	a. based on nominal concentrations;			
а	folpet allowed to hydrolyse, exposure mainly to hydrolysis degradates, with brief exposure to a.s. at test initiation and following each media renewal.			es, with brief
^b folpet allowed to hydrolyse, exposure mainly to hydrolysis degradates following brie			es following brief	
initial exposur	e to a.s.			

Since long-term NOECs are available for different species representing three different trophic levels, the PNEC_{water} is derived by applying an assessment factor of 10 to the lowest endpoint value, in accordance with the EU TGD on environmental risk assessment. Hence:

PNEC_{water}: 19/10 = **1.9** µg folpet/L

The exposure achieved under the conditions of the test that provides the key endpoint used to calculate $PNEC_{water}$ will have been to the hydrolysis products of folpet for most of the test duration, punctuated by brief, transient phases of exposure to folpet immediately after test initiation and each media renewal. Since folpet was intermittently present in this test regime, the observed toxicity is considered to be greater than it would have been had the exposure been to the hydrolysis products alone, and from the point of view of representing long-term metabolite toxicity this endpoint is therefore worst-case.

Consequently the PNEC_{water} of 1.9 µg folpet/L derived above - particularly as it stems from a study re-dosed with folpet on three occasions per week - is considered to be highly protective with respect to the exposure that is expected to occur in the aquatic compartment following the biocidal uses of folpet in PT7.

Sediment compartment (PNEC_{sediment})

Intact parent folpet a.s. is not expected to reach the aquatic environment for the reasons given above. Moreover, given the very short residence of folpet in water/sediment systems, that the water and sediment metabolites have been shown to be significantly less toxic than the parent folget and that any sediment partitioned residues are principally bound and are unlikely to be folpet, a toxicity study with a sediment dwelling insect is not considered relevant to the risk assessment for products with folpet as the sole active substance. Therefore, the risks to sediment-dwelling organisms are considered to be adequately covered by the assessment for the aquatic compartment based on PNECwater.

However a PNEC_{sediment} estimate can be derived using equation (70) provided in the EU TGD for environmental risk assessment, with input parameters of 0.0019 mg/L for PNECwater and 304 L/kg for the adsorption coefficient of folpet. Hence:

PNEC_{sediment} = 2900 µg folpet/kg wet weight

Sewage treatment plant (PNEC_{STP})

According to the EU TGD on environmental risk assessment, the PNEC_{STP} may be derived by applying an assessment factor to the NOEC values from relevant tests. An AF of 10 is used in conjunction with the NOEC from tests of inhibition of respiration of activated sludge (representing combined carbonaceous and nitrogenous oxidation processes), whereas a lower AF of 1.0 is applied to the NOEC of specific tests of nitrification inhibition in activated sludge, since nitrifying microorganisms are generally the most sensitive. In the case of folpet, however, the activated sludge respiration test provides the lowest NOEC. Nevertheless, in accordance with the TGD the PNEC was derived as follows:

PNEC_{STP}: $10000/10 = 1000 \ \mu g \ folpet/L$

Environmental risk in the terrestrial compartment

Given the exposure considerations that are outlined above, the environmental risk assessment for the terrestrial compartment needs to take account of the facts that any exposure arising from the various PT7 biocidal uses of folpet will be continuous and therefore chronic in character

Consequently the PNEC for the terrestrial compartment must be derived from chronic terrestrial toxicity endpoints to correspond to the relevant environmental exposure. It is expected that the relevant metabolites of folpet were formed in moist soil under the conditions of the laboratory tests performed with the active substance and that their influence is therefore accommodated in the endpoints reported for folpet a.s. Aquatic toxicity data are available that show that the metabolites of folpet are several orders of magnitude less acutely toxic to fish and invertebrates (which are both much more sensitive than algae) than the parent compound and it would be reasonable to expect similar trends for terrestrial organisms whereby the metabolites are also substantially less toxic to terrestrial biota than folpet a.s. and that a similar trend also holds for long-term exposures.

Consequently the PNECsoil derived from end points provided by the studies dosed with folpet is considered to be highly protective with respect to the exposure that is expected to occur in the terrestrial compartment following the biocidal uses of folpet in PT7.

Further studies have been performed to address the long-term toxicity of the hydrolysis metabolites phthalimide and phthalic acid to representatives of three groups of terrestrial organisms: earthworms, soil microflora and terrestrial plants. The soil microflora studies investigated the effect of each metabolite on carbon transformation, selected on the basis on the findings of the OECD 209 and ISO 9509 studies performed with activated sludge which showed that nitrogen transformation was less susceptible to inhibition by folpet than combined respiratory processes. The terrestrial plant studies examined the effects of soil-mediated exposure on seed germination and seedling development of two monocot and four dicot species.

Organism/ activity	Endpoint	Result
Effects on earthworm reproduction (OECD 222, DIN ISO 11268-2).	28-day NOEC	56.7 mg/kg dry artificial soil (nom.)
Inhibition of glucose -induced respiration (C-transformation) (OECD 217).	28-day NOEC	1000 mg/kg dry LUFA 2.3 soil (nom.)
Seedling emergence and seedling development of six terrestrial plant species (OECD 208). Most sensitive endpoint: shoot biomass; most sensitive species: <i>B. vulgaris</i>).	Lowest EC ₁₀	58.5 mg/kg dry LUFA 2.2 soil (nom.)

Effects of phthalimide on soil organisms

The lowest long-term endpoint for phthalimide is the 28-day NOEC of 56.7 mg/kg dry artificial soil. The soil used in the study contained the standard 10% organic matter (peat), however the adsorption/desorption coefficient of phthalimide has been estimated in five soils of European origin using the batch equilibrium method, with Koc values in the range 55.7 to 293.1 mL/g. Phthalimide therefore has a low tendency to bind to organic matter and the test conditions employed in this study are unlikely to have resulted in under-

estimation of the long-term toxicity of phthalimide to earthworms. Adjustment of the endpoint to compensate for the unusually high organic matter content of the test soil is considered to be unnecessary.

Assuming a dry soil bulk density of 1500 kg/m³, the earthworm long-term NOEC 56.7 mg/kg dry soil corresponds to 50.03 mg/kg wet soil with a bulk density of 1700 kg/m³ as prescribed by the EU TGD.

Based on the availability of long term endpoints for three species or groups of organisms representing three different trophic levels, a PNEC may be calculated for phthalimide by applying an assessment factor of 10 to the lowest NOEC:

PNEC_{soil}: 50.03/10 = 5.003 mg phthalimide/kg wet soil

Organism/ activity	Endpoint	Result
Effects on earthworm reproduction (OECD 222, DIN ISO 11268-2).	28-day NOEC	56.7 mg/kg dry artificial soil (nom.)
Inhibition of glucose –induced respiration (C-transformation) (OECD 217).	28-day NOEC	400 mg/kg dry LUFA 2.3 soil (nom.)
Seedling emergence and seedling development of six terrestrial plant species (OECD 208). Most sensitive endpoint: shoot biomass; most sensitive species: <i>D. carota</i>).	Lowest EC ₁₀	44.3 mg/kg dry LUFA 2.2 soil (nom.)

The lowest long-term endpoint for phthalic acid is the calculated EC_{10} of 44.3 mg/kg based on a reduction in the fresh weight of cropped biomass of *D. carota* seedlings in an emergence and seedling development study. (The calculated EC_{10} undercuts the corresponding NOEC of 64 mg/kg dry soil for the same species). The soil used was LUFA 2.2, classified (DIN) as a loamy sand soil with a carbon content of 1.77%. The adsorption/desorption coefficient of phthalic acid estimated by the KOCWIN model in EPISUITE is 80.85 L/kg and the model database contains an experimentally determined log K_{OC} value of 1.07. Phthalic acid therefore has a low tendency to bind to organic carbon. The test conditions employed in this study are consequently unlikely to have resulted in under-estimation of the potential effects of phthalic acid on soil-mediated exposure of terrestrial plants at the sensitive germination and root/shoot development stages. Adjustment of the endpoint to compensate for the organic matter content of the test soil is unnecessary.

Assuming a dry soil bulk density of 1500 kg/m³, the EC_{10} of 44.3 mg/kg dry soil corresponds to 39.09 mg/kg wet soil with a bulk density of 1700 kg/m³ as prescribed by the EU TGD.

Based on the availability of long term endpoints for three species or groups of organisms representing three different trophic levels, a PNEC may be calculated for phthalic acid by applying an assessment factor of 10 to the lowest NOEC:

PNEC_{soil}: 39.09/10 = 3.909 mg phthalic acid/kg wet soil.

Endpoints are also available from other tests performed with insects (bees), plants and vertebrates (birds) to address the requirements of the uses of folpet in the plant protection sector and indicate that folpet has low intrinsic toxicity to these groups of organisms. However these involve exposure routes other than via soil and are therefore not relevant to the PT7 biocidal uses of folpet, or are expressed in terms that cannot be related to concentrations in soil. These endpoints have therefore not been taken into account in the derivation of PNEC_{soil}.

The terrestrial exposure assessment for folpet as a PT7 biocidal active substance was performed using the PT8 and PT10 release scenarios as discussed above for the aquatic environment. A range of values were obtained for folpet, depending on the model selected and either resulted from leaching, run-off and down the drain processed (with release to soil via STP), or direct exposure of soil close to the treatment site (surrogate scenarios include e.g house façade, fence post). The tonnage distribution model was also used as a comparative method of PEC calculation.

For the STP route, using the maximum possible exposure values (and therefore a worstcase risk assessment) the soil PEC:PNEC ratios were less than one. The risk assessment according to this scenario therefore demonstrates that the risk to terrestrial organisms from folpet is acceptable.

For the direct exposure route, the initial soil PEC:PNEC ratios in the soil environment immediately adjacent to treated surfaces were greater than one. With increased distance and accounting for degradation in the soil the apparent risk to soil organisms is considerably reduced. Although a potential risk to terrestrial organisms is indicated the risk is considered acceptable due the highly conservative and localised nature of the PEC calculation and the very low persistence of the active substance.

Environmental risk in the atmospheric compartment

The vapour pressure of folpet at a temperature of 25°C (as determined by USEPA 63-9 guideline) is 2.1×10^{-5} Pa and Henry's law constant is 8×10^{-3} Pa.m³.mol⁻¹ (based on a water solubility of 0.8 mg/L). Therefore folpet is not considered volatile and is not expected to volatilise to air in significant quantities. Furthermore, the photochemical oxidative degradation half-life of folpet in air was estimated using the Atmospheric Oxidation Program v1.90 (AOPWIN), which is based on the structural activity relationship (QSAR) methods developed by Atkinson, R (1985 to 1996). The estimated half-life of folpet in air via hydroxyl reactions is not expected to exceed 6.16 hours. Therefore, even if present, folpet is not expected to persist in air. In the absence of exposure to air-borne residues, non-target organisms are considered not to be at risk from folpet in the atmosphere and a detailed assessment of risk is therefore not presented for the atmospheric compartment.

Secondary poisoning

The log K_{ow} of folpet is 3.017. Based on a laboratory study, in which bluegill sunfish were exposed to folpet, the whole fish BCF was 56 with a DT_{50} for depuration of 0.63 days (indicating rapid depuration). The low BCF value of folpet indicates that the risks of secondary poisoning are expected to be very low.

Compartment	PNEC	
Surface water	1.9 μg folpet/L	
Sediment	2900 µg folpet/kg wet weight	
STP	10000 µg folpet/L	
Atmosphere	Not relevant	
Soil	37.5 µg folpet/kg wet soil	
	5003 µg phthalimide/kg wet weight	
	3909 µg phthalic acid/kg wet weight	

Summary of PNECs

2.2.2.5. Risk characterisation

The exposure assessment for folpet as a PT7 biocidal active substance was performed using the PT8 and PT10 release scenarios as surrogate exposure models. These models considered exposure of the environment via application of the formulated product, or leaching from treated surfaces during service life, including run-off to drain and STP. The use of PT8 and PT10 scenarios was required in response to Member State comments on the draft CAR. The PEC values in surface water, sediment, STP and soil were calculated using these scenarios and the standardised procedures incorporated within the EUSES 2.1 model. The tonnage distribution model was also used as a comparative method of PEC calculation. The emission scenarios for outdoor spray application of wood preservatives (PT8) presented in the OECD Revised Emission Scenario Document for Wood Preservatives (September 2013) was used as surrogate exposure scenarios for outdoor application of paint. The considered service life (time 2) was 5 years.

A range of values was obtained for folpet and the major metabolites phthalimide and phthalic acid in soil, depending on the model selected. The maximum exposure values obtained were used in order to present a worst-case risk assessment.

Scenario	PECs (mg/L)	PNEC (mg/L)	PEC/PNEC
Folpet			
Maximum exposure based on PT8 exposure scenarios (Noise barrier)	2.14 x 10 ⁻⁴	1.90 x 10 ⁻³	0.11
Maximum exposure based on tonnage distribution	4.30 x 10 ⁻⁵	1.90 x 10 ⁻³	0.02
PT10 Brushing scenario during application	2.698 x 10 ⁻⁵	1.90 x 10 ⁻³	0.0142
PT10 Brushing scenario service life time 1	0.0553	1.90 x 10 ⁻³	29.1
PT10 Brushing scenario service life time 2	9.101 x 10 ⁻⁴	1.90 x 10 ⁻³	0.479
PT10 Spraying scenario during application	3.477 x 10 ⁻⁴	1.90 x 10 ⁻³	0.183
PT10 Spraying scenario service life time 1	0.0553	1.90 x 10 ⁻³	29.1
PT10 Spraying scenario service life time 2	9.101 x 10 ⁻⁴	1.90 x 10 ⁻³	0.479
Phthalimide			
Maximum exposure based on PT8 exposure scenarios (Noise barrier)	4.63 x 10 ⁻⁴	1.90 x 10 ⁻³	0.24
Maximum exposure based on tonnage distribution	9.42 x 10 ⁻⁵	1.90 x 10 ⁻³	0.05
PT10 Brushing scenario during application	5.795 x 10 ⁻⁵	1.90 x 10 ⁻³	0.0305
PT10 Brushing scenario service life time 1	0.122	1.90 x 10 ⁻³	64.1
PT10 Brushing scenario service life time 2	1.995 x 10 ⁻³	1.90 x 10 ⁻³	1.05
PT10 Spraying scenario during application	7.505 x 10 ⁻⁴	1.90 x 10 ⁻³	0.395
PT10 Spraying scenario service life time 1	0.122	1.90 x 10 ⁻³	64.1
PT10 Spraying scenario service life time 2	1.995 x 10 ⁻³	1.90 x 10 ⁻³	1.05
Phthalic acid			
Maximum exposure based on PT8 exposure scenarios (Noise barrier)	7.29 x 10 ⁻⁴	1.90 x 10 ⁻³	0.38
Maximum exposure based on tonnage distribution	9.16 x 10 ⁻⁵	1.90 x 10 ⁻³	0.05
PT10 Brushing scenario during application	5.624 x 10 ⁻⁵	1.90 x 10 ⁻³	0.0296
PT10 Brushing scenario service life time 1	0.117	1.90 x 10 ⁻³	61.6
PT10 Brushing scenario service life time 2	1.919 x 10 ⁻³	1.90 x 10 ⁻³	1.01

PEC/PNEC ratios for freshwater (via the STP) exposed to folpet following PT7 uses
Scenario	PECs (mg/L)	PNEC (mg/L)	PEC/PNEC
PT10 Spraying scenario during application	7.296 x 10 ⁻⁴	1.90 x 10 ⁻³	0.384
PT10 Spraying scenario service life time 1	0.117	1.90 x 10 ⁻³	61.6
PT10 Spraying scenario service life time 2	1.919 x 10 ⁻³	1.90 x 10 ⁻³	1.01

PEC/PNEC rations for sediment (via STP) exposed to folpet following PT7 uses

Scenario	PECs	PNEC	PEC/PNEC
	(mg/kg)	(mg/kg)	
Folpet	1	1	1
Maximum exposure based on PT8 exposure scenarios (Noise barrier)	1.80 x 10 ⁻³	2.9	<0.01
Maximum exposure based on tonnage distribution	3.61 x 10 ⁻⁴	2.9	<0.01
PT10 Brushing scenario during application	2.259 x 10 ⁻⁴	2.9	< 0.01
PT10 Brushing scenario service life time 1	0.464	2.9	0.16
PT10 Brushing scenario service life time 2	7.627 x 10 ⁻³	2.9	< 0.01
PT10 Spraying scenario during application	2.929 x 10 ⁻³	2.9	< 0.01
PT10 Spraying scenario service life time 1	0.464	2.9	0.16
PT10 Spraying scenario service life time 2	7.627 x 10 ⁻³	2.9	< 0.01
Phthalimide			
Maximum exposure based on PT8 exposure scenarios (Noise barrier)	8.63 x 10 ⁻⁴	2.9	<0.01
Maximum exposure based on tonnage distribution	1.75 x 10 ⁻⁴	2.9	<0.01
PT10 Brushing scenario during application	1.079 x 10 ⁻⁴	2.9	< 0.01
PT10 Brushing scenario service life time 1	0.227	2.9	0.0782
PT10 Brushing scenario service life time 2	3.741 x 10 ⁻³	2.9	< 0.01
PT10 Spraying scenario during application	1.398 x 10 ⁻³	2.9	< 0.01
PT10 Spraying scenario service life time 1	0.227	2.9	0.0782
PT10 Spraying scenario service life time 2	3.741 x 10 ⁻³	2.9	< 0.01
Phthalic acid			
Maximum exposure based on PT8 exposure scenarios (Noise barrier)	4.45 x 10 ⁻⁴	2.9	<0.01
Maximum exposure based on tonnage distribution	9.00 x 10 ⁻⁵	2.9	<0.01
PT10 Brushing scenario during application	5.510 x 10 ⁻⁵	2.9	< 0.01
PT10 Brushing scenario service life time 1	0.115	2.9	0.396
PT10 Brushing scenario service life time 2	1.885 x 10 ⁻³	2.9	< 0.01
PT10 Spraying scenario during application	7.163 x 10 ⁻⁴	2.9	< 0.01
PT10 Spraying scenario service life time 1	0.115	2.9	0.396
PT10 Spraying scenario service life time 2	1.885 x 10 ⁻³	2.9	< 0.01
Scenario	PECs (mg/L)	PNEC (mg/L)	PEC/PNEC
Folpet surface water exposure			
Maximum exposure based on PT8 exposure scenarios	2.14 x 10 ⁻⁴	1.90 x 10 ⁻³	0.11
Maximum exposure based on tonnage distribution	4.30 x 10 ⁻⁵	1.90 x 10 ⁻³	0.02

Scenario	PECs	PNEC	PEC/PNEC
	(mg/kg)	(mg/kg)	120,11120
PT10 Brushing scenario during application	2.698 x 10 ⁻⁵	1.90 x 10 ⁻	0.0142
PT10 Brushing scenario service life time 1	0.0553	1.90 x 10 ⁻³	29.1
PT10 Brushing scenario service life time 2	9.101 x 10 ⁻⁴	1.90 x 10 ⁻³	0.479
PT10 Spraying scenario during application	3.477 x 10 ⁻⁴	1.90 x 10 ⁻³	0.183
PT10 Spraying scenario service life time 1	0.0553	1.90 x 10 ⁻³	29.1
PT10 Spraying scenario service life time 2	9.101 x 10 ⁻⁴	1.90 x 10 ⁻³	0.479
Phthalimide surface water exposure			
Maximum exposure based on PT8 exposure scenarios	4.63 x 10 ⁻⁴	1.90 x 10 ⁻³	0.24
Maximum exposure based on tonnage distribution	9.42 x 10 ⁻⁵	1.90 x 10 ⁻³	0.05
PT10 Brushing scenario during application	5.624 x 10 ⁻⁵	1.90 x 10 ⁻³	0.0296
PT10 Brushing scenario service life time 1	0.117	1.90 x 10 ⁻³	61.6
PT10 Brushing scenario service life time 2	1.919 x 10 ⁻³	1.90 x 10 ⁻³	1.01
PT10 Spraying scenario during application	7.296 x 10 ⁻⁴	1.90 x 10 ⁻³	0.384
PT10 Spraying scenario service life time 1	0.117	1.90 x 10 ⁻³	61.6
PT10 Spraying scenario service life time 2	1.919 x 10 ⁻³	1.90 x 10 ⁻³	1.01
Phthalic acid surface water exposure			
Maximum exposure based on PT8 exposure scenarios	7.29 x 10 ⁻⁴	1.90 x 10 ⁻³	0.38
Maximum exposure based on tonnage distribution	9.16 x 10 ⁻⁵	1.90 x 10 ⁻³	0.05
PT10 Brushing scenario during application	5.795 x 10 ⁻⁵	1.90 x 10 ⁻³	0.0305
PT10 Brushing scenario service life time 1	0.122	1.90 x 10 ⁻³	64.1
PT10 Brushing scenario service life time 2	1.995 x 10 ⁻³	1.90 x 10 ⁻³	1.05
PT10 Spraying scenario during application	7.505 x 10 ⁻⁴	1.90 x 10 ⁻³	0.395
PT10 Spraying scenario service life time 1	0.122	1.90 x 10 ⁻³	64.1
PT10 Spraying scenario service life time 2	1.995 x 10 ⁻³	1.90 x 10 ⁻³	1.05

PEC/PNEC rations for STP exposed to folpet following PT7 uses

Scenario	PECs (mg/L)	PNEC (mg/L)	PEC/PNEC
Folpet			
Maximum exposure based on PT8 exposure scenarios (Noise barrier)	2.14 x 10 ⁻³	1	<0.01
Maximum exposure based on tonnage distribution	4.31 x 10 ⁻⁴	1	<0.01
PT10 Brushing scenario during application	0.027	1	0.0269
PT10 Brushing scenario service life time 1	55.4	1	55.4
PT10 Brushing scenario service life time 2	0.91	1	0.91
PT10 Spraying scenario during application	0.349	1	0.349
PT10 Spraying scenario service life time 1	55.4	1	55.4
PT10 Spraying scenario service life time 2	0.91	1	0.91
Phthalimide			

		DNEC	
	PECs (mg/L)	PNEC (mg/L)	PEC/PNEC
Maximum exposure based on PT8 exposure scenarios (Noise barrier)	4.64 x 10 ⁻³	1	<0.01
Maximum exposure based on tonnage distribution	9.42 x 10 ⁻⁴	1	<0.01
PT10 Brushing scenario during application	0.001	1	< 0.01
PT10 Brushing scenario service life time 1	1.220	1	1.22
PT10 Brushing scenario service life time 2	0.020	1	0.02
PT10 Spraying scenario during application	0.008	1	< 0.01
PT10 Spraying scenario service life time 1	1.220	1	1.22
PT10 Spraying scenario service life time 2	0.020	1	0.02
Phthalic acid			
Maximum exposure based on PT8 exposure scenarios (Noise barrier)	4.53 x 10 ⁻³	1	<0.01
Maximum exposure based on tonnage distribution	9.16 x 10 ⁻⁴	1	<0.01
PT10 Brushing scenario during application	0.001	1	< 0.01
PT10 Brushing scenario service life time 1	1.170	1	1.17
PT10 Brushing scenario service life time 2	0.019	1	0.0192
PT10 Spraying scenario during application	0.007	1	< 0.01
PT10 Spraying scenario service life time 1	1.170	1	1.17
PT10 Spraying scenario service life time 2	0.019	1	0.0192

For the aquatic compartment (freshwater, sediment and STP) no unacceptable risks were identified for uses of folpet in PT7 demonstrating that the risks to aquatic organisms from folpet are acceptable. For the main hydrolysis products, phtalimide and phthalic acid, risks for surface water were identified for service life (Time 2): the respective PEC/PNEC ratios are 1.01 and 1.05. However the exposure assessment was based on two worst case assumptions: 100% leaching of the applied amount during service life and treatment of roof and façade. The refinement of only one of these two assumptions (e.g. assumption of treatment of the façade only) would result in no risk for the aquatic compartment for the service life (Time 2). It is therefore considered that there are no unacceptable risks for phtalimide and phthalic acid.

	Fol	pet PEC	/PNEC	rations	for	soil	ex	posed	to	fol	pet	followi	nq	PT7	uses
--	-----	---------	-------	---------	-----	------	----	-------	----	-----	-----	---------	----	-----	------

Scenario	PECs (mg/kg)	PNEC (mg/kg)	PEC/PNEC
Maximum initial exposure based on PT8 scenario (via STP - noise barrier – Time 1)	7.89 x 10- 4	0.0375	0.02
Maximum exposure based on PT8 scenarios, not taking into account degradation during the initial period (Time 1)			
adjacent to fence	2.34	0.0375	62
adjacent to wooden house	2.82	0.0375	75
adjacent to transmission pole	0.7	0.0375	19
adjacent to fence post	0.24	0.0375	6.4
Maximum exposure based on PT8 scenarios, including degradation during the initial period (Time 1)			
adjacent to fence	0.609	0.0375	16
adjacent to wooden house	0.733	0.0375	20
adjacent to transmission pole	0.182	0.0375	4.9

Scenario	PECs (mg/kg)	PNEC (mg/kg)	PEC/PNEC
adjacent to fence post	0.063	0.0375	1.7
Maximum exposure based on PT8 scenarios,			
including degradation during the longer			
period (Time 2)			
adjacent to fence	0.016	0.0375	0.43
adjacent to wooden house	0.0193	0.0375	0.51
adjacent to transmission pole	0.0048	0.0375	0.128
adjacent to fence post	0.0017	0.0375	0.05
Maximum initial exposure based on PT10	1.28 x 10-		
scenario (via STP – spraying, city, during	3	0.0375	0.034
application)			
Direct exposure to soil based on PIIU			
	22.0	0.0275	624
distant to roof	23.0	0.0375	2 02
adjacent to facade	20.6	0.0375	540
distant to facade	0.0051	0.0375	2 5 3
adjacent to house (spraving)	44 5	0.0375	1186
adjacent to house (spraying)	11 1	0.0375	296
distant to house	0.205	0.0375	5 47
Maximum concentration in soil adjacent to	0.200	0.0075	
house during service life (Time 1)	0.204	0.0375	5.44
Maximum initial exposure based on tonnage	1.58 x 10-	0.0075	.0.01
distribution	4	0.0375	<0.01
PT10 Exposure of soil via the STP – City so	enario - Wo	orst Case	
PT10 Brushing scenario during application	9.9 x 10 ⁻⁵	0.0375	<0.01
PT10 Brushing scenario - Service life Time 1	0.204	0.0375	5.43
PT10 Brushing scenario - Service life Time 2	0.003	0.0375	0.0893
PT10 Spraying scenario during application	0.013	0.0375	0.349
PT10 Spraying scenario - Service life Time 1	0.204	0.0375	5.43
PT10 Spraying scenario - Service life Time 2	0.003	0.0375	0.0893
PT10 Direct exposure of soil – Countryside	e: spraying a	and brushing	- Worst case
PT 10 Outdoor spraying - Application (Tier 1**)	1.188	0.0375	31.7
PT 10 Outdoor spraying - Application (Tier 2**)	0.131	0.0375	3.5
PT 10 Outdoor spraying - Service life Time 1	1.038	0.0375	27.7
PT 10 Outdoor spraying - Service life Time 2	0.025	0.0375	0.66
PT 10 Outdoor brushing by amateur -	0 198	0.0375	53
Application	0.190		5.5
PT 10 Outdoor brushing by amateur - Service life Time 1	0.811	0.0375	21.7
PT 10 Outdoor brushing by amateur - Service	0.021	0.0375	0.56
life – Time 2	0.021		0.50
PT 10 Outdoor brushing by professional -	0.119	0.0375	3.2
Application DT 10 Outdoor bruching by professional		0.0275	
PT 10 Outdoor brusning by protessional - Service life Time 1	0.781	0.0375	20.9
PT 10 Outdoor brushing by professional -		0.0375	
Service life Time 2	0.020	5.0070	0.54

* For the assessment of spraying (application), the spraying scenario of the ESD for PT 10 was used

 ** For the assessment of spraying (application), the in-situ outdoor spraying scenario of the revised OECD ESD for PT 8 (2013) was used

Phthalimide PEC/PNEC ratios for soil exposed to folpet following PT7 uses

Scenario	PECs	PNEC	PEC/PNEC
	(mg/kg)	(mg/kg)	TEC/TREC
Maximum initial exposure based on	8.51 x 10-	5.0	< 0.01
PT8 scenario (via STP - noise barrier – Time 1)	4	5.0	(0.01
Maximum exposure based on PT8 scenarios,			
not taking into account degradation during			
the initial period (Time 1)			
adjacent to fence	1.06	5.0	0.21
adjacent to wooden house	1.27	5.0	0.25
adjacent to transmission pole	0.32	5.0	0.06
adjacent to fence post	0.11	5.0	0.02
Maximum exposure based on PT8 scenarios,			
including degradation during the initial period			
(Time 1)			
adjacent to fence	0.335	5.0	0.07
adjacent to wooden house	0.402	5.0	0.08
adjacent to transmission pole	0.100	5.0	0.02
adjacent to fence post	0.035	5.0	0.01
Maximum exposure based on PT8 scenarios,			
including degradation during the longer period			
(Time 2)			
adjacent to fence	0.011	5.0	<0.01
adjacent to wooden house	0.0128	5.0	<0.01
adjacent to transmission pole	0.0032	5.0	<0.01
adjacent to fence post	0.0011	5.0	<0.01
Maximum initial exposure based on	1 38 v 10-		
PT10 scenario (via STP – spraying, city, during	1.30 × 10-	5.0	<0.01
application)	0		
Direct exposure to soil based on PT10			
scenarios during application*			
adjacent to roof	10.7	5.0	2.14
distant to roof	0.0497	5.0	<0.01
adjacent to façade	9.26	5.0	1.85
distant to façade	0.0428	5.0	< 0.01
adjacent to house (spraying)	20.0	5.0	4
adjacent to house (brushing)	5.0	5.0	1
distant to house	0.0925	5.0	0.0185
Maximum concentration in soil adjacent to	0 0224	5.0	< 0.01
house during service life (Time 1)	010221	510	10101
Maximum initial exposure based on tonnage	1.73 x 10-	5.0	< 0.01
distribution	6	510	
PT10 Exposure of soil via the STP – City s	<u>cenario- Wo</u>	orst case	1
PT10 Brushing scenario during application	3.68 x 10⁻⁴	5.0	<0.01
PT10 Brushing scenario - Service life Time 1	0.0224	5.0	<0.01
PT10 Brushing scenario - Service life Time 2	1.07 x 10 ⁻⁵	5.0	<0.01
PT10 Spraying scenario during application	3.68 x 10 ⁻⁴	5.0	<0.01
PT10 Spraying scenario - Service life Time 1	0.0224	5.0	<0.01
PT10 Spraying scenario - Service life Time 2	1.38 x 10 ⁻⁴	5.0	<0.01
PT10 Direct exposure of soil – Countryside	e: spraying a	and brushing	- Worst case
PT 10 Outdoor spraying Application (Tier 1**)	0.535	5.0	0.1
PT 10 Outdoor spraying Application (Tier 2**)	0.059	5.0	0.012
PT 10 Outdoor spraying Service life Time 1	0.622	5.0	0.12
PT 10 Outdoor spraying Service life Time 2	0.019	5.0	<0.01
PT 10 Outdoor brushing by amateur-	0.080	5.0	0.018
Application	0.009		0.010
PT 10 Outdoor brushing by amateur- Service	0.478	5.0	0.096

Scenario	PECs (mg/kg)	PNEC (mg/kg)	PEC/PNEC
life Time 1			
PT 10 Outdoor brushing by amateur- Service life Time 2	0.016	5.0	<0.01
PT 10 Outdoor brushing by professional- Application	0.053	5.0	0.011
PT 10 Outdoor brushing by professional- Service life Time 1	0.459	5.0	0.092
PT 10 Outdoor brushing by professional- Service life Time 2	0.016	5.0	<0.01

* For the assessment of spraying (application), the spraying scenario of the ESD for PT 10 was used

 \ast For the assessment of spraying (application), the in-situ outdoor spraying scenario of the revised OECD ESD for PT 8 (2013) was used

Phthalic acid PEC/PNEC ratios for soil exposed to folpet following PT7 uses

Scenario	PECs	PNEC	
	(mg/kg)	(mg/kg)	PEC/PNEC
Maximum initial exposure based on		3.909	
PT8 scenario (via STP - noise barrier – Time	3.55 x 10-6		<0.01
1)			
Maximum exposure based on PT8 scenarios,			
not taking into account degradation during			
the initial period (Time 1)			
adjacent to fence	1.03	3.909	0.26
adjacent to wooden house	1.24	3.909	0.32
adjacent to transmission pole	0.31	3.909	0.08
adjacent to fence post	0.11	3.909	0.03
Maximum exposure based on PT8 scenarios,			
including degradation during the initial			
period (Time 1)	0.400	2.000	0.00
adjacent to fence	0.106	3.909	0.03
adjacent to wooden nouse	0.127	3.909	0.03
adjacent to transmission pole	0.032	3.909	<0.01
adjacent to fence post	0.011	3.909	<0.01
Maximum exposure based on P18 scenarios,			
Including degradation during the longer			
period (Time 2)	0.002	2 000	<0.01
adjacent to woodon house	0.002	3.909	< 0.01
adjacent to transmission pole	0.00058	3.909	<0.01
	0.003	3.909	<0.01
Aujacent to rence post	0.0002	3.909	<0.01
PT10 scopario (via STP – spraving sitv	$0.17 \times 10_{-1}$	3 000	<0.01
during application)	9.17 X 10-4	5.909	<0.01
Direct exposure to soil based on PT10			
scenarios during application*			
adjacent to roof	10.4	3 909	2 66
distant to roof	0.048	3 909	0.01
adjacent to facade	8 95	3 909	2 29
distant to facade	0.0414	3.909	< 0.01
adjacent to house (spraving)	19.3	3.909	4.94
adjacent to house (brushing)	4.84	3.909	1.24
distant to house	0.0894	3.909	0.03
Maximum concentration in soil adjacent to		3.909	
house during service life(Time 1)	9.1/ x 10-4		<0.01
Maximum initial exposure based on tonnage	7 4 7 4 0 7	3.909	.0.01
distribution	/.1/ x 10-/		<0.01
PT10 Exposure of soil via the STP – City	scenario - W	orst case	·
PT10 Brushing scenario during application	1.51E-05	3.909	< 0.01
PT10 Brushing scenario service life time 1	9.17E-04	3.909	<0.01
PT10 Brushing scenario service life time 2	4.40E-07	3.909	< 0.01
PT10 Spraying scenario during application	1.51E-05	3.909	<0.01
PT10 Spraying scenario service life time 1	9.17E-04	3.909	< 0.01
PT10 Spraying scenario service life time 2	5.71E-06	3.909	< 0.01
PT10 Direct exposure of soil – Countrysic	le: spraying a	and brushing	- Worst case
PT 10 Outdoor spraying Application (Tier	0.517	3.909	
1)**	0.01/		0.13
PT 10 Outdoor spraying Application (Tier	0 059	3.909	
2)**	0.039		0.015
PT 10 Outdoor spraying - Service life Time 1	0.179	3.909	0.05

Italy

Scenario	PECs (mg/kg)	PNEC (mg/kg)	PEC/PNEC
PT 10 Outdoor spraying -Service life Time 2	0.019	3.909	<0.01
PT 10 Outdoor brushing by amateur - Application	0.086	3.909	0.02
PT 10 Outdoor brushing by amateur- Service life Time 1	0.147	3.909	0.04
PT 10 Outdoor brushing by amateur- Service life Time 2	0.016	3.909	<0.01
PT10 Outdoor brushing by professional - Application PT 10 Outdoor brushing by professional- Service life – Time 1	0.143	3.909	0.04
PT 10 Outdoor brushing by professional Service life – Time 2	0.016	3.909	<0.01

* For the assessment of spraying (application), the spraying scenario of the ESD for PT 10 was used

** For the assessment of spraying (application), the in-situ outdoor spraying scenario of the revised OECD ESD for PT 8 (2013) was used

PEC/PNEC ratios for folpet and its main hydrolysis products phthalimide and phthalic acid were calculated for application and service life using different ESDs.

When assessing the **application phase** for **folpet**, unacceptable risk was found when direct exposure to soil occurs (spraying and brushing in the countryside). When assessing the exposure to soil via sewage sludge application to agricultural land (city scenario) the PEC/PNEC ratios were all below 1 and therefore acceptable.

When assessing the **service life**, degradation in soil was taken into account. Considering exposure to soil via sewage sludge application (city scenario) unacceptable risk (5.43) was found at Time 1, nevertheless PEC/PNEC ratios were below 0.1 when calculating Time 2, therefore acceptable risk to soil organisms was found in a city scenario. Considering direct release to soil (spraying and brushing in the countryside), unacceptable risk to soil was found for Time 1 but acceptable risk was found for Time 2 for both types of application (brushing and spraying).

Folpet hydrolyses quickly to the hydrolysis products phthalimide and phthalic acid, therefore the actual likelihood of exposure to folpet in soil is limited and the risk assessment for the metabolites is potentially more relevant. Moreover, folpet has a long history of use in the plant protection sector, with patterns of application that result in direct exposure of terrestrial biota. No instances of adverse effects on terrestrial organisms have been reported, in spite of direct exposure to the active substance at application rates and soil concentrations significantly higher than those predicted to arise in localised patches of soil following the proposed biocidal uses of folpet.

PECs for **phthalimide** and **phthalic acid** were calculated using the same scenarios as for folpet. PEC/PNEC ratios below 1 were found for both metabolites during application and during service life at Time 1 and Time 2 (for both application types spraying and brushing) and for country side and city scenarios, indicating a safe uses.

As a conclusion, unacceptable risk to soil organisms was found for areas immediately adjacent to the treated surface when direct exposure to folpet takes place (painting and brushing by professionals and amateurs in the countryside). However, the actual likelihood of folpet soil exposure is very low because of rapid hydrolysis. Folpet will have degraded to the hydrolysis products phthalimide and phthalic acid prior to any soil exposure and therefore risk assessment for these metabolites is potentially more relevant

Nevertheless, since a risk to the soil environment is indicated measures shall be taken to protect the soil to prevent losses and minimise emissions to the environment

Italy

<u>Groundwater</u>

Estimations of PEC groundwater for folpet, phthalimide and phthalic acid were conducted in a tiered approach; firstly soil porewater calculations were conducted followed by simulations using the FOCUS methodology and the PEARL model. The results are summarised in the following tables.

Summary of maximum predicted concentration in soil porewater

Parameter	Folpet	Phthalimi de	Phthalamic acid	Phthalic acid
Resulting soil pore-water concentration, PEClocalsoil, porew (µg/L).	0.039	0.018	0.114	0.015

FOCUS predicted groundwater concentrations of folpet and associated metabolites via sewage sludge applications to land following biocidal use (PT7)

80th percentile annual average concentration (μ g/L)				/L)
Scenario	folpet	phthalimide	phthalamic acid	phthalic acid
Land application	s (1 Feb, 1 May and	1 Sep) for PT 6, 7	and 9	
Châteaudun (C)	< 0.001	< 0.001	< 0.001	< 0.001
Hamburg (H)	< 0.001	< 0.001	< 0.001	< 0.001
Jokioinen (J)	< 0.001	< 0.001	< 0.001	< 0.001
Kremsmünster (K)	< 0.001	< 0.001	< 0.001	< 0.001
Okehampton (N)	< 0.001	< 0.001	< 0.001	< 0.001
Piacenza (P)	< 0.001	< 0.001	< 0.001	< 0.001
Porto (O)	< 0.001	< 0.001	< 0.001	< 0.001
Sevilla (S)	< 0.001	< 0.001	< 0.001	< 0.001
Thiva (T)	< 0.001	< 0.001	< 0.001	< 0.001

Using the FOCUS methodology, the 80th percentile PECgw values of the active substance folpet and associated metabolites in groundwater were generated assuming repeated annual applications at the maximum seasonal treatment rate. Annual average concentrations were calculated as the cumulative annual chemical flux divided by the cumulative annual water recharge volume at 1 m depth. A direct soil surface application type was used for PEARL calculations, as worst case condition. The predicted concentration is a conservative estimate of what may actually be expected in groundwater used for drinking water as soil pore water at one-meter depth is not a likely source of drinking water.

In the reasonable worst-case scenarios, the annual average concentration of the active substance folpet and associated metabolites in soil pore water at one-meter depth was much less than 0.1 μ g/L. The results from this modelling study indicated that the leaching potential of the active substance folpet and associated metabolites is very low (80th percentile PECgw <0.001 μ g/L) under all FOCUS <u>leaching scenarios</u>.

The groundwater assessment is based on a soil application rate of 3.075 kg/ha which is equivalent to a soil concentration of 4.1 mg/kg, assuming distribution to a depth of 5 cm

44

and a soil density of 1.5 g/cm³. The range of predicted soil concentrations from EUSES modelling are 0.0788 to 14.7 mg/kg in scenarios considering exposure around treated buildings. Based on the FOCUS modelling presented, soil concentrations in the range predicted by EUSES are not expected to pose a risk to groundwater.

A groundwater assessment was also conducted according to the revised PT8 OECD emission scenario document considering 10 leaching events to soil per year at a rate of 0.02 kg/ha for folpet, 0.009 kg/ha for phthalimide, and 0.009 kg/ha for phthalic acid.The resulting groundwater concentrations are presented in the table below.

Predicted groundwater concentrations of folpet and associated metabolites fro	m
releases to soil during service life of PT7 products.	

Scopario	80th percentile annual average concentration (µg/L)				
Scenario	folpet	phthalimide	phthalamic acid	phthalic acid	
Châteaudun (C)	< 0.001	< 0.001	< 0.001	< 0.001	
Hamburg (H)	< 0.001	< 0.001	< 0.001	< 0.001	
Jokioinen (J)	< 0.001	< 0.001	< 0.001	< 0.001	
Kremsmünster (K)	< 0.001	< 0.001	< 0.001	< 0.001	
Okehampton (N)	< 0.001	< 0.001	< 0.001	< 0.001	
Piacenza (P)	< 0.001	< 0.001	< 0.001	< 0.001	
Porto (O)	< 0.001	< 0.001	< 0.001	< 0.001	
Sevilla (S)	< 0.001	< 0.001	< 0.001	< 0.001	
Thiva (T)	< 0.001	< 0.001	< 0.001	< 0.001	

2.2.3. Assessment of endocrine disruptor properties

Based on the available data and repeated dose toxicity studies performed with folpet that do not indicate effects on the reproductive tract or other hormone-sensitive tissues, there is no evidence to raise endocrine related concern associated with folpet or its metabolites.

45

a) Presentation of the active substance and representative biocidal product including classification of the active substance

Trade name	Folpet		
Manufacturer´s development code number(s)	-		
Ingredient of preparation	Function	Content %	
Folpet	Active substance	not less than 94% (w/w) $*$	
Impurities	The biocidal product for PT7 film technical. The technical materia formulation of paint, mastic, sea products (the treated article).	n preservative use is folpet al is added directly during the aler, filler and adhesive	
	The composition of the folpet te Makhteshim Chemical Works Lto confidential attachment. Full de inert components are also prese attachment.	chnical is confidential to d. is presented in the etails of the impurities and ented in the confidential	
Physical state of preparation	Folpet technical is a solid in the form of powder/crystals. It is not formulated as a preparation for biocide use.		
Nature of preparation			

* The minimum purity of folpet is proposed in compliance with that agreed for Annex I inclusion under Directive 91/414/EEC.

|--|

Hazard(s)	Xn	Harmful
	Ν	Dangerous for the environment
Risk Phrase(s)	R20	Harmful by inhalation
	R36	Irritating to eyes
	R40	Limited evidence of a carcinogenic effect
	R43	May cause sensitisation by skin contact
	R50	Very toxic to aquatic organisms
Safety	S2	Keep out of the reach of children
Phrase(s)	S36/37	Wear suitable protective clothing and gloves
	S46	If swallowed, seek medical advice immediately
		and show the container or label
	S61	Avoid release into the environment. Refer to
		special instructions/Safety data sheets
Classification ac	cording to Regulation	on (EC) No 1272/2008
Hazard	GHS07	
statement	GHS08	
codes	GHS09	
	Warning	
Hazard Class,	Acute Tox 4	H332 Harmful if inhaled
category code	Eye Irritation Cat 2	H319 Causes serious eye irritation
and hazard	Skin Sensitisation 1	H317 May cause an allergic skin reaction
statement	Carc. Cat. 2	H351 Suspected of causing cancer
	Aquatic Acute 1	H400 Very toxic to aquatic life M=10

The biocidal product for PT7 film preservative use is folpet technical. The current classification and labelling for folpet according to Directive 67/548/EEC is as follows:

On basis of information presented in the dossier, it is proposed not to change the current classification and labelling.

b) Intended use, target species and effectiveness: containing a description of the use(s) evaluated in the assessment report

Folpet is a fungicide and bactericide used as a film preservative (PT 7) for use in products including paints, mastics, sealants, fillers and adhesives showing a preservative effect (e.g. wallpaper paste). Products containing folpet may be used by professionals (decorators and builders) and non-professionals. Typical application is manual (by brush, roller or spray apparatus). Folpet is used to control fungal species (*Candida albicans*)

The active substance, folpet, is applied once to the treated article during manufacture. The active substance, folpet, is not used directly by users.

Use assumptions based on the available guidance are as follows:

- Professional user: brush and roller application, 360 mins per day. Daily use.
- Professional user: spray application, 360 minutes per day.
- Non-professional user: brush and roller application, 4 hours per day, 2 to 5 days per year.

The mechanism of the fungicidal action of folpet is outlined as follows. Folpet enters the conidia of the target organisms, where its toxicity is attributed to the activity of the thrichloromethylthio (SCCI3, TCM) group, which inhibits oxidative enzymes, carboxylases and enzymes involved in phosphate metabolism and citrate synthesis. Folpet reacts with the sulphhydryl groups of the nuclear proteins, which causes the inhibition of cell division. Spore germination is hindered as a result. The reaction of folpet and the reaction of thiophosgene, one of its decomposition products, with thiols and other groupings may be a

47

Although folpet is unstable in aqueous solution, the rate of its hydrolysis is slower than the speed at which it reacts with thiols. The balance between the reactivity of the TCM moiety of folpet and the stability of the N-S bond that links the TCM group to its imide ring is critical in determining folpet's effectiveness as a fungicide. Analogous structures with very stable bonds are ineffectual fungicides, whilst structural analogues that have N-S bonds that are too easily broken cleave spontaneously.

Over more than 50 years of use, folpet has demonstrated its efficacy as a valuable fungicide and bactericide for a wide spectrum of diseases used in many products as biocide. Being a protectant non-systemic fungicide, folpet is widely used in a large range of fungicidal mixtures or combinations, specifically designed for improving efficacy and in prevention of resistance to the systemic products.

In laboratory testing 0.2% Folpet demonstrated good yeasticidal activity against *C. albicans* and basic innate activity was demonstrated against other organisms. Full efficacy will be proven at Product Authorisation stage. In addition, good efficacy has been demonstrated against a range of target species in polymeric material containing folpet.

c) Risk characterisation for human health

The endpoints for folpet and information relating to its toxicological properties and classification are provided in Appendix 1 Listing of endpoints, Chapter 3. This information is used to set the Acceptable Exposure Levels (AEL) value that was determined to be 0.1 mg/kg bw/d (as determined by the EU review of folpet under Directive 91/414/EEC using this data set). A short-term AEL value of 0.2 mg/kg bw is also derived.

The estimated	exposure is compa	ared to the systemic	AEL for each	relevant component.
	CLEADER STREET REPORT OF STREET, TAKE IN THE STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, ST	AV AN A STREET AND A		

	Summary table: scenarios				
Scenari o number	Scenario (e.g. mixing/ loading)	Primary or secondary exposure Description of scenario	Exposed group (e.g. professionals, non-professionals, bystanders)		
1.	Spraying	360 minutes, daily	Professional		
2.	Brush and roller	360 minutes/day	Professional		
3.	Brush and roller	4 hours/day; 2-5 days per year	Non-professional		

Conclusion of risk characterisation for industrial user

The potential areas of exposure during manufacturing and /or formulation – inhalation, dermal exposure and oral ingestion – have been minimised by the use of automated processes and engineering controls integral to the processes and further reduced by the

requirements to wear suitable protective equipment (including gloves, protective clothing, eye and dust protection) whenever exposure to the active ingredient or other ingredients is likely.

Therefore, exposure of manufacturing and formulation workers is rigorously controlled and no further detailed assessment is necessary.

Conclusion of risk characterisation for professional user

Scenario	Relevant	Estimated uptake	Estimated	Acceptable
	reference value ²	mg/kg bw/d	uptake/reference	(yes/no)
Bruch and	modium torm AEI	0.224		No
roller application:	= 0.1 mg/kg bw/d	0.224	224	NO
Model 1	Acute exposure:		112	No
No gioves	0.2 mg/kg bw/d			
Brush and roller application:	medium-term AEL = 0.1 mg/kg bw/d	0.112	112	No
Model 1 Gloves only	Acute exposure: short-term AEL = 0.2 mg/kg bw/d		56	Yes
Brush and roller application:	medium-term AEL = 0.1 mg/kg bw/d	0.023	23	Yes
Model 1 Gloves and coverall	Acute exposure: short-term AEL = 0.2 ma/ka bw/d		12	Yes
Brush/roller (PHED) No gloves	medium-term AEL = 0.1 mg/kg bw/d	0.014	14	Yes
	Acute exposure: short-term AEL = 0.2 mg/kg bw/d		7	Yes
Brush/roller (PHED) Gloves	medium-term AEL = 0.1 mg/kg bw/d	0.002	2	Yes
	Acute exposure: short-term AEL = 0.2 mg/kg bw/d		1	Yes
Brush washing No gloves	medium-term AEL = 0.1 mg/kg bw/d	0.00057	0.6	Yes
	Acute exposure: short-term AEL = 0.2 mg/kg bw/d		0.3	Yes
Brush washing Gloves	medium-term AEL = 0.1 mg/kg bw/d	0.00006	0.06	Yes
	Acute exposure: short-term AEL = 0.2 mg/kg bw/d		0.02	Yes
Paint spraying Gloves only	medium-term AEL = 0.1 mg/kg bw/d	0.156	156	No
Sieres only	Acute exposure:		78	Yes

DT	F 7
F	

Scenario	Relevant reference value ²	Estimated uptake mg/kg bw/d	Estimated uptake/reference	Acceptable (yes/no)
	short-term AEL = 0.2 mg/kg bw/d			
Paint spraying	medium-term AEL = 0.1 mg/kg bw/d	0.021	21	Yes
Gloves and coverall	Acute exposure: short-term AEL = 0.2 mg/kg bw/d		11	Yes
Airless	medium-term AEL = 0.1 mg/kg bw/d	0.0005	0.5	Yes
(PHED) No gloves	Acute exposure: short-term AEL = 0.2 mg/kg bw/d		0.3	Yes
Airless	medium-term AEL = 0.1 mg/kg bw/d	0.0004	0.4	Yes
(PHED) Gloves only	Acute exposure: short-term AEL = 0.2 ma/ka bw/d		0.2	Yes
Cleaning	medium-term AEL = 0.1 mg/kg bw/d	0.0000072	0.007	Yes
equipment No gloves	Acute exposure: short-term AEL = 0.2 mg/kg bw/d		0.004	Yes

Folpet is not classified as a skin irritant based on the results of a skin irritation study, according to CLH Folpet is classified as skin sensitizer Cat 1. The levels of folpet achieved in the end-use product of 2 g/kg (0.2 %) are much lower than the concentrations eliciting positive responses in the Maximisation study. Considering the CLP sub-categories (Skin Sens. 1A and 1B), folpet would not be classified as a strong sensitiser based on the results of the maximisation study and is therefore considered to have low to moderate potency as a sensitiser. Additionally, the concentrations of folpet are below the threshold for classification of the product according to Directive 99/45/EEC and though the a.s. is classified the end-use product (paint) would not been classified as a skin sensitiser.

While folpet is not classified as a skin irritant based on the results of a skin irritation study, repeated dermal application in a 28-day study resulted in significant local effects in all groups (0.5 mg/ml; 1 mg/kg bw/d and above). The findings of this study, in which folpet was repeatedly applied for 6 hour periods in mineral oil under occlusive conditions are not considered to be of direct relevance to the human risk assessment. Ready-to-use products typically contain folpet at levels of 0.2%; risk assessment for professional workers requires the use of gloves. It is therefore considered very unlikely that the normal use of folpet products would result in a level of dermal contamination resulting in local irritation.

Moreover, Folpet was officially classified at the 28th ATP (Commission directive 2001/59/EC) and no classification for skin irritation was assigned, based on the 28 day study.

Ttal	11
ILa	I Y

Scenario

Conclusion of ri	isk characterisation	for non-professional	user
	ion characterioacion	for non prorecordinal	4001

Relevant

forence unlun?

reference value	mg/kg bw/d	value (%)	(yes/110)
medium-term AEL	0.15	150	No
= 0.1 mg/kg bw/d			
Acute exposure:		75	Yes
short-term AEL =		formation of the second s	
0.2 mg/kg bw/d	1 1		
medium-term AEL	0.075	75	Yes
= 0.1 mg/kg bw/d			
Acute exposure:		38	Vec
short-term AEL =		50	105
0.2 mg/kg bw/d			
medium-term AEL	0.00057	0.57	Yes
=0.1 mg/kg bw/d			
madium tarm AEI	0.00002	0.02	Vec
-0.1 mg/kg bw/d	0.00005	0.03	Tes
-0.1 mg/kg bw/d			
	medium-term AEL = 0.1 mg/kg bw/d Acute exposure: short-term AEL = 0.2 mg/kg bw/d medium-term AEL = 0.1 mg/kg bw/d Acute exposure: short-term AEL = 0.2 mg/kg bw/d medium-term AEL =0.1 mg/kg bw/d medium-term AEL =0.1 mg/kg bw/d	Telefence valueIng/kg bw/dmedium-term AEL = 0.1 mg/kg bw/d0.15Acute exposure: short-term AEL = 0.2 mg/kg bw/d0.075medium-term AEL = 0.1 mg/kg bw/d0.075Acute exposure: short-term AEL = 0.2 mg/kg bw/d0.0075medium-term AEL = 0.2 mg/kg bw/d0.00057medium-term AEL = 0.1 mg/kg bw/d0.00003medium-term AEL = 0.1 mg/kg bw/d0.00003	Telefence valueIng/kg bw/dUptake/Telefencemedium-term AEL = 0.1 mg/kg bw/d0.15150Acute exposure: short-term AEL = 0.2 mg/kg bw/d0.1575medium-term AEL = 0.1 mg/kg bw/d0.07575Acute exposure: short-term AEL = 0.2 mg/kg bw/d0.007538Medium-term AEL = 0.1 mg/kg bw/d0.000570.57medium-term AEL = 0.1 mg/kg bw/d0.000030.03

Conclusion of risk characterisation for indirect exposure

Scenario	Relevant reference value ²	Estimated uptake mg/kg bw/d	Estimated uptake/reference value (%)	Acceptable (yes/no)
Laundering contaminated overalls	short-term AEL = 0.2 mg/kg bw/d	0.016	8	Yes
Dermal contact with wet product by child	short-term AEL = 0.2 mg/kg bw/d	0.17	85	Yes
Oral ingestion child	short-term AEL = 0.2 mg/kg bw/d	0.041	20	Yes
Inhalation exposure child	short-term AEL = 0.2 mg/kg bw/d	0.0008	0.4	Yes
Dermal contact with surface bloom on preserved mastic	short-term AEL = 0.2 mg/kg bw/d	0.025	12.5	Yes

Conclusion on aggregated exposure

Professional and non-professional users are potentially at risk of exposure from several sources during or after use of products containing folpet. However, the exposure estimates are based on daily work rates and, therefore, the combination of any individual tasks is not applicable. The application (brush and roller) and post application (cleaning of brushes) of

complited exposure for the professional use	Combined	exposure	for th	ne pro	fessional	user
---	----------	----------	--------	--------	-----------	------

Scenario	Relevant reference value	Estimated uptake mg/kg bw/d	Estimated uptake/reference value (%)	Acceptable (yes/no)
Brush and roller application: Model 1 and Brush washing No gloves	medium-term AEL = 0.1 mg/kg bw/d Acute exposure: short- term AEL = 0.2 mg/kg bw/d	0.22475	225 112	No No
Brush and roller application: Model 1 and Brush washing Gloves only	medium-term AEL = 0.1 mg/kg bw/d Acute exposure: short- term AEL = 0.2 mg/kg bw/d	0.11206	112 56	No Yes
Brush and roller application: Model 1 Gloves and coverall and Brush washing Gloves	medium-term AEL = 0.1 mg/kg bw/d Acute exposure: short- term AEL = 0.2 mg/kg bw/d	0.02306	23 12	Yes Yes
Brush/roller (PHED) and Brush washing No gloves	medium-term AEL = 0.1 mg/kg bw/d Acute exposure: short- term AEL = 0.2 mg/kg bw/d	0.01475	15 7	Yes Yes
Brush/roller (PHED) and Brush washing Gloves	medium-term AEL = 0.1 mg/kg bw/d Acute exposure: short- term AEL = 0.2 mg/kg bw/d	0.00206	2 1	Yes Yes
Paint spraying Gloves only And Cleaning spray equipment No Gloves	medium-term AEL = 0.1 mg/kg bw/d Acute exposure: short- term AEL = 0.2 mg/kg bw/d	0.1560072	156 78	No Yes

Scenario	Relevant reference value	Estimated uptake mg/kg bw/d	Estimated uptake/reference value (%)	Acceptable (yes/no)
Paint spraying Gloves and coverall And Cleaning spray equipment No Gloves	medium-term AEL = 0.1 mg/kg bw/d Acute exposure: short- term AEL = 0.2 mg/kg bw/d	0.0210072	21 11	Yes Yes
Airless spraying (PHED) And Cleaning spray equipment No gloves	medium-term AEL = 0.1 mg/kg bw/d Acute exposure: short- term AEL = 0.2 mg/kg bw/d	0.0005072	0.5 0.3	Yes Yes
Airless spraying (PHED) Gloves only And Cleaning spray equipment No Gloves	medium-term AEL = 0.1 mg/kg bw/d Acute exposure: short- term AEL = 0.2 mg/kg bw/d	0.0004072	0.4 0.2	Yes Yes

Combined exposure for the non-professional user

Scenario	Relevant reference value	Estimated uptake mg/kg bw/d	Estimated uptake/reference value (%)	Acceptable (yes/no)
Brush and roller application (Painting Model 1) And Washing brushes No gloves	medium-term AEL = 0.1 mg/kg bw/d Acute exposure: short- term AEL = 0.2 mg/kg bw/d	0.15075	151 75	No Yes
Brush and roller application (Painting Model 1) And Washing brushes Gloves only	medium-term AEL = 0.1 mg/kg bw/d Acute exposure: short- term AEL = 0.2 mg/kg bw/d	0.07503	75 38	Yes Yes

PT 7

The risk of acute or chronic exposure to the relevant components for all non-users is considered to be negligible.

Overall conclusion on human health risk characterization

Exposure levels resulting from the intended professional uses of products containing the film preservative folpet on a daily basis are therefore estimated to be below the AEL when PPE such as gloves are worn. Exposure levels resulting from the intended uses for non-professional users during use of paint containing the preservative folpet on a daily basis are below the AEL when based on worst-case default values. Indirect acute exposure levels resulting from the intended use of folpet as a film preservative are therefore estimated to be below the AEL when based on worst-case default values.

d) Risk characterisation for environment

For the **aquatic compartment** (freshwater, sediment and STP) no unacceptable risks were identified for uses of folpet as a PT6 in-can preservative demonstrating that the risks to aquatic organisms from folpet are acceptable. For the main hydrolysis products, phtalimide and phthalic acid, risks (PEC/PNEC ratios slightly in excess of 1) for surface water were identified for service life. However the exposure assessment was based on worst case assumptions. The refinement of these assumptions would result in no risk for the aquatic compartment for the service life (Time 2). It is therefore considered that there are no unacceptable risks for phtalimide and phthalic acid.

For the **terrestrial compartment** (soil), when assessing the application phase for folpet, unacceptable risk was found when direct exposure to soil occurs (spraying and brushing in the countryside). When assessing the exposure to soil via sewage sludge application to agricultural land (city scenario) the PEC/PNEC ratios were all below 1 and therefore acceptable.

When assessing the service life of the product, degradation in soil was taken into account. Considering exposure to soil via sewage sludge application (city scenario) unacceptable risk was found at Time 1, nevertheless PEC/PNEC ratios were below 0.1 when calculating Time 2, therefore acceptable risk to soil organisms was found in a city scenario. Considering direct release to soil (spraying and brushing in the countryside), unacceptable risk to soil was found for Time 1 but acceptable risk was found for Time 2 for both types of application (brushing and spraying).

PECs for phthalimide and phthalic acid were calculated using the same scenarios as for folpet. PEC/PNEC ratios below 1 were found for both metabolites during application and during service life at Time 1 and Time 2 (for both application types spraying and brushing) and for country side and city scenarios, indicating a safe uses.

As a conclusion, unacceptable risk to soil organisms was found for areas immediately adjacent to the treated surface when direct exposure to folpet takes place (painting and brushing by professionals and amateurs in the countryside). However, the actual likelihood of folpet soil exposure is very low because of rapid hydrolysis. Folpet will have degraded to the hydrolysis products phthalimide and phthalic acid prior to any soil exposure and therefore risk assessment for these metabolites is potentially more relevant. Nevertheless, since a risk to the soil environment is indicated by the modelled calculations for folpet and to a lesser extent the more relevant hydrolysis products, phthalimide and phthalic acid measures shall be taken to protect the soil to prevent losses and minimise emissions to the environment.

Regarding the **groundwater**, no unacceptable risks were identified with the scenario assessed (revised PT8 OECD emission scenario and FOCUS scenario).

e) Substitution and exclusion criteria

Folpet is not classified for human health hazard as a Category 1A/1B carcinogen, mutagen or reproductive toxicant. Folpet is not considered to have endocrine disrupting properties and does not meet the criteria as a PBT substance or a vPvB substance. Folpet therefore does not fulfil the exclusion criteria for active substances set down in Article 5(1) of Regulation 528/2012.

Folpet does not fulfil any of the exclusion criteria according to Article 5(1) of the Regualtion 528/2012. Fopet is not classified as a resoiratory sensitiser, does not fulfil any PBT criteria and presents a negligible risk to groundwater for the uses supported under PT7. The acute AEL (0.1 mg/kg bw/day) and chronic AEL (0.2 mg/kg bw/day) values for folpet are not considered to be low in the context of PT7 use. Folpet therefore does not fulfil the substitution criteria for active substances set down in Article 10(1) of Regulation 528/2012.

As exclusion criteris or substitution criteris are not fulfilled, approval of the active substance folpet should be granted for an initial period of 10 years in accordance with Article 4 of Regulation 528/2012.

f) Overall conclusion evaluation including need for risk management measures

Since a risk to the soil environment is indicated by the modelled calculations for folpet and to a lesser extent the more relevant hydrolysis products, phthalimide and phthalic acid, measures shall be taken to protect the soil to prevent losses and minimise emissions to the environment.

List of endpoints

The most important endpoints, as identified during the evaluation process, are listed in <u>Appendix I</u>.

The following additional data will be provided at the Product Authorisation stage:

- efficacy data;
- a list of additional scenarios to be assessed <u>at the product authorisation stage</u>: e.g. additional consumption scenarios e.g. the bridge scenario [direct release to water], roof membrane and shower scenario to address specific uses with leaching to the environment.

Appendix I: List of endpoints

Chapter 1: Identity, Physical and Chemical Properties, Classification and Labelling

Active substance (ISO Common Name)

Product-type

Identity

Chemical name (IUPAC)

Chemical name (CA)

CAS No

EC No

Other substance No.

Minimum purity of the active substance as manufactured (g/kg or g/l)

Identity of relevant impurities and additives (substances of concern) in the active substance as manufactured (g/kg)

Molecular formula

Molecular mass

Structural formula

Folpet	
PT 7	

5	N-(trichloromethylthio) phthalimide N-(trichloromethanesulfenyl)phthalimide
1010	2-[(trichloromethyl)thio]-1H-isoindole-1,3(2H)-dione
0	133-07-3
	205-088-6
2	CIPAC 75
as	940 g/kg
es as	Identity of impurities is presented in the confidential attachment.
	C ₉ H ₄ Cl ₃ NO ₂ S
	296.6

Physical and chemical properties

Melting point (state purity)

Boiling point (state purity)

Temperature of decomposition

Appearance (state purity)

Relative density (state purity)

Surface tension

Vapour pressure (in Pa, state temperature)

Henry's law constant (Pa m³ mol⁻¹)

Solubility in water (g/l or mg/l, state temperature)

179 - 180°C (99.6% purity)
Not relevant - test substance is a solid
Not required as melting point has been determined.
White solid crystals (98.8% purity)
1.72 (99.6% purity)
Not required because the water solubility of the active substance is less than 1.0 mg/L.
2.1 x 10 ⁻⁵ Pa (25°C) 9.7 x 10 ⁻⁵ Pa (35°C) 4.5 x 10 ⁻⁴ Pa (45°C)
8 x 10-3 Pa.m3.mol-1 at 25°C
pH_5: Not determined
pH_9: Not determined
pH 6.7: 0.80 mg/L (max., 25°C)

<u>Italy</u>	Folpet PT 7
	pH 6.7: 0.50 mg/L (mean, 15°C)
Solubility in organic solvents (in g/l or mg/l, state temperature)	Acetone : 34 g/L (25°C)
	n-octanol: 1.4 g/L (25°C)
	Methanol: 3.1 g/L (25°C)
	Toluene: 26.3 g/L (25°C)
	carbon tetrachloride: 6 g/L (25°C)
	Acetonitrile: 19 g/L (25°C)
	Heptanes: 0.05 g/L(25°C)
Stability in organic solvents used in biocidal products including relevant breakdown products	Not applicable because the active substance as manufactured does not include an organic solvent and is not formulated in organic solution in the biocidal product.
Partition coefficient (log P_{OW}) (state temperature)	pH5: Not determined
	pH9: Not determined
	pH: 3.017
Hydrolytic stability (DT_{50}) (state pH and temperature)	Folpet
	2.6 hours (pH 5; 25°C) 1.1 hours (pH 7; 25°C) 67 seconds (pH 9; 25°C and 40°C)
	pH4 and $12^{\circ}C = 17.1$ hours (mean) pH5 and $12^{\circ}C = 8.7$ hours pH7 and $12^{\circ}C = 2.7$ hours (mean) pH9 and $12^{\circ}C = 0.1$ hours
Dissociation constant	Folpet is unlikely to dissociate in water because it does not contain a proton that will dissociate at environmentally relevant pHs. Therefore, it is considered unnecessary to determine the pKa.
UV/VIS absorption (max.) (if absorption > 290 nm	The molar extinction coefficient (M-1 cm-1):
state ε at wavelength)	47100, 7900, 1780, 1720 at 223, 236, 295, 300 nm (purified water:methanol 1:9 v/v)
	52600, 8410, 1770, 1720 at 223, 237, 296, 301 nm (aqueous hydrochloric acid: methanol 1:9)
	19900, 11300, 7410, 1810, 1650, 1320 at 225, 238, 247, 280, 289, 301 nm (aqueous sodium hydroxide: methanol 24:1)
Photostability (DT_{50}) (aqueous, sunlight, state pH)	Photolysis either does not occur or is very slow relative to hydrolysis.
Quantum yield of direct phototransformation in water at $\mathbb{Z} > 290 \text{ nm}$	Due to the rapid chemical hydrolysis of folpet the quantum yield is impossible to measure experimentally – No data submitted.
Flammability	Not classified as flammable.
Explosive properties	Non-explosive.

Classification and proposed labelling

with regard to physical/chemical data with regard to toxicological data

with regard to fate and behaviour data with regard to ecotoxicological data

None

Xn, R20, R36, R40, R43

Carc (H351); Acute Tox 4 (H332); Eye Irrit 2 (H319); Skin Sens 1 (H317)

None

N, R50

Aquatic Acute 1 (H400)

Analytical methods for the active substance						
Technical active substance (principle of method)	Folpet technical material is dissolved in an acetonitrile solution containing the internal standard, propyl paraben. The sample is sonicated and filtered prior to determination by reverse-phase HPLC/UV. HPLC/UV determination is carried out at a wavelength of 254 nm using a C18 column and an acetonitrile/water/trifluoroacetic acid mobile phase.					
Impurities in technical active substance (principle of method)	See confidential attachment.					

Analytical methods for residues

Soil (principle of method and LOQ)	1. Folpet and phthalimide are extracted by shaking with aqueous acetonitrile and residues are partitioned into dichloromethane. The extract is purified by C18 solid phase extraction cartridge prior to determination by capillary GC/ECD.		
	The LOQ is 0.05 mg/kg for folpet and phthalimide. 2. A confirmatory procedure is presented for the determination of folpet residues in soil. Residues are extracted by shaking with aqueous acetonitrile. The extract is saturated with sodium chloride and the organic phase is evaporated to dryness prior to reconstitution in hexane/ethyl acetate. The extracts are purified by solid phase extraction on activated carbon. Determination of folpet is by capillary GC/MS with selected ion monitoring (five ions monitored). The limitof quantification is 0.05 mg folpet/kg.		
Air (principle of method and LOQ)	A measured volume of air is drawn through a filter paper and two activated silica gel tubes arranged in series by an air sampling pump. The filter paper and the front silica gel adsorbent are extracted by shaking with acetonitrile. The silica gel from the back tube is analysed separately to determine breakthrough. Determination of folpet is by reverse-phase HPLC/UV with a photodiode array detector.		
	The LOQ is $21 \mu g/m^3$ in 480 L of air.		
Water (principle of method and LOQ)	Folpet is extracted from water by shaking with dichloromethane. Determination is by reverse-phase HPLC/UV with a photodiode array detector. Additionally, a GC/ECD determination method is provided. The GC/ECD method was found not to be adequately repeatable but may be usefully employed for confirmatory purposes.		
	The LOQ is 0.02 µg/L.		
	Folpet is extracted from pond water with toluene prior to quantification of folpet by gas chromatography with mass spectrometric detection (GC-MS). Analysis of phthalimide, phthalamic acid, phthalic acid, 2-cyanobenzoic acid and benzamide in pond water samples is by extraction with dichloromethane prior to quantification of phthalimide by (GC-MS). The		

remaining aqueous phase, post extraction, is quantified directly by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS) for the determination of phthalamic acid, phthalic acid, 2cyanobenzoic acid and benzamide. Analysis of folpet, phthalimide, phthalamic acid, phthalic acid, 2-cyanobenzoic acid and benzamide in pond sediment samples comprises of extraction with toluene and cleanup using ENVI-Carb solid phase extraction prior to quantification of folpet and phthalimide by (GC-MS). The remaining aqueous phase, post extraction, is quantified directly by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS) for the determination of phthalamic acid, phthalic acid, 2-cyanobenzoic acid and benzamide.

The LOQs are as follows:

Analyte	Matrix	LOQ
Folpet	Water	1 μg/L
	Sediment	5 ng/g
Phthalimide	Water	0.5 ug/L
	Sediment	20 ng/g
Phthalamic acid	Water	2.5 ug/L
	Sediment	20 ng/g
Phthalic acid	Water	2.5 ug/L
	Sediment	20 ng/g
2-Cyanobenzoic	Water	0.5 ug/L
acid		
	Sediment	5 ng/g
Benzamide	Water	0.5 ug/L
	Sediment	5 ng/g

Folpet is extracted from drinking water by liquid:liquid partition with toluene. For extraction of phthalimide
liquid:liquid partition with dichloromethane is used.
Quantitation of both folpet and phthalimide is by gas
chromatography with mass spectrometric detection (GC-
MS). Quantitation of phthalic acid in drinking water is
by liquid chromatography with tandem mass
spectrometric detection (LC-MS/MS). Phthalamic acid
and benzamide are acidified and quantitation is by liquid
chromatography with tandem mass spectrometric
detection (LC-MS/MS). For 2-cyanobenzoic acid solid
phase extraction (SPE) is used with NH2 cartridges
followed by quantitation by liquid chromatography with
tandem mass spectrometric detection (LC-MS/MS).
The LOQs are 0.2 ng/mL for folpet and phthalimide, 1
ng/mL for 2-cyanobenzoic acid and 0.05 ng/mL for
benzamide (= 0. 05 ug/L in sample matrix for these
analytes). The limit of determination of the analytical
system for phthalic acid and phthalamic acid was 1
ng/mL (= 1 ug/L in sample matrix for these analytes).

Body fluids and tissues (principle of method and	Folpet is not classified as highly toxic or toxic to
LOQ)	humans. Therefore, methods for the determination of
	folpet in body fluids and tissues are not required.

Food/feed of plant origin (principle of method and Not relevant because the product or treated materials will not come into contact with food or feedstuffs. LOQ for methods for monitoring purposes) Food/feed of animal origin (principle of method Not relevant because the product or treated materials will

F 1

and LOQ for methods for monitoring purposes)

not come into contact with food or feedstuffs.

Chapter 3: Impact on Human Health

Absorption, distribution, metabolism and excretion in mammals

Rate and extent of oral absorption:	Folpet is considered to be completely and rapidly absorbed following oral administration (>80%).		
Rate and extent of dermal absorption for the active substance:	10% (default; EFSA-agreed)		
Rate and extent of dermal absorption for the representative product(s):	Human/rat in vitro and rat in vivo: <10% for aqueous dilute formulations containing similar or greater concentrations of folpet to paints (actual range 4.22 – 9.19%).		
	No data are available for folpet in formulation as an in- can preservative, but many of the uses are anticipated to be either in aqueous media, or aqueous emulsions at high dilutions, such that aqueous solutions of a WDG and an SC plant protection formulation are considered acceptable substitutes.		
	Comparison of in vivo rat and in vitro rat and human data for Folpan 50 SC and Folpan 80 WDG showed that dermal penetration of the undiluted formulations as supplied was 0.07% and 0.95%, respectively. At an inuse spray concentration of 1.25 g a.s./L, dermal absorption was 6.54% and 9.19% absorption for Folpan 50 SC and Folpan 80 WDG, respectively. At an inuse spray concentration of 7.5 g a.s./L, dermal absorption was 6.24% and 4.22% for Folpan 50 SC and Folpan 80 WDG, respectively. Based on the range of values reported, a conservative dermal absorption value of 10% is therefore used for the purposes of risk assessment of biocidal products typically containing folpet at a level of 0.2%.		
Distribution:	In rats, the radioactivity was distributed within the body of the treated animals at generally low concentration levels. This activity, however, was not associated with parent compound, as folpet degrades in whole blood with a half-life of 4.9 seconds. Tissue residues negligible because of rapid excretion.		
Potential for accumulation:	The low amount of residues and the rapid excretion led to the conclusion that no accumulation or relevant concentration occurred in the rat.		
Rate and extent of excretion:	In rats, excretion predominantly via urine was essentially completed 24 hours after dosing by oral administration. The systemic half-life of [14C] was no greater than approximately 12 hours.		
Toxicologically significant metabolite(s)	Folpet is highly unstable, with a half-life of 4.9 seconds in whole blood. The most significant pathway is the potential for the trichloromethylthio side-chain to degrade, by hydrolysis, to thiophosgene, which is highly reactive.		
	Thiophosgene is also unstable in whole blood, with a half-life of 0.6 seconds.		
	Removal of the side-chain by hydrolysis or by detoxification mechanisms gives phthalimide, which is		

capable of hydroxylation in the aromatic ring (demonstrated at the 3- and 4- positions). Phthalimide is further metabolised to phthalamic acid, which in turn

	may be converted to phthalic acid and phthalic anhydride. It has been postulated that the hydroxylated phthalimides may also be metabolised to the corresponding phthalamic acids and phthalic acids.	
	Derivatives of phthalimide are excreted predominantly in the urine mostly within 24 hours of folpet administration, and show no potential for accumulation.	
	2,000,	
Rat LD ₅₀ oral	> 2,000 mg/kg bw	
Rat LD_{50} dermal	> 2,000 mg/kg bw	
Rat LC_{50} inhalation	1.89 mg/L R20	
Skin irritation	non-irritant	
Eye irritation	Irritating to eyes R36	
Skin sensitization (test method used and result)	Magnusson & Kligman Test: sensitising R43	
Repeated dose toxicity		
Species/ target / critical effect	Irritation of the gastro-intestinal tract, leading to hyperkeratosis of the oesophagus, hyperkeratosis and acanthosis in the non-glandular stomach in rats, reduced bodyweight gains and food intake in rats, mice and dogs. Vomiting in dogs, and poor general condition.	
	Repeated dermal exposure resulted in irritation of the treated skin, but no systemic toxicity other than reduced body weight gains in males.	
Lowest relevant oral NOAEL / LOAEL	10 mg/kg bw/day (dog, 12-month oral toxicity)	
Lowest relevant dermal NOAEL / LOAEL	Males 10, Females >30 mg/kg bw/day (rat, 28-day dermal toxicity)	
	LOAEL for local toxicity 1 mg/kg bw/d (rat, 28-day dermal toxicity)	
Lowest relevant inhalation NOAEL / LOAEL	Not applicable.	
Genotoxicity	Not mutagenic in vivo, but mutagenic in some in vitro tests. Considered non mutagenic as plant protection product active substance in EU review under Directive 91/414/EEC	
Carcinogenicity		
Species/type of tumour	Not carcinogenic in the rat. Treatment in the rat was associated with hyperkeratosis of the non-glandular stomach and of the oesophagus	

In the mouse, incidence of duodenal carcinomas and adenomas was increased, and folpet is considered carcinogenic in the mouse. A clear threshold of 20 mg/kg bw/d was established.

62

aly	Folpet PT 7		
	Cat 3 R40		
lowest dose with tumours	1,000 ppm (143 mg/kg bw/day)		
Reproductive toxicity			
Species/ Reproduction target / critical effect	No effects on reproduction (including the highest concentration tested – 3,600 ppm circa 180 mg/kg bw/day). Parental and offspring bodyweight effects at 800 ppm (40 mg/kg bw/day)		
Lowest relevant reproductive NOAEL / LOAEL	NOAEL 180 mg/kg bw/day		
Species/Developmental target / critical effect	Not teratogenic in rat or rabbit.		
Developmental toxicity			
Lowest relevant developmental NOAEL / LOAEL	Maternal rat NOAEL 60 mg/kg bw/day Maternal rabbit NOAEL: 10 mg/kg bw/day No adverse effects were seen in rat foetuses at maternal doses up to and including 360 mg/kg bw/day, or in rabbit foetuses maternal doses up to and including 10 mg/kg bw/day. Reduced foetal weight in rat at 550 mg/kg bw/day and above, and in rabbit at 40 mg/kg bw/day.		
Neurotoxicity / Delayed neurotoxicity			
Species/ target/critical effect	Not neurotoxic		

Lowest relevant developmental NOAEL / LOAEL.

Other toxicological studies

Mode of action

Not neuro	toxic					
NOAEL 474 mg/kg	10,000 g/day M, 1	ppm 1,140 –	(equivalent 595 mg/kg/day	to y F)	1,138	-

Folpet is an irritant. In the mouse this irritation causes changes to the architecture of the gastro-intestinal tract that are associated with the eventual tumour development. In the rat, irritation is seen primarily in the upper gastro-intestinal tract (e.g. oesophagus and nonglandular stomach), but these changes are not associated with tumour enhancement. As tumours are produced via an irritation mechanism, the appropriate risk assessment involves a margin of exposure evaluation (i.e. a threshold phenomenon).

Folpet has essentially the same action as the closelyrelated compound captan. Oral ingestion results in the molecules passing from the stomach, where they are more stable in the relatively low pH of the mouse stomach, to the duodenum, where rapid hydrolysis takes place under alkaline conditions. Folpet is less stable than captan at low pH values, but both are highly unstable at high pH values. Folpet yields phthalimide, thiophosgene and two metabolites of phthalimide. Thiophosgene and the intact molecules react with the intestinal contents, and also encounter the mucous membrane of the villi. The action of folpet is local and is restricted to the villi cells. The villi cells have a short replacement time, as they are easily sloughed off. Replacement is by division of the crypt cells, and migration of the epithelial cells up the villi. The rapid degradation (hydrolysis) of both molecules restricts the effects to the initial contact. The molecules do not reach the crypt cells via the lumen, as the crypt cells are protected by their secretions. Degradation prevents effects occurring by way of diffusion through the villi cells to the crypt cells. Folpet reacts with soluble and insoluble thiols present in cells. Soluble thiols, such as glutathione, are available to react with and detoxify reactive molecules, whereas insoluble (or sensitive) thiols are necessary for normal cell function; reaction with these leads to disruption of cellular function. As the soluble thiol pool is depleted by high doses of folpet, the probability that sensitive thiols are disrupted increases. Both folpet and captan damage duodenal villi, and lead to increased proliferation of crypt cells as a homeostatic response to increase the rate of cell replacement. This mode of action is epigenetic. The mutagenicity studies show that while folpet can be mutagenic in vitro, it is not mutagenic in vivo. The activity in vitro is attenuated or eliminated in the presence of cysteine or other sources of thiols. In vivo, this attenuation is complete, and no activity is seen.

The evidence demonstrates that while folpet is capable of inducing duodenal tumours in mice at high dose levels, the mechanism is not relevant at the low exposures anticipated for humans.

Rat LD50 intraperitoneal: 52.5 mg/kg bw (males) and 48.0 mg/kg bw (females) at 24 hours

Further data on Folpet

Medical data

No indications of special concern in medical records or in relation to any reported medical incidents

product studies

endpoint based on product studies

agreed

EFSA

Summary	Value	Study	Safety factor
Non-professional user	_		
ADI (acceptable daily intake, external long-term reference dose)	0.1 mg/kg bw/day	12-months oral chronic dog capsule study, 2- year rat study	100
AOEL-S (Operator Exposure)	0.2 mg/kg bw	Rabbit developmental toxicity	100
ARfD (acute reference dose)	0.2 mg/kg bw	Rabbit developmental toxicity	100
Professional user			
Reference value for inhalation (proposed OEL)	-	-	-
Reference value for dermal absorption concerning the active substance:	10%	EFSA agreed endpoint based on	-

** 1

Reference value for dermal absorption concerning the representative $product(s)^4$:

10%

Chronic (systemic) (mg/kg bw/day)	AEL	0.1 mg/kg bw/day	12-months oral chronic dog capsule study	100
Medium-term AEL		0.1 mg/kg /day	Rabbit developmental toxicity	100
Acute AEL		0.2 mg/kg bw	Rabbit developmental toxicity	100
Drinking water limit (mg/L)		300 µg/L	Derived from ADI	Not applicable

Acceptable exposure scenarios (including method of calculation)

Italy

Acceptable exposure scenarios (including method of calculation)				
Professional users	Acceptable for proposed uses according to model calculations			
Production of active substance:	Acceptable for proposed uses according to model calculations			
Formulation of biocidal product	Acceptable for proposed uses according to model calculations			
Intended uses	Acceptable for proposed uses according to model calculations			
Secondary exposure	Acceptable for proposed uses according to model calculations			
Non-professional users	Acceptable for proposed uses according to model calculations			
Indirect exposure as a result of use	The risk of acute or chronic exposure to folpet for all non-users is considered to be negligible.			

Route	and	rate	of	degradation	in	water

Hydrolysis of active substance and relevant	Estimated degradation at 12°C		
metabolites (DT_{50}) (state pH and temperature)	pH4 = 17.1 hours (mean) pH5 = 8.7 hours pH7 = 2.7 hours (mean) pH9 = 0.1 hours.		
	At pH 5 the predominant degradate is phthalimide but there is a shift towards phthalic acid which becomes the predominant degradate at pH 9.		
	Phthalimide is readily hydrolysed. Estimated rates at 12°C are:		
	pH4 = 3695 hours pH7 = 88 hours pH9 = 5.0 hours (mean).		
	Hydrolysis is the primary route of degradation for folpet in the aquatic environment.		
Photolytic / photo-oxidative degradation of active substance and resulting relevant metabolites	The instability of folpet towards chemical hydrolysis, even at low pH, means that photolysis is not a significant degradation pathway in the aquatic environment.		
Readily biodegradable (yes/no)	Yes		
Biodegradation in seawater	No data, not applicable		
Non-extractable residues	Sediment unextracted residues increased to <i>ca</i> 25% AR between day 7 and day 14 but were declining at the end of the study at 100 days. Unextracted residues were shown to be mainly associated with the humin fraction, probably due to phthalate formation. The decline of unextracted residues is most probably due to anaerobic degradation of the bound phthalates resulting in methane production (not collected in the study resulting in low mass balance).		
Non-extractable residues Distribution in water / sediment systems (active substance)	Sediment unextracted residues increased to <i>ca</i> 25% AR between day 7 and day 14 but were declining at the end of the study at 100 days. Unextracted residues were shown to be mainly associated with the humin fraction, probably due to phthalate formation. The decline of unextracted residues is most probably due to anaerobic degradation of the bound phthalates resulting in methane production (not collected in the study resulting in low mass balance). Folpet was rapidly degraded in both the overlying water and the whole system, with DT ₅₀ values of 0.014 to 0.018 days (equating to a worst-case value of 0.4 hours). The equivalent range of degradation rates at the EU average temperature of 12°C can be estimated to be 0.03 to 0.04 days.		

Route and rate of degradation in soil

Mineralization (aerobic)

Up to 60% after 90 days

Italy	Folpet PT 7
Laboratory studies (range or median, with number of measurements, with regression coefficient)	DT_{50lab} (20°C, aerobic): Folpet = 4.68 days (mean value concluded in the EFSA scientific report) ⁷ . Phthalimide = 7.88 days (mean value concluded in the EFSA scientific report). Phthalic acid = 1.37 days (mean value concluded in the EFSA scientific report). The geometric mean DT_{50} (12°C) for Folpet was determined to be 2.47 days. This is considered to be the correct DT_{50} value, however, as the EFSA agreed endpoint represents a worst-case value it has been used
	for risk assessment purposes. DT_{90lab} (20°C, aerobic): Folpet = 0.7 to 12.8 days (n = 3) Phthalimide = 1.7 to 16,1 days (n = 3) Phthalic acid = 2.1 to 13.7 days (n = 3)
	$DT_{50lab} (10^{\circ}C, \text{ aerobic}):$ Folpet = 12.6 days Phthalimide = 10.6 days Phthalic acid = 5.9 days
	DT_{50lab} (25°C, anaerobic): Folpet = 13.8 to 14.6 days (n = 2) Phthalimide = 33.6 days
	degradation in the saturated zone: not relevant
Field studies (state location, range or median with number of measurements)	Field soil dissipation data show that degradation of folpet and phthalimide is rapid with the DT_{50} estimated to be less than 3 days for each substance. Highest residues were detected in the 0-15 cm soil horizon, with little or no movement to lower soil horizons. The field dissipation data confirms the results obtained from laboratory tests and shows that folpet and phthalimide (the principle soil metabolite) do not accumulate in soil.
Anaerobic degradation	Anaerobic degradation of folpet is slower under anaerobic conditions compared to aerobic conditions, resulting principally in the formation of phthalimide. However, folpet degradation under aerobic conditions is so rapid that behaviour under anaerobic conditions is not likely to be relevant.
Soil photolysis	Photodegradation is not a significant route of degradation for folpet.
Non-extractable residues	Levels of bound residues initially accumulated to a level of 31.2% AR at day 14, but subsequently declined resulting in substantial mineralisation to CO_2 .
Relevant metabolites - name and/or code, % of applied active ingredient (range and maximum)	Phthalimide (max 65% AR after 5 days) Phthalamic acid (max 16.7% AR after 1 day) Phthalic acid (max 16.6% AR after 1 day) are the major (>10% AR) degradation products of folpet in soil. These compounds are also rapidly degraded in soil with DT_{50} values in the range of 0.5 to 4.8 days, 0.4 days and 0.6 to 4.1 days, respectively at 20°C. The equivalent range of

⁷ The correct DT_{50} value is the geometric mean = 1.3 days at 20°C. The equivalent DT_{50} at 12°C = 2.47 days using TGD equation 25. The EFSA agreed endpoint represents a worst-case value and has been used in the risk assessment.

Italy	Folpet	PT 7
	soil degradation rates at the EU average 12°C can be estimated to be 1 to 10 da 1.3 to 8.7 days, respectively. Overall, phthalimide, phthalamic acid a are not considered to be persistent in soil	e temperature of ys, 0.9 days and nd phthalic acid
Soil accumulation and plateau concentration	Folpet is not considered to be persistent i	n soil.
Adsorption/desorption		

Ka . Kd Kaoc, Kdoc pH dependence (yes / no) (if yes type of dependence)

Fate and behaviour in air

Direct photolysis in air

Quantum yield of direct photolysis Photo-oxidative degradation in air Volatilization

Folpet degrades rapidly in air due to reaction with hydroxyl radicals with a half-life between 6.16 hours (QSAR estimation) and 1.02 days (EPA AOP v1.92 model based on 0.5 x 106 OH/cm3 and a 24 hour day).

Adsorption/desorption coefficient of folpet cannot be reliably estimated by methods, such as the batch

Adsorption/desorption coefficient of phthalimide was estimated in five soils of European origin using the batch equilibrium method. The Koc values determined for phthalimide were in the range 55.7 to 293.1 mL/g.

Koc values for phthalamic acid and phthalic acid were determined by QSAR estimates in the range from 1.206

and in aqueous media. The lowest estimated adsorption/desorption coefficient is 304 mL/g.

equilibrium method, because of rapid degradation in soil

PT 7

No data, not relevant

to 80.85 L/kg.

No data, not relevant

The Henry's Law constant for folpet is 8×10^{-3} Pa.m³.mol⁻¹. Folpet is a solid with a relatively high melting point and low vapour pressure and can therefore be considered as non-volatile. Concentrations in air are expected to be negligible during use and disposal

Monitoring data, if available

Soil (indicate location and type of study)

Surface water (indicate location and type of study) Ground water (indicate location and type of study) Air (indicate location and type of study)

No data	
No data	
No data	
No data	

68

Chapter 5: Effects on Non-target Species

Folpet: Toxicity data for aquatic species (most sensitive species of each group)

Species	Time-scale	Endpoint	Toxicity (µg a.s./L)		
Fish					
Oncorhynchus mykiss	96 hours (f-t) ^a	LC ₅₀	15 (m m.)		
Oncorhynchus mykiss	96 hours (s) ^b	LC ₅₀	233 (nom)		
Pimephales promelas	28 days, ELS (f-t) ^a	NOEC	8.1 (m m.)		
Oncorhynchus mykiss	28 days (s-s)c, 3 renewals/week	LC ₅₀ NOEC	110 (nom.) 19 (nom)		
	Invertek	orates			
Daphnia magna	48 hours (f-t) ^a	EC ₅₀	20 (m m.)		
Daphnia magna	48 hours (s) ^b	EC ₅₀	> 1460 (m.m.i.)		
Daphnia magna	21 days (f-t) ^a	NOEC	1.8 (m m.)		
Daphnia magna	21 days (s-s) ^c , 7 d renewal	NOEC	55 (m.m.i.)		
	Alga	ae			
Desmodesmus subspicatus	72 hours (s) ^b	E _r C ₅₀ NOEC	> 10000 (nom.) 700 (nom.)		
	Microorg	anisms			
Activated sludge respiration (N & C oxidation combined)	3 hours (s)	EC ₅₀ NOEC	> 320000 (nom.) 10000 (nom.)		
Activated sludge nitrification (NO ₃ formation)	4 hours (s)	EC ₅₀ NOEC	> 1000000 (nom.) 32000 (nom.)		
s:static exposure;s-s:semi-static exposure;f-t:flow-through exposure;m m.based on mean measured concentrations covering entire test duration;m m.i.based on mean measured initial concentration(s);nom.based on nominal concentrations;acontinuous media renewal to counteract hydrolysis and maintain exposure to folpet a.s.;bfolpet allowed to hydrolyse, exposure mainly to hydrolysis degradates following brief initial exposure to a.s.cfolpet allowed to hydrolyse, exposure mainly to hydrolysis degradates, with brief exposure to a.s. at test initiation and following each media renewal.					

Folpet metabolite Phthalimide: Toxicity data for aquatic species (most sensitive species of each group)

Species	Time-scale	Endpoint	Toxicity (µg/L)		
	Fis	h			
Lepomis macrochirus	96 hours (s-s, 48 h renewal)	LC ₅₀	38000 (m.m.)		
Invertebrates					
Americamysis bahia	96 hours (f-t)	LC_{50}	12100 (m.m.)		
s-s: semi-static exposure;					
m m. based on mean measured concentrations covering entire test duration.					

PT 7

Folpet metabolite Phthalic acid: Toxicity data for aquatic species (most sensitive species of each group)

Species	Time-scale	Endpoint	Toxicity (µg/L)			
	Fis	h				
Oncorhynchus mykiss	96 hours (s)	LC ₅₀	> 100000 (nom.)			
	Invertebrates					
Daphnia magna	48 hours (s)	EC ₅₀	> 100000 (nom.)			
Algae						
Pseudokirchneriella subcapitata	72 hours (s)	E _r C ₅₀ NOEC	>10000 (nom.) 25000 (nom.)			
s: static exposure; nom. based on nominal concentrations.						

Folpet metabolite Phthalamic acid: Toxicity data for aquatic species (most sensitive species of each group)

Species	Time-scale	Endpoint	Toxicity (µg/L)		
	Fis	h			
Oncorhynchus mykiss	96 hours (s)	LC_{50}	> 100000 (nom.)		
	Inverte	brates			
Daphnia magna	48 hours (s)	EC ₅₀	> 100000 (nom.)		
Algae					
Pseudokirchneriella subcapitata	72 hours (s)	E _r C ₅₀ NOEC	> 100000 (nom.) 100000 (nom.)		
s: static exposure; nom. based on nominal concentrations.					

Folpet metabolite Benzamide: Toxicity data for aquatic species (most sensitive species of each group)

Species	Time-scale	Endpoint	Toxicity (µg/L)		
	Fis	h			
Oncorhynchus mykiss	96 hours (s)	LC ₅₀	> 100000 (m m.)		
	Inverte	brates			
Daphnia magna	48 hours (s)	EC ₅₀	> 102000 (m m.)		
Algae					
Pseudokirchneriella subcapitata	72 hours (s)	E _r C ₅₀ NOEC	>96000 (m.m.) 96000 (m.m.)		
s: static exposure; nom. based on nominal concentrations.					

Folpet metabolite 2-Cyanobenzoic acid: Toxicity data for aquatic species (most sensitive species of each group)

Species	Time-scale	Endpoint	Toxicity (µg/L)		
Fish					
Oncorhynchus mykiss	96 hours (s)	LC ₅₀	>100000 (nom.)		
Invertebrates					
Daphnia magna	48 hours (s)	EC ₅₀	>100000 (nom.)		

Folpet metabolite 2-Cyanobenzoic acid: Toxicity data for aquatic species (most sensitive species of each group)

Algae					
Pseudokirchneriella subcapitata		72 hours (s)	E _r C ₅₀ NOEC	> 100000 (nom.) 100000 (nom.)	
s:	static exposure;				
nom.	based on nominal concentrations.				

Effects on earthworms or other soil non-target organisms

Acute toxicity to Eisenia foetida	14-day $LC_{50} > 1000 \text{ mg}$ folpet-equiv/kg dry weight artificial soil, corresponding to > 882 mg folpet-equiv/kg on a wet weight basis.	
Reproductive toxicity to Eisenia foetida	28-day NOEC = 5.18 mg folpet -equiv/kg dry weight artificial soil, corresponding to 4.57 mg folpet-equiv/kg on a wet weight basis. *	
	28-day NOEC = 56.7 mg phthalimide /kg dry weight artificial soil (highest concentration tested), corresponding to 50.0 mg phthalimide/kg on a wet weight basis.	
	28-day NOEC = 56.7 mg phthalic acid /kg dry weight artificial soil (highest concentration tested), corresponding to 50.0 mg phthalic acid/kg on a wet weight basis.	
Terrestrial plant toxicity	The effects of soil (LUFA 2.2)-incorporated phthalimide on seedling emergence and early growth stage seedling development were studied according to OECD 208. The most sensitive species was sugar beet (<i>B. vulgaris</i>): the lowest EC_{50} was 193 mg phthalimide/kg soil dw. The corresponding NOEC was 64 mg/kg soil dw and the lowest EC_{10} was 58.5 mg/kg soil dw (51.6 mg/kg wet weight).	
	The effects of soil (LUFA 2.2)-incorporated phthalic acid on seedling emergence and early growth stage seedling development were studied according to OECD 208. The most sensitive species was carrot (<i>D. carota</i>): the NOEC was 64 mg/kg soil dw and the lowest EC_{10} was 44.3 mg/kg soil dw (39.1 mg/kg wet weight).	
Agreed by EPCO 22 experts meeting on ecotoxicology that the lowest endpoint should be used without applying a correction factor. Folpet added at test initiation is expected to have been hydrolysed under the conditions of these studies and the influence of the metabolites is therefore accommodated within the endpoints.		
Nitrogen mineralization	No significant effects of folpet ($<\pm 10\%$ effect compared to untreated control) at 1.874 and 18.74 mg a.s./kg wet soil (1.593 and 15.93 kg folpet/ha).	
-------------------------	---	
Carbon mineralization	Dehydrogenase activity affected by < 10% (compared to untreated control) at 1.874 mg folpet /kg wet soil (1.593 kg folpet/ha). Effect >10%, <25% on D 28 at 15.93 kg a.s./ha (15.93 kg a.s./ha). NOEC therefore set to 1.874 mg folpet/kg wet soil).	
	NOEC based on statistically significant (p < 0.05) inhibition of glucose-induced respiration (C-mineralisation) in LUFA 2.3 soil was 1000 mg phthalimide /kg dry soil, corresponding to 882 mg phthalimide/kg wet soil.	
	NOEC based on statistically significant (p < 0.05) inhibition of glucose-induced respiration (C-mineralisation) in LUFA 2.3 soil was 400 mg phthalic acid /kg dry soil, corresponding to 353 mg phthalic acid/kg wet soil.	

Effects on soil micro-organisms

Effects on terrestrial vertebrates

Acute toxicity to mammals	$LC_{50} > 2000 \text{ mg/kg bw (rat)}.$
Acute toxicity to birds	$LD_{50} = 2510 \text{ mg/kg bw}$ (bobwhite quail).
Dietary toxicity to birds	$LC_{50} >5000 \text{ ppm}$ (bobwhite quail, mallard duck).
Reproductive toxicity to birds	NOEC = 1000 mg/kg diet (bobwhite quail, mallard duck).

Effects on honeybees

Acute oral toxicity	$LD_{50} > 236 \ \mu g/bee.$
Acute contact toxicity	$LD_{50} > 200 \ \mu g/bee.$

Bioconcentration

Bioconcentration factor (BCF)	Whole fish $BCF = 56$.
Depuration time(DT ₅₀)	0.63.
(DT ₉₀)	
Level of metabolites (%) in organisms accounting for > 10 % of residues	Levels < 10% following 14-day depuration phase.

Chapter 6: Other End Points

Not applicable.

Appendix II: List of Intended Uses

Folpet is used as a film preservative (PT 7) for use in products including paints, mastics, sealants, fillers and adhesives showing a preservative effect (e.g. wallpaper paste). Products containing folpet may be used by professionals (decorators and builders) and non-professionals. Typical application is manual (by brush, roller or spray apparatus).

The function is fungicide and the maximum end use concentration of folpet in the treated paint is 2g a.s./kg.

Organisms to be controlled are fungal species (Candida albicans).

The active substance, folpet, is applied once to the treated article during manufacture. The active substance, folpet, is not used directly by users.

Use assumptions based on the available guidance are as follows:

- Professional user: brush and roller application, 360 mins per day. Daily use.
- Professional user: spray application, 360 minutes per day.
- Non-professional user: brush and roller application, 4 hours per day, 2 to 5 days per year.

The biocidal product for PT 7 film preservative use is folpet technical. Adequate existing data were provided and accepted in support of these intended uses.

Object and/or situation	Product name	Organisms controlled	Formu	lation		Applicatio	on	Applied	amount per	treatment	Re marks:
			Type (d-f)	Conc. of a.s. (i)	method kind (f-h)	number min max	interval between application s (min)	g a.s./L min max	water L/m ² min max	g a.s./m ² min max	
Paints, mastics, sealants, fillers and adhesives showing a preservative effect (e.g. wallpaper paste)	Folpet	Candida albicans	Powder or crystals	Max. 2g a.s./kg	Applied once to the treated article during manufact ure	1	Not applicable	Not applicab le	Not applicabl e	Not applicabl e	None

Appendix III: List of studies

Data protection is claimed by the applicant in accordance with Article 60 of Regulation (EU) No 528/2012.

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
Section 2					
IIIA 2.7/01	Schlesinger, H.M.	1996	Folpet (folpan) technical. Analysis and certification of product ingredients. Analyst Ltd., Report No. 47/95 (Company file: R-8122). GLP, Unpublished. CONFIDENTIAL	Y	Makhteshim
IIIA 2.7/02	Anon	2006	Folpet. a. i. technical specification. Makhteshim Chemical Works Ltd., unnumbered report, 31 January 2006. Not GLP, Unpublished. CONFIDENTIAL	Y	Makhteshim
Section 3					
IIIA 3.1.1/01	Volante, A.	1995a	Determination of the melting point of folpan. Institut Fresenius, Report No. IF- 94/09656-01 (Company file: R-7883). GLP, Unpublished.	Y	Makhteshim
IIIA 3.1.3/01	Volante, A.	1995b	Determination of the density of folpan. Institut Fresenius, Report No. IF- 94/09656-02 (Company file: R-7884). GLP, Unpublished.	Y	Makhteshim
IIIA 3.2/01	Lorence, P.J.	1991	Folpet – determination of vapor pressure. Ricerca Inc., Report No. 4174-91-0098- AS (Company file: R-6280). GLP, Unpublished.	Y	Makhteshim
IIIA 3.3.1/01	Schlesinger, H.M.	1987a	Folpan – water solubility. Analyst Ltd., Report No. 431 (Company file: R-4626). Not GLP, Unpublished.	Y	Makhteshim
IIIA 3.3.1/02	Schlesinger, H.M.	1987b	Folpan – solubility in organic solvents. Analyst Ltd., Report No. 436 (Company file: R-4636). Not GLP, Unpublished.	Y	Makhteshim
IIIA 3.3.1/03	Schlesinger, H.M.	1987c	Folpan – partition coefficient (n- octanol/water). Analyst Ltd., Report No. 426 (Company file: R-4616). Not GLP, Unpublished.	Y	Makhteshim
IIIA 3.3.1/04	Comb, A.L.	1998	Folpet (technical) physico-chemical properties. Huntingdon Life Sciences Ltd., Report No. MAK502/983411 (Company file: R- 10248).	Y	Makhteshim

IIIA reports

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
IIIA 3.3.2/01	Schlesinger, H.M.	1987a	Folpan – water solubility. Analyst Ltd., Report No. 431 (Company file: R-4626). Not GLP, Unpublished.	Y	Makhteshim
IIIA 3.3.2/02	Schlesinger, H.M.	1987b	Folpan – solubility in organic solvents. Analyst Ltd., Report No. 436 (Company file: R-4636). Not GLP, Unpublished.	Y	Makhteshim
IIIA 3.3.2/03	Schlesinger, H.M.	1987c	Folpan – partition coefficient (n- octanol/water). Analyst Ltd., Report No. 426 (Company file: R-4616). Not GLP, Unpublished.	Y	Makhteshim
IIIA 3.3.2/04	Comb, A.L.	1998	Folpet (technical) physico-chemical properties. Huntingdon Life Sciences Ltd., Report No. MAK502/983411 (Company file: R- 10248). GLP, Unpublished.	Y	Makhteshim
IIIA 3.3.3/01	Anonymous	2007	Material safety data sheet (folpet technical). Makhteshim Chemical Works Ltd., (Company file: R-3735.EU). Not GLP, Unpublished.	Y	Makhteshim
IIIA 3.4/01	Comb, A.L.	2000	Folpet (pure grade) spectra. Huntingdon Life Sciences Ltd., Report No. MAK594/002162 (Company file: R- 11510). GLP, Unpublished.	Y	Makhteshim
IIIA 3.5/01	Schlesinger, H.M.	1987a	Folpan – water solubility. Analyst Ltd., Report No. 431 (Company file: R-4626). Not GLP, Unpublished.	Y	Makhteshim
IIIA 3.7/01	Schlesinger, H.M.	1987b	Folpan – solubility in organic solvents. Analyst Ltd., Report No. 436 (Company file: R-4636). Not GLP, Unpublished.	Y	Makhteshim
IIIA 3.9/01	Schlesinger, H.M.	1987c	Folpan – partition coefficient (n- octanol/water). Analyst Ltd., Report No. 426 (Company file: R-4616). Not GLP, Unpublished.	Y	Makhteshim
IIIA 3.11/01	Comb, A.L.	1998	Folpet (technical) physico-chemical properties. Huntingdon Life Sciences Ltd., Report No. MAK502/983411 (Company file: R- 10248). GLP, Unpublished.	Y	Makhteshim
IIIA 3.15/01	Comb, A.L.	1998	Folpet (technical) physico-chemical properties.	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
			Huntingdon Life Sciences Ltd., Report No. MAK502/983411 (Company file: R- 10248). GLP, Unpublished.		
IIIA 3.16/01	Comb, A.L.	1998	Folpet (technical) physico-chemical properties. Huntingdon Life Sciences Ltd., Report No. MAK502/983411 (Company file: R- 10248). GLP, Unpublished.	Y	Makhteshim
Section 4					
IIIA 4.1/01	Schlesinger, H.M.	1996	Folpet (folpan) technical. Analysis and certification of product ingredients. Analyst Ltd., Report No. 47/95 (Company file: R-8122). GLP, Unpublished. CONFIDENTIAL	Y	Makhteshim
IIIA 4.1/02	Class, T.	2006	Folpet: Confirmatory methods for the analysis of impurities in technical product. PTRL Europe, Report No. P/B 968 G (Company file: R-20114). GLP, Unpublished. CONFIDENTIAL	Y	Makhteshim
IIIA 4.2(a)/01	Rose, J.E., Kimmel, E.	2000	Field soil dissipation of folpet in bare soil in Washington. PTRL West, Inc., Report No. 915W-1 (Company file: R-11798). GLP, Unpublished.	Y	Makhteshim
IIIA 4.2(a)/02	Mende, P.	2002	Validation of an analytical method (confirmatory method) for the determination of folpet in soil. GAB/IFU, Report No. 20021451/01-RVS (Company file: R15785). GLP, Unpublished.	Y	Makhteshim
IIIA 4.2(b)/01	Balluff, M.	1994	Monitoring low levels of folpan in air. GAB Biotechnologie GmbH and IFU Umweltanalytik GmbH, Report No. 93092/01-MEL (Company file: R-7630). GLP, Unpublished.	Y	Makhteshim
IIIA 4.2(c)/01	Mende, P.	1994	Residue analysis of folpet in water, method validation. GAB Biotechnologie GmbH and IFU Umweltanalytik GmbH, Report No. IFU94002/01-FOL (Company file: R-7736). GLP, Unpublished.	Y	Makhteshim
IIIA 4.2(c)/02	Harper, H.	2009	Method Validation for the Determination of Folpet and Degradates in Pond Water and Sediment. Huntingdon Life Sciences, unpublished report No. MAK0978 (Company file: R- 25157).	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
			GLP, Unpublished.		
IIIA 4.2(c)/03	Harper, H.	2011	Folpet and Metabolites Validation of Methodology for the Determination of Residues of Folpet and its Metabolites in Drinking Water. Huntingdon Life Sciences, unpublished report No. LEB0046 (Company file: R- 27683).	Y	Makhteshim
			GLP, Unpublished.		
Section 5					
IIIA 5.3.1/01	Morewood, K.	2008	Technical Report for protocol 2007-03. MGS Laboratories, Report No. TR2008- 04. Not GLP, Unpublished.	Y	Makhteshim
Section 6					
IIIA 6.1.1/01		1992a	Folpet technical: acute oral toxicity (limit test) in the rat. (Company file: R-6510).	Y	Makhteshim
			GLP, Unpublished.		
IIIA 6.1.2/01		1992b	Folpet technical: acute dermal toxicity (limit test) in the rat. (Company file: R-6509).	Y	Makhteshim
IIIA 6.1.2/02		1982	The acute dermal toxicity of Chevron folpet technical (SX-1346) in adult male and female rabbits.	Y	Makhteshim
			R-6139). GLP Unpublished		
IIIA 6.1.3/01		1993	Folpet technical (micronised): acute inhalation toxicity study in the rat. (Company file: R-6895b). GLP, Unpublished.	Y	Makhteshim
IIIA 6.1.4/01		1993a	Folpet technical (micronised): acute dermal irritation test in the rabbit. (Company file: R- 7394). GLP, Unpublished.	Y	Makhteshim
IIIA 6.1.4/02		1992c	Folpet technical: acute eye irritation test in the rabbit. (Company file: R-6511). GLP, Unpublished.	Y	Makhteshim
IIIA 6.1.5/01		1993b	Folpet technical (micronised): delayed	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
			contact hypersensitivity study in the guinea pig. (Company file: R-7424). GLP, Unpublished.		
IIIA 6.2/01		1991	Metabolic fate of ¹⁴ C folpet in Sprague- Dawley rats. (Company file R-5544). GLP, Unpublished.	Y	Makhteshim
IIIA 6.2/02		1980	[Carbonyl- ¹⁴ C] folpet metabolism in rats. (Company file R- 5441). Not GLP, Unpublished.	Y	Makhteshim
IIIA 6.2/03		1991	Comparative metabolic fate and biochemical effects of folpet in male rats and mice. (Company file: R-5232). GLP, Unpublished.	Y	Makhteshim
IIIA 6.2/04		1974	The metabolic fate of ¹⁴ C folpet (phaltan) in the rat. (Company file: R-5440). Not GLP, Unpublished.	Y	Makhteshim
IIIA 6.2/05	Gordon, E., Williams, M.	1999	The stability of captan and folpet in whole blood. Horizon Laboratories, Inc., Study No.: 10238. (Company file: R-11143). GLP, Unpublished	Y	Makhteshim
IIIA 6.2/06	van de Sandt, J.J.M.	1997	<i>In vitro</i> percutaneous absorption of formulated Folpan TM (folpet) through human and rat skin. TNO Nutrition and Food Research Institute, Report No. V97.550. (Company file: R-9424a). GLP, Unpublished.	Y	Makhteshim
IIIA 6.2/07	Shah, P.V., Fisher, H.L., Sumler, M.R., Monroe, R.J., Chernoff, N., Hall, L.L.	1987	Comparison of the penetration of 14 pesticides through the skin of young and adult rats. Journal of Toxicology and Environmental Health, 21: 353-366 (Company file: R-10023). Not GLP, Published.	N	-
IIIA 6.2/08		1992	Captan autoradiography studies in the mouse.	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
			7105) GLP, Unpublished.		
IIIA 6.2/09		2004	Intestinal irritation in CD-1 mice after a 24-hour exposure to folpet. (company file: R-16283). (Company file R-7105) GLP, Unpublished.	Y	Makhteshim
IIIA 6.2/10	Arndt, TY., Dohn, D.	2004	Measurement of the half-life of thiophosgene in human blood. PTRL West, Inc, unpublished report number 1146W-1 GLP, Unpublished.	Y	Makhteshim
IIIA 6.2/11		1990	A study of dermal penetration of ¹⁴ C– folpet in the rat (Company File: R-5470) GLP, Unpublished.	Y	Makhteshim
IIIA 6.2/12		2006	¹⁴ C-folpet. Comparison of the <i>in vitro</i> dermal absorption using human and rat skin with the <i>in vivo</i> dermal absorption in the male rat.	Y	Makhteshim
IIIA 6.3.1/01		1979	A 21-day feeding study of technical phaltan in rats. (Company file: R-6116). non GLP, Unpublished.	Y	Makhteshim
IIIA 6.3.1/02		1981	Folpan: four week range-finding study in dietary administration to mice. (Company file: R-1777). Not GLP, Unpublished.	Y	Makhteshim
IIIA 6.3.1/03		1994a	Folpet: feasibility study by dietary administration to male mice for 21 days. (Company file: R-7632). GLP, Unpublished.	Y	Makhteshim
IIIA 6.3.1/04		1994b	Folpet: extended feasibility/preliminary study by dietary administration to male mice for 28 days. (Company file: R-7794). GLP, Unpublished.	Y	Makhteshim
IIIA 6.3.1/05		1995	Folpet: investigation of the effect on the duodenum of male mice after dietary administration for 28 days with recovery.	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
			(Company file: R-8004). GLP, Unpublished.		
IIIA 6.3.1/06		1983	A four week pilot oral toxicity study in dogs with folpet technical. (Company file: R-6135). GLP, Unpublished.	Y	Makhteshim
IIIA 6.3.2/01		1988	Four week repeated-dose dermal toxicity study in rats with folpet technical (SX-1388). (Company file: R-5452). GLP, Unpublished.	Y	Makhteshim
IIIA 6.4.1/01		1982a	Folpan: toxicity in dietary administration to rats for 13 weeks. (Company file: R-1800). GLP, Unpublished.	Y	Makhteshim
IIIA 6.4.1/02		1981	Phaltan: subchronic toxicity study in rats. (Company file: R-6118; R-6118-1). GLP, Unpublished.	Y	Makhteshim
IIIA 6.4.1/03		1985	Folpan: 90 day preliminary toxicity study in beagle dogs. (Company file: R-3654). GLP, Unpublished.	Y	Makhteshim
IIIA 6.4.1/04		1988	Folpan: chronic oral study in beagle dogs for 52 weeks. (Company file: R-4663). GLP, Unpublished.	Y	Makhteshim
IIIA 6.4.1/05		1986	A one year subchronic oral toxicity study in dogs with folpet technical. (Company file: R-6035). GLP, Unpublished.	Y	Makhteshim
IIIA 6.6.1/01	May, K.	1993a	Folpet technical: bacterial mutagenicity studies using strain TA100 of <i>Salmonella</i> <i>typhimurium</i> (the Ames Test). Pharmaco-LSR Ltd. Report Number 93/MAK174/0886. (Company file: R-7365). GLP, Unpublished.	Y	Makhteshim
IIIA 6.6.1/02	May, K.	1993b	Folpan technical (PCMM<50ppm); folpan technical (PCMM 220ppm) and perchloromethyl mercaptan (PCMM): assessment of mutagenic potential in histidine auxotrophs of <i>Salmonella</i> <i>typhimurium</i> (the Ames Test).	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
			Pharmaco-LSR Ltd., Report No. 93/MAK147/0608 (Company file: R- 7208). GLP, Unpublished.		
IIIA 6.6.2/01	Hodson- Walker, G.	1986	Folpan tech: investigation of mutagenic activity at the HGPRT locus in a chinese hamster V79 cell mutation system. Life Science Research Ltd., Report No. 86/MAK054/188 (Company file: R-4340). GLP, Unpublished.	Y	Makhteshim
IIIA 6.6.2/02	Hodson-Walker, G.	1987	<i>In vitro</i> assessment of the clastogenic activity of Folpan tech in cultured human lymphocytes. Life Science Research Ltd., Report No. 87/MAK053/031 (Company file: R-4392). GLP, Unpublished.	Y	Makhteshim
IIIA 6.6.3/01	Loveday, K.S.	1989	<i>In vitro</i> chromosomal aberration assay on folpet technical. Arthur D Little Inc., Report No. 61565-00 (Company file: R-5211). GLP, Unpublished.	Y	Makhteshim
IIIA 6.6.4/01		1985	Folpan mouse micronucleus test. (Company file: R-3651). GLP, Unpublished.	Y	Makhteshim
IIIA 6.6.5/01		1983	<i>In vivo</i> cytogenetics study in rats folpet technical (SX-1388). (Company file: R-6133). GLP, Unpublished.	Y	Makhteshim
IIIA 6.6.5/02		1980	The dominant lethal study of phaltan technical. (Company file: R-6121). Not GLP, Unpublished.	Y	Makhteshim
IIIA 6.6.5/03	Provan, W.M.	1993	First revision to the potential of captan to react with DNA. Zeneca Central Toxicology Laboratory, Report No. CTL/R/1131 (Company file: R-7106). Not GLP, Unpublished.	Y	Makhteshim
IIIA 6.6.5/04	Collins, T.F.X	1972	Dominant lethal assay. II Folpet and difolatan. Division of toxicology: section B 6.6 reproductive toxicity. The Weinberg Group inc, unpublished report 18 October 2004. Not GLP, Unpublished.	Y	Makhteshim
IIIA 6.6.5/05		2004	Folpet: in vivo mouse duodenum comet assay.	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
IIIA 6.6.6/01		1985	Evaluation of Chevron folpet technical in the mouse somatic cell mutation assay.	Y	Makhteshim
IIIA 6.6.6/02		1987	Lack of induction of nuclear aberrations by captan in mouse duodenum.	N	-
IIIA 6.6.6/03		1971	Mutagenic study with folpet in albino mice. (Company file: R-6073). Not GLP, Unpublished.	Y	Makhteshim
IIIA 6.6.8/01	Tennekes, H.	1995	The genetic toxicity of folpet. Unpublished position paper commissioned by Makhteshim Chemical Works Ltd. for submission to Bundesgesundheitsamt (BGA), Berlin, Germany, January 1995 Paper (Company file: R-8227). Not GLP, Unpublished.	Y	Makhteshim
IIIA 6.7/01		1989	Folpan toxicity by dietary administration to rats for two years. (Company file: R-4672). GLP, Unpublished.	Y	Makhteshim
IIIA 6.7/02		1985	Folpan carcinogenicity study in the rat. (Company file: R-4330). GLP, Unpublished.	Y	Makhteshim
IIIA 6.7/03		1985	Chevron folpet technical (SX-1388): combined chronic oral toxicity/oncogenicity study in rats. (Company file: R-6081). GLP, Unpublished.	Y	Makhteshim
IIIA 6.7/04		1985a	Folpan: oncogenicity study in the mouse. (Company file: R-3650). GLP, Unpublished.	Y	Makhteshim
IIIA 6.7/05A		1982	Lifetime oncogenic feeding study of Phaltan technical (SX-946) in CD-1 (ICR derived) mice. (Company file: R-6036).	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published GLP, Unpublished.	Data Protection Claimed (Yes/No	Owner
IIIA, 6.7/06		1994	Folpet: oncogenicity study by dietary administration to CD-1 mice for 104 weeks. (Company file: R-6530). GLP, Unpublished.	Y	Makhteshim
IIIA 6.8.1/01		1985b	Folpan: teratology study in the rat. (Company file: R-3653). GLP, Unpublished.	Y	Makhteshim
IIIA 6.8.1/02		1983	Teratology study in rats with folpet technical. (Company file: R-6117). GLP, Unpublished.	Y	Makhteshim
IIIA 6.8.1/03		1985c	Folpan: teratology study in the rabbit. (Company file: R-3684). GLP, Unpublished.	Y	Makhteshim
IIIA6.8.1/04		1985	Teratology study in rabbits with folpet technical using a 'pulse-dosing' regimen. (Company file: R-6183). GLP, Unpublished.	Y	Makhteshim
IIIA6.8.1/05		2002	Folpet: Preliminary study of effects on embryo-foetal development in CD rats treated by oral gavage administration. GLP, Unpublished.	Y	Makhteshim
IIIA6.8.1/06		2003	Folpet: Study of effects on embryo-foetal development in CD rats treated by oral gavage administration. Huntingdon Life GLP, Unpublished.	Y	Makhteshim
IIIA6.8.1/07		1984	Teratology study in rabbits with folpet technical. (Company file: R-6136) GLP, Unpublished	Y	Makhteshim
IIIA 6.8.2/01		1986	Folpan: two generation reproduction study in the rat. (Company file: R-4347). GLP, Unpublished.	Y	Makhteshim
IIIA 6.8.2/02		1985	Two generation (two litter) reproduction study in rats with Chevron folpet	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
			technical. (Company file: R-6134). GLP, Unpublished.		
IIIA 6.9/01		1982b	Folpan: neurotoxic effects during 13 week dietary administration to rats. (Company file: R- 1791 GLP, Unpublished.	Y	Makhteshim
IIIA 6.10/01		1997	Folpet: study of hyperplasia in the mouse duodenum. (Company file: R-9688). GLP, Unpublished.	Y	Makhteshim
IIIA 6.10/02	Bernard, B.K., Gordon, E.B.	1999	An evaluation of the Common Mechanism Approach to the Food Quality Protection Act: Captan and Four Related Fungicides, a practical example. International Journal of Toxicology, 19:43-61, 2000 Not GLP, Published.	N	-
IIIA 6.11/01		1983	Acute toxicological study of folpet after intraperitoneal application to the rat. (Company file: R-3593). Not GLP, Unpublished.	Y	Makhteshim
IIIA 6.12.2/01	Maddy, K.T., Edmiston, S., Richmond, D.	1990	Illness, injuries and deaths from pesticide exposures in California 1949-1988. Reviews of Environmental Contamination and Toxicology, Vol 114 (Company file: R-5901). Not GLP, Published	N	-
IIIA 6.12.2/02	Blair, A., Grauman, D.J., Lubin, J.H., Fraumeni, J.F.	1983	Lung cancer and other causes of death among licensed pesticide applicators. JNCI July 1983, 71: 31-37 (Company file: R-3952). Not GLP, Published	N	-
IIIA 6.12.4/01		1980	An epidemiologic study of mortality within a cohort of captan workers. (Company file: R-4641). Not GLP, unpublished.	Y	Makhteshim
IIIA 6.12.4/01 (Addendum)		1987	An epidemiologic study of mortality within a cohort of captan workers. (Company file: R-4641). Not GLP, unpublished.	Y	Makhteshim
Section 7		1005			
IIIA	Ruzo, L.O., Ewing,	1988	Hydrolysis of (¹⁴ C-carbonyl)-folpet.	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
7.1.1.1/01	A.D.		Chevron Chemical Company, Report No. PTRL 124 (Company file: R-5235). GLP, Unpublished.		
IIIA 7.1.1.1.1/02	Concha, M., Ruzo, L.O.	1992	Hydrolysis of (¹⁴ C-trichloromethyl) folpet at pH 5, 7 and 9. PTRL-West, Inc., Report No. 371W (Company file: R-5235a). GLP, Unpublished.	Y	Makhteshim
IIIA 7.1.1.1.1/03	Schlesinger, H.M.	1985a	Hydrolysis as a function of pH. Analyst Ltd., Report No. not stated (Company file: R-3655). Not GLP, Unpublished	Y	Makhteshim
IIIA 7.1.1.1.1/04	Schlesinger, H.M.	1985b	Hydrolysis as a function of pH. Analyst Ltd., Report No. PTRL 124 (Company file: R-3664). Not GLP, Unpublished	Y	Makhteshim
IIIA 7.1.1.1.2/01	Ruzo, L.O.	1989	Pilot experiment: aqueous photolysis of (¹⁴ C) folpet in natural sunlight and ultraviolet light at pH3. PTRL-West, Inc., Report No. 173W (Company file: R-5429). GLP, Unpublished.	Y	Makhteshim
IIIA 7.1.1.2.1/01	Jenkins, W.R.	1994	Folpet technical: assessment of its ready biodegradability. Pharmaco-LSR Ltd., Report No. 94/MAK/186/0048 (Company file: R- 7491). GLP, Unpublished.	Y	Makhteshim
IIIA 7.1.1.2.1/02	Jenkins, W.R.	1998	C ¹⁴ -Folpet: assessment of its ready biodegradability. HLS Ltd., Report No. MAK512/984038 (Company file: R-10488). GLP, Unpublished.	Y	Makhteshim
IIIA 7.1.2.2.2/01	Crowe, A.	1999	Folpet. Degradability in the water/sediment system. HLS Ltd., Report No. MAK 510/98502 (Company file: R-10432). GLP, Unpublished	Y	Makhteshim
IIIA 7.2.2.1/01	Daly, D.	1991a	Aerobic soil metabolism of ¹⁴ C – folpet. ABC Laboratories, Inc., Report No. 37155 (Company file: R-5474). GLP, Unpublished.	Y	Makhteshim
IIIA 7.2.2.1/02	Pack, D.E.	1976	The soil metabolism of (carbonyl- ¹⁴ C) folpet (Phaltan□). Chevron Chemical Company, Report No. 722.21 (Company file: R-5976). Not GLP, Unpublished.	Y	Makhteshim
IIIA 7.2.2.1/03	Crowe, A	2001	Folpet aerobic soil rate of degradation. Huntingdon Life Sciences Ltd., Report No. MAK560/003188 (Company file: R- 11249). GLP, Unpublished.	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
IIIA 7.2.2.2/01	Creeger, S.M.	1991a	Folpet field dissipation study in citrus groves in Polk County, Florida. Environmental Chemistry Institute, Report No. C0-002b (Company file: R-5450b). GLP, Unpublished.	Y	Makhteshim
IIIA 7.2.2.2/02	Creeger, S.M.	1991b	Folpet field dissipation study in citrus groves in Seminole County, Florida. Environmental Chemistry Institute, Report No. C0-002a (Company file: R-5450a). GLP, Unpublished.	Y	Makhteshim
IIIA 7.2.2.2/03	Rose, J.E., Kimmel, M.	2000	Field soil dissipation of folpet in bare ground in Washington. PTRL West, Inc. Report No. PTRL 915W- 1 (Company file R-11798). GLP, Unpublished	Y	Makhteshim
IIIA 7.2.2.4/01	Daly, D.	1991b	Anaerobic soil metabolism of ¹⁴ C-folpet. ABC Laboratories, Inc., Report No. 37156. (Company file: R-5473). GLP, Unpublished.	Y	Makhteshim
IIIA 7.2.2.4/02	Pack, D.E.	1980	The anaerobic soil metabolism of (carbonyl- ¹⁴ C) Folpet. Chevron Chemical Company, Report No. 721.14 (Company file: R-7031). Not GLP, Unpublished.	Y	Makhteshim
IIIA 7.2.2.4/03	Rhoads, W.D.	1991a	Environmental fate study for soil photolysis characteristics of folpet under natural and artificial light. Colorado Analytical Research & Development Corporation, Report No. Makhteshim 1096 (Company file: R- 5270). GLP, Unpublished.	Y	Makhteshim
IIIA 7.2.2.4/04	Habig, C.	1997	Response to draft EFED RED Chapter on folpet. Jellinek, Schwartz and Connolly, Inc., (Company file: R-15061). GLP, Unpublished.	Y	Makhteshim
IIIA 7.2.3.1/01	Ver Hey, M.E.	1988	Environmental fate study for adsorption/desorption of folpet. Colorado Analytical Research & Development Corp., Report No. MAA 1098 (Company file: R5256). GLP, Unpublished.	Y	Makhteshim
IIIA 7.2.3.1/02	Geffke, T.	2000	Phthalimide. Adsorption/desorption using a batch equilibrium method. Laboratorium für Angewandte Biologie, Report No. CAD66872 (Company file No. R-11303). GLP, Unpublished	Y	Makhteshim
IIIA 7.2.3.2/01	Rhoads, W.D.	1991b	Environmental fate study for the aged leaching characteristics of folpet. Colorado Analytical Research &	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
			Development Corp., Report No. Makhteshim 1097 (Company file: R- 5278). GLP, Unpublished.		
IIIA 7.2.3.2/02	Heintz, A.	2001	Aged leaching of folpet in soil (short irrigation period of 2 days). GAB Biotechnologie GmbH and IFU Umweltanalytik GmbH, Report No. 20011255/01-CVBA (Company file: R- 13913). GLP, Unpublished.	Y	Makhteshim
IIIA 7.3.1/01	Voget, M.	1994	Calculation of the photochemical- oxidative degradation of folpet. ECON. Report No. EF 94-31- 10,(Company file: R-8124). Not GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.1/01		1988a	Acute flow-through toxicity of folpet technical to rainbow trout (<i>Salmo</i> <i>gairdneri</i>).	Y	Makhteshim
			(Company file R-4954). GLP, Unpublished.		
IIIA 7.4.1.1/02		1988b	Acute flow-through toxicity of folpet technical to bluegill sunfish (<i>Lepomis macrochirus</i>).	Y	Makhteshim
			(Company file R-4955). GLP, Unpublished.		
IIIA 7.4.1.1/03		2002a	Folpet: acute toxicity to rainbow trout. (Company file R- 12357). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.1/04		2002b	Folpet: acute toxicity to brown trout. (Company file R- 12358). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.1/05		2002c	Folpet: acute toxicity to common carp. (Company file R- 12359). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.1/06		2002d	Folpet: acute toxicity to 3-spined stickleback. (Company file R- 12360). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.1/07		2002e	Folpet: acute toxicity to roach. (Company file R-	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
			GLP, Unpublished.		
IIIA 7.4.1.1/08		2002f	(Company file R- 12362). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.1/09		1989a	Folpet technical: acute toxicity to sheepshead minnow (<i>Cyprinodon</i> <i>variegatus</i>) under flow-through conditions. (Company file R-5456).	Y	Makhteshim
			GLP, Unpublished.		
IIIA 7.4.1.1/10		1983a	Examination for acute toxicity of folpet in trouts at exposition of 96 hours in the bath fluid. (Company file R-3581). Not GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.1/11		1983b	Examination for acute toxicity of folpet in carp at exposition of 96 hours in the bath fluid.	Y	Makhteshim
			Not GLP, Unpublished.		
IIIA 7.4.1.1/12		1988c	Acute toxicity of phthalimide to rainbow trout (<i>Salmo gairdneri</i>).	Y	Makhteshim
			(Company file R-4956). GLP, Unpublished.		
IIIA 7.4.1.1/13		1989	Acute toxicityof phthalimide to bluegill sunfish (<i>Lepomis macrochirus</i>) in a static renewal system. (Company file R-5255). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.1/14		1989b	Phthalimide technical: acute toxicity to sheepshead minnow (<i>Cyprinodon</i> <i>variegatus</i>) under flow-through conditions. (Company file R-5454). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.1/15		1999a	Phthalic acid: acute toxicity test with rainbow trout (<i>Oncorhynchus mykiss</i>) under static conditions. (Company file (R-11304) GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.1/16		2000a	Phthalamic acid acute toxicity to fish. (Company file R-11408) GLP, Unpublished	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
IIIA 7.4.1.1/17		2000Ь	Benzamide acute toxicity to fish. (Company file R-11411) GLP, Unpublished	Y	Makhteshim
IIIA 7.4.1.1/18		2000c	2-Cyanobenzoic acid acute toxicity to fish. (Company file R-11414) GLP, Unpublished	Y	Makhteshim
IIIA 7.4.1.2/01	Boudreau, P., Forbis, A.D., Cranor, W. Franklin, L.	1980	Static acute toxicity of phaltan technical (SX-946) to <i>Daphnia magna</i> . ABC Laboratories Inc., Report No. S-1859 (Company file: R-6184). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.2/02	Burgess, D.	1988	Acute flow-through toxicity of folpet technical to <i>Daphnia magna</i> . ABC Laboratories Inc., Report No. 36786 (Company file: R-4958). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.2/03	Ward, G.S., Manning, C.S.	1989c	Folpet technical: acute toxicity to mysids (<i>Mysidopsis bahia</i>) under flow-through conditions. Hunter/ESE Inc., Report No. 93019-0200- 2130. (Company file: R-5457). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.2/04	Rabe, B.	1989	Folpet technical: acute effects on new shell growth of the eastern oyster (<i>Crassostrea</i> <i>virginica</i>) under flow-through conditions. Hunter/ESE Inc., Report No. 93019-0400- 3140. (Company file: R-5550). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.2/05	Forbis, A.D.	1989	Acute toxicity of phthalimide to <i>Daphnia</i> magna. ABC Laboratories Inc., Report No. 36790 (Company file: R-4957). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.2/06	Ward, G.S. Manning, C.S.	1989d	Phthalimide technical: acute toxicity to mysids (<i>Mysidopsis bahia</i>) under flow- through conditions. Hunter/ESE Inc., Report No. 93019-0500- 2130 (Company file: R-5455). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.2/07	Gries, T.	1999b	Phthalic acid: acute immobilisation test with Daphnids (<i>Daphnia magna</i>) under static conditions. Springborn Laboratories (Europe) AG, Report No. 1026.013.110 (Company file: R-11305) GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.2/08	Jenkins, C.A.	2000d	Phthalamic acid acute toxicity <i>to Daphnia</i> <i>magna</i> . Huntingdon Life Sciences Ltd., Report No. MAK589/002496 (Company file R-11409)	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
			GLP, Unpublished		
IIIA 7.4.1.2/09	Jenkins, C.A.	2000e	Benzamide acute toxicity <i>to Daphnia</i> <i>magna</i> . Huntingdon Life Sciences Ltd., Report No. MAK589/002008 (Company file R-11412) GLP, Unpublished	Y	Makhteshim
IIIA 7.4.1.2/10	Jenkins, C.A.	2000f	2-Cyanobenzoic acid acute toxicity to Daphnia magna. Huntingdon Life Sciences Ltd., Report No. MAK583/002493 (Company file R-11415) GLP, Unpublished	Y	Makhteshim
IIIA 7.4.1.3/01	Dengler, D	1997	Testing of toxic effects of folpet technical on the single cell green alga <i>Scenedesmus</i> <i>subspicatus</i> . GAB & IFU GmbH, Report No. 96251/01- AASs (Company file: R-9381). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.3/02	Gries, T.	1999c	Phthalic acid: Alga, growth inhibition test with <i>Pseudokirchneriella subcapitata</i> . Springborn Laboratories (Europe) AG, Report No. 1026.013.430 (Company file: R-11306). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.3/03	Jenkins, C.A.	2000g	Phthalamic acid algal growth inhibition assay. Huntingdon Life Sciences Ltd., Report No. MAK590/002497 (Company file R-11410) GLP, Unpublished	Y	Makhteshim
IIIA 7.4.1.3/04	Jenkins, C.A.	2000h	Benzamide algal growth inhibition assay. Huntingdon Life Sciences Ltd., Report No. MAK587/002009 (Company file R-11413) GLP, Unpublished	Y	Makhteshim
IIIA 7.4.1.4/01	Sutcliffe, R., Daniel, M.	2012a	Folpet technical: Activated sludge respiration inhibition test. Brixham Environmental Laboratory, Report No.BR0714/B, GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.1.4/02	Sutcliffe, R., Daniel, M.	2012b	Folpet technical: Inhibition of nitrification. Brixham Environmental Laboratory, Report No.BR0738/B, GLP, Unpublished	Y	Makhteshim
IIIA 7.4.1.3/05	Jenkins, C.A.	2000i	2-Cyanobenzoic acid algal growth inhibition assay. Huntingdon Life Sciences Ltd., Report No. MAK584/002494 (Company file R-11416) GLP, Unpublished	Y	Makhteshim
IIIA 7.4.2/01		1989a	Uptake, depuration and bioconcentration of ¹⁴ C-folpet by bluegill sunfish (<i>Lepomis</i> <i>macrochirus</i>). (Company file R-4981). GLP, Unpublished.	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
IIIA 7.4.2/02		1991	Characterisation of ¹⁴ C-folpet residues in bluegill (<i>Lepomis macrochirus</i>) water and tissues. (Company file R-5258).	Y	Makhteshim
IIIA 7.4.3.1/01		1999	Folpan 500 SC prolonged toxicity to rainbow trout under semi-static conditions 28-day study. (Company file: R-10586). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.3.2/01		1989	Early life stage toxicity of folpet technical to fathead minnows (<i>Pimephales</i> <i>promelas</i>) in a flow-through test system. (Company file: R-5242). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.3.2/02		1995	Early life-stage toxicity of folpet technical to the fathead minnow (<i>Pimephales</i> <i>promelas</i>) under flow-through conditions. (Company file: R-8687). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.3.4/01	Burgess, D.	1989b	Chronic toxicity of folpet to Daphnia magna under flow-through test conditions. ABC Laboratories Inc., unpublished report No. 37035 (Company file: R-4978). GLP, Unpublished.	Y	Makhteshim
IIIA 7.4.3.4/02	Taylor, S.A	2007	Folpan 80 WDG 21-day semi-static renewal study on <i>Daphnia magna</i> . Huntingdon Life Sciences, Report No.MAK 0937/074051, GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.1.1/01	Saggau, B.	1995	Translation of the German report on the laboratory trial to assess the impact of 'Folpan' 500 SC on the activity of soil microflora in accordance with the guidelines of BBA Part VI 1-1, dated March 1990. Urania Agrochem GmbH, Report No. U95 BM F 02 (Company file: R-8785). GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.1.1/02	Winkelmann, G.	2013c	Phthalimide: Soil microorganisms: carbon transformation test. Dr U. Noack-Laboratorien, Report No TBC15504 (Company file: R-31785). GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.1.1/03	Winkelmann, G.	2013d	Phthalic acid: Soil microorganisms: carbon transformation test. Dr U. Noack-Laboratorien, Report No TBC15502 (Company file: R-31788). GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.1.2/01	Wüthrich, V.	1992	Acute toxicity (LC ₅₀) study of folpan	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
			technical to earthworms. RCC Umweltchemie AG, Report No. 311580 (Company file: R-6490). GLP, Unpublished.		
IIIA 7.5.1.3/01	Kay, C.N.	2000	An evaluation of the effects of 'Folpan' WDG and 'Merpan' applied to a wide number of crops. Oxford Agricultural Trials Ltd., report No. 677-99-MAK-PAN (Company file R- 11417). Not GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.1.3/02	Fiebig, S.	2013a	Phthalimide. Terrestrial plants test, seedling emergence and growth test. Dr. U. Noack-Laboratorien, report No. TNK15504 (Company file R-31783). GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.1.3/03	Fiebig, S.	2013b	Phthalic acid. Terrestrial plants test, seedling emergence and growth test. Dr. U. Noack-Laboratorien, report No. TNK15502 (Company file R-31786). GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.2.1/01	Wachter, S.	2000	'Folpan' 80 WDG and 'Folpan' 500 SC: Assessment of effects on reproduction and growth on <i>Eisenia foetida</i> in artificial soil. GAB GmbH, Report No. 20001021/01- NREf (Company file: R-11322). GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.2.1/02	Winkelmann, G.	2013a	Phthalimide: Earthworm (<i>Eisenia fetida</i>), Effects on Reproduction. Dr U. Noack-Laboratorien, Report No RBN15436 (Company file: R-31784). GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.2.1/03	Winkelmann, G.	2013b	Phthalic acid: Earthworm (<i>Eisenia fetida</i>), Effects on Reproduction. Dr U. Noack-Laboratorien, Report No RBN15437 (Company file: R-31787). GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.3.1.1/01		1982a	Acute oral LD50 – bobwhite quail phaltan technical (SX-1111). (Company file: R-6180). GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.3.1.2/01		1982b	Eight-day dietary LC_{50} – bobwhite quail phaltan technical (SX-1111).	Y	Makhteshim
			Not GLP, Unpublished.		
IIIA 7.5.3.1.2/02		1982a	Addendum to eight-day dietary LC50 study in bobwhite quail with folpet technical (SX-1111).	Y	Makhteshim
			(Company file: R-6181).		

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published GLP, Unpublished.	Data Protection Claimed (Yes/No	Owner
IIIA 7.5.3.1.2/03		1982c	Eight-day dietary LC ₅₀ – mallard duck phaltan technical (SX-1111). (Company file: R-6182). Not GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.3.1.2/04		1982b	Addendum to eight-day dietary LC50 study in mallard ducks with folpet technical (SX-1111). (Company file: R-6182). GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.3.1.3/01		1981	Subacute feeding – reproduction screening bioassay bobwhite quail phaltan technical (SX-1111). (Company file: R-7094). GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.3.1.3/02		1982d	One-generation reproduction study – bobwhite quail phaltan technical (SX- 1111). (Company file: R-6097). Not GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.3.1.3/03		1981a	Addendum to one-generation reproduction study in bobwhite quail with phaltan technical (SX-1111). (Company file: R-6079a). Not GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.3.1.3/04		1982e	One-generation reproduction study – mallard duck phaltan technical (SX-1111). (Company file: R-6351). Not GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.3.1.3/05		1981b	Addendum to one-generation reproduction study in mallard duck quail with phaltan technical (SX-1111). (Company file: R-6079b). Not GLP, Unpublished.	Y	Makhteshim
IIIA 7.5.4.1/01	Decker, U.	1993	Laboratory testing for oral and contact toxicity of folpan technical to honey bees, Apis mellifera L. RCC Ltd., Report No. RCC 331558 (Company file: R-6904). GLP, Unpublished.	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
Section 3					
IIIB 3.1.1/01	Schlesinger, H.M.	1987a	Folpan – water solubility. Analyst Ltd., Report No. 431 (Company file: R- 4626). Not GLP, Unpublished.	Y	Makhteshim
IIIB 3.1.1/02	Schlesinger, H.M.	1987b	Folpan – solubility in organic solvents. Analyst Ltd., Report No. 436 (Company file: R- 4636). Not GLP, Unpublished.	Y	Makhteshim
IIIB 3.1.1/03	Schlesinger, H.M.	1987c	Folpan – partition coefficient (n-octanol/water). Analyst Ltd., Report No. 426 (Company file: R- 4616). Not GLP, Unpublished.	Y	Makhteshim
IIIB 3.1.1/04	Comb, A.L.	1998	Folpet (technical) physico-chemical properties. Huntingdon Life Sciences Ltd., Report No. MAK502/983411 (Company file: R-10248). GLP, Unpublished.	Y	Makhteshim
IIIB 3.1.2/01	Schlesinger, H.M.	1987a	Folpan – water solubility. Analyst Ltd., Report No. 431 (Company file: R- 4626). Not GLP, Unpublished.	Y	Makhteshim
IIIB 3.1.2/02	Schlesinger, H.M.	1987b	Folpan – solubility in organic solvents. Analyst Ltd., Report No. 436 (Company file: R- 4636). Not GLP, Unpublished.	Y	Makhteshim
IIIB 3.1.2/03	Schlesinger, H.M.	1987c	Folpan – partition coefficient (n-octanol/water). Analyst Ltd., Report No. 426 (Company file: R- 4616). Not GLP, Unpublished.	Y	Makhteshim
IIIB 3.1.2/04	Comb, A.L.	1998	Folpet (technical) physico-chemical properties. Huntingdon Life Sciences Ltd., Report No. MAK502/983411 (Company file: R-10248). GLP, Unpublished.	Y	Makhteshim
IIIA 3.1.3/01	Anonymous	1999	Material safety data sheet (folpet technical). Makhteshim Chemical Works Ltd., (Company file: R-3735.G). Not GLP, Unpublished.	Y	Makhteshim
IIIB 3.2/01	Comb, A.L.	1998	Folpet (technical) physico-chemical properties. Huntingdon Life Sciences Ltd., Report No. MAK502/983411 (Company file: R-10248). GLP, Unpublished.	Y	Makhteshim
IIIB 3.3/01	Comb, A.L.	1998	Folpet (technical) physico-chemical properties. Huntingdon Life Sciences Ltd., Report No. MAK502/983411 (Company file: R-10248). GLP, Unpublished.	Y	Makhteshim
IIIB 3.4/01	Comb, A.L.	1998	Folpet (technical) physico-chemical properties. Huntingdon Life Sciences Ltd., Report No. MAK502/983411 (Company file: R-10248). GLP, Unpublished.	Y	Makhteshim

Section No / Reference No	Author(s)	Year	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protection Claimed (Yes/No	Owner
IIIB 3.5/01	Hance, B.	1987	pH of aqueous dispersions of folpet 88% technical. Chevron Chemical Company, Report No. 8729390 (Company file: not assigned). Not GLP, Unpublished.	Y	Makhteshim
IIIB 3.6/01	Volante, A.	1995	Determination of the density of folpan. Institut Fresenius, Report No. IF-94/09656-02 (Company file: R-7884). GLP, Unpublished.	Y	Makhteshim
IIIB 3.7/01	Rondon, C.	1993	Stability of technical folpet. Arctech Inc., Report No. 93-6407-23 (Company file: not assigned). GLP, Unpublished.	Y	Makhteshim
IIIB 3.7/02	Schlesinger, H.M.	1993	Folpet technical storage stability. Analyst Research Laboratories, Report No. 66/92 (Company file: R-6842). GLP, Unpublished.	Y	Makhteshim
IIIB 3.12/01	Phuong Lien, T.	212	Determination of the particle size distribution of Folpet technical. Eurofins Agroscience Services EcoChem GmbH, Report No. S12-03410 (Company file: R-30769). GLP, Unpublished.	Y	Makhteshim
Section 5					
IIIB 5.10.2/01	Anker, W.	2008	Technical Service Report: Efficacy data of folpet for PT9. International Speciality Products, Report No. Not stated. Not GLP, Unpublished. CONFIDENTIAL TO ISP	Y	ISP