Justification for the selection of a substance for CoRAP inclusion

Substance Name Reaction mass of 2,6-di-tert-butylphenol

(Public Name): and 2,4,6-tri-tert-butylphenol

Chemical Group: phenol

List Number: 907-745-9

CAS Number: NA

Submitted by: Belgium

Published: 26/03/2014

Note

This document has been prepared by the evaluating Member State given in the CoRAP update.

Contents

2 2 2 2 3 I 4 J	.1 Other identifiers of the substance	3
4 J	CLASSIFICATION AND LABELLING	4 4 4
	NFORMATION ON AGGREGATED TONNAGE AND USES	5
4 4	USTIFICATION FOR THE SELECTION OF THE CANDIDATE CORAP SUBSTANCE	5 5 6
	 .5 Preliminary indication of information that may need to be requested to clarify the concern .6 Potential follow-up and link to risk management 	7

1 IDENTITY OF THE SUBSTANCE

1.1 Other identifiers of the substance

Table 1: Substance identity

EC name:	Reaction mass of 2,6-di-tert-butylphenol and 2,4,6-tri-tert-butylphenol
IUPAC name:	Reaction mass of 2,6-di-tert-butylphenol and 2,4,6-tri-tert-butylphenol
Index number in Annex VI of the CLP Regulation	NA
Molecular formula:	See table 2a, 2b below
Molecular weight or molecular weight range:	See table 2a, 2b below
Synonyms/Trade names:	

Type of substance ☐ Mono-constituent ☐ Multi-constituent ☐ UVCB **Structural formula:**

Table 2a: Identity constituent 1

EC name:	2,6-di-tert-butylphenol
EC number:	204-884-0
IUPAC name:	2,6-di-tert-butylphenol
Index number in Annex VI of the CLP Regulation	NA
Molecular formula:	C ₁₄ H ₂₂ O
Molecular weight or molecular weight range:	206.32 g/mol

Table 2b: Identity constituent 2

EC name:	2,4,6-tri-tert-butylphenol
EC number:	211-989-5
IUPAC name:	2,4,6-tri-tert-butylphenol
Index number in Annex VI of the CLP Regulation	NA
Molecular formula:	C ₁₈ H ₃₀ O
Molecular weight or molecular weight range:	262.43 g/mol

1.2 Similar substances/grouping possibilities

For some tests in the dossier the analogue CAS 128-37-0, butylated hydroxytoluene was tested (carcinogenicity, toxicity to reproduction, genetic toxicity, repeated dose toxicity)

For some test in the dossier the analogue EC 204-327-1, 6,6'-di-tert-butyl-2,2'-methylenedi-p-cresol was tested (developmental toxicity)

2 CLASSIFICATION AND LABELLING

2.1 Harmonised Classification in Annex VI of the CLP

NA

2.2 Self classification

In the registration

Eye Dam. 1; H318: Causes serious eye damage

Aquatic Acute 1; H400: Very toxic to aquatic life

Aquatic Chronic 1; H410: Very toxic to aquatic life with long lasting effects

 The following hazard classes are in addition notified among the aggregated self classifications in the C&L Inventory:

The substance is not registered in the C&L Inventory.

2.3 Proposal for Harmonised Classification in Annex VI of the CLP

NA

JUSTIFICATION DOCUMENT FOR THE SELECTION OF A CORAP SUBSTANCE

3 INFORMATION ON AGGREGATED TONNAGE AND USES

	site				
☐ 1 - 10 tpa		☐ 10 - 100 tpa		□ 100 ·	- 1000 tpa
⊠ 1000 – 10,000 tpa		☐ 10,000 - 100,000 tpa		☐ 100,000 - 1,000,000 tpa	
☐ 1,000,000 - 10,000,000 tpa		□ 10,000,000 -	100,000,000 tpa	□ > 10	0,000,000 tpa
☐ <1>+ tpa (e		g. 10+ ; 100+ ; 10,000+ tpa)		☐ Conf	dential
	⊠ Profe	essional use	☐ Consumer use		☐ Closed System
Professional uses: Fuel additives					
4 JUSTIFICA CORAP SU 4.1 Legal ba	IBSTAN	_	LECTION OF	THE C	ANDIDATE
	313 101	the proposa	nl		
				e evaluat	cion)
☐ Article 45(5) (refined p	orioritisation crite		e evaluat	cion)
4.2 Selection Fulfils criteria Fulfils criteria Fulfils criteria Fulfils criteria Fulfils criteria	refined position of the crite is as CMR, as Sensing as poter is as PBT/ is high (as	ria met (why / Suspected CMF itiser/ Suspected s ntial endocrine disr VPvB / Suspecte ggregated) tonna	eria for substance of the substance of t	qualifies	cion) s for being in CoRAP)
4.2 Selection ☐ Fulfils criteria ☐ Fulfils criteria ☐ Fulfils criteria ☐ Fulfils criteria	refined position of the crite is as CMR, as Sensing as poter is as PBT/ is high (as	ria met (why / Suspected CMF itiser/ Suspected s ntial endocrine disr VPvB / Suspecte ggregated) tonna	the substance of the su	qualifies	

4.3 Initial grounds for concern to be clarified under **Substance Evaluation**

Hazard based concerns				
CMR □C □M □R	Suspected CMR ¹ C M R	☐ Potential endocrine disruptor		
Sensitiser	Suspected Sensitiser ¹			
☐ PBT/vPvB	Suspected PBT/vPvB¹	☐ Other (please specify below)		
Exposure/risk based concer	ns			
☐ Wide dispersive use	☐ Consumer use	☐ Exposure of sensitive populations		
☐ Exposure of environment	☐ Exposure of workers	☐ Cumulative exposure		
☐ High RCR	☐ High (aggregated) tonnage	☐ Other (please specify below)		
The substance consists of two constituents of which one constituent (2,4,6-tri-tert-butylphenol) is potentially a PBT/vPvB candidate. Specific experimental values for this constituent are lacking and QSAR-predictions indicate a vPvB and/or PBT character.				
4.4 Other comple	ted/ongoing regulatory	processes that may		
66				

affect suitability for substance evaluation

☐ Compliance check, Final decision	☐ Dangerous substances Directive 67/548/EEC	
☐ Testing proposal	☐ Existing Substances Regulation 793/93/EEC	
☐ Annex VI (CLP)	☐ Plant Protection Products Regulation 91/414/EEC	
☐ Annex XV (SVHC)	☐ Biocidal Products Directive 98/8/EEC ; Biocidal Product Regulation (Regulation (EU) 528/2012)	
☐ Annex XIV (Authorisation)	☐ Other (provide further details below)	
☐ Annex XVII (Restriction)		
A TPE has been performed on 2,6-di-tert-butylphenol (one of the constituents). Results are expected by 29-07-2014 for:		
 Sub-chronic toxicity study (90-day) in rats, oral route Long-term toxicity testing on aquatic invertebrates 		

Suspected PBT: Potentially Persistent, Bioaccumulative and Toxic

CMR/Sensitiser: known carcinogenic and/or mutagenic and/or reprotoxic properties/known sensitising properties (according to CLP harmonized or registrant self-classification or CLP Inventory) Suspected CMR/Suspected sensitiser: suspected carcinogenic and/or mutagenic and/or reprotoxic properties/suspected sensitising properties (not classified according to CLP harmonized or registrant selfclassification)

JUSTIFICATION DOCUMENT FOR THE SELECTION OF A CORAP SUBSTANCE

4.5 Preliminary indication of information that may need to be requested to clarify the concern

☐ Information on toxico	logical properties	☐ Information	n on physico-chemical properties
☐ Information on fate a	nd behaviour	☐ Information	n on exposure
☐ Information on ecotox	xicological properties	☐ Information	n on uses
☐ Information ED poten	tial	Other (pro	vide further details below)
butylphenol. At the moment no spe		for this constitue	e behavior of 2,4,6-tri-tert- ent are available and there is also
4.6 Potenti	al follow-up and	link to risk m	anagement
4.6 Potenti ☐ Harmonised C&L	-	link to risk m	Dother (provide further details)