

Perspectives on current status and short- to long-term opportunities **Repeat Dose Toxicity**

New approach methodologies workshop *Towards an animal free regulatory system for industrial chemicals* Helsinki, 31 May 2023

Mounir Bouhifd Computational Assessment and Alternative Methods Unit European Chemicals Agency

The use of alternatives to testing on animals for the REACH Regulation

Fifth report under Article 117(3) of the REACH Regulation June 2023 Current status of REACH database + newly registered substances

A discussion "**Towards an animal** testing-free regulatory system for industrial chemicals"

- ECHA's activities to promote NAMs
- towards a full replacement of animal testing

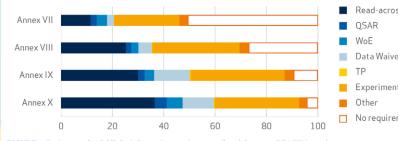


FIGURE 2: Options used to fulfil the information requirements (breakdown per REACH Annex)

Regulatory information requirements under REACH Repeated dose toxicity

Standard information requirements

- \rightarrow Annex VIII 8.6.1. Short-term repeated dose toxicity study (28 days)
- \rightarrow Annex IX 8.6.2. Sub-chronic toxicity study (90-day)

Additional information requirements

- \rightarrow Annex X 8.6.3. Long-term repeated dose toxicity study (\geq 12 months)
- \rightarrow Annex VIII/IX 8.6.2. and X 8.6.4. Further studies

Refer to internationally validated methods

- \rightarrow Standardised
- → Reliable

Indicate health hazards (adverse effects) likely to arise from repeated exposure over a prolonged period of time

Basis for **risk characterisation and C&L** (for repeated dose toxicity)

Adverse effects & target organs? **Dose** response relationship and **threshold**

Possible **MoA** and mechanism data

Potential cumulative effects?

Indicate **health hazards (adverse effects)** likely to arise from **repeated exposure** over a prolonged period of time

Basis for **risk characterisation and C&L** (for repeated dose toxicity)

Risk characterisation

- threshold of the critical effect(s)
- NOAEL, LOAEL, BMD

C&L

- strength and severity of adverse effects
- dose levels at which they occur

Additional concerns (triggers)

- Specific target organs / systems
- Cumulative effects

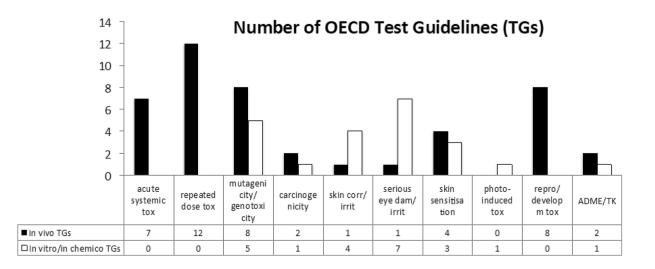
Indicate **health hazards (adverse effects)** likely to arise from **repeated exposure** over a prolonged period of time

Basis for **risk characterisation and C&L** (for repeated dose toxicity)

More than 200 parameters

- Body weight, body weight gain, feed consumption
- Clinical observations, behaviour, reflexes, etc
- Clinical chemistry, haematology, (urinalysis)
- Absolute and relative organ weights
- Necropsy & Histopathology including oestrous cycle
- Hormone measurements (thyroid, others if included)

What "comparable with RDT" means for NAMs?


To demonstrate that an outcome is comparable with RDT 90d in the context of hazard characterisation and risk management, NAM testing has to:

 \rightarrow Provide estimate of NOAEL and LOAEL:

- NOAEL as potential source for systemic DNEL (Risk Characterisation)
- LOAEL for STOT RE classification (C&L)
- → Provide indications/triggers for:
 - Toxicity to reproduction
 - Immunotoxicity
 - Neurotoxicity
 - Carcinogenicity
 - ED related effects

Repeated dose toxicity (RDT) studies Status of OECD TGs in current regulatory testing paradigm

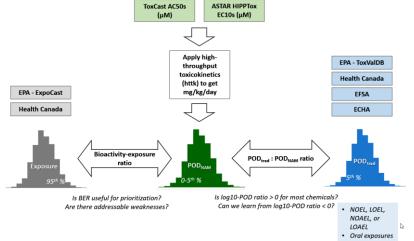
"Current EU regulatory requirements for the assessment of chemicals and cosmetic products: challenges and opportunities for introducing new approach methodologies"

Pistollato et al., Archives of Toxicology (2021) 95:1867–1897

Accelerating the Pace of Chemical Risk Assessment

- → International cooperation strategic common challenges
- → Concrete **case studies** specific regulatory needs
- → Early recognition regulatory challenge is replacement of higher tier systemic toxicity testing
 - Main area of attention for ECHA
 - Multiple case studies Diversity of needs and priorities

Chemical Risk Assessment Retrospective Study The primar on high-the predictions


Accelerating the Pace of

Utility of In Vitro Bioactivity as a Lower Bound Estimate of In Vivo Adverse Effect Levels and in Risk-Based Prioritization

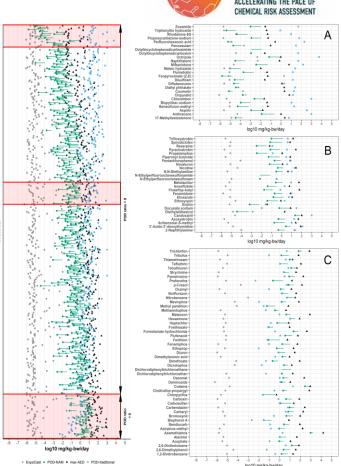
Katie Paul Friedman (*),¹ Matthew Gagne,[†] Lit-Hsin Loo,[‡] Panagiotis Karamertzanis,[§] Tatiana Netzeva,[§] Tomasz Sobanski,[§] Jill A. Franzosa,[¶] Ann M. Richard,^{*} Ryan R. Lougee,^{*} [Andrea Gissi,[§] Jia-Ying Joey Lee,[‡] Michelle Angrish,^{|||} Jean Lou Dorne,^{||||} Stiven Foster,[#] Kathleen Raffaele,[#] Tina Bahadori,[†] Maureen R. Gwinn,^{*} Jason Lambert,^{*} Maurice Whelan,^{**} Mike Rasenberg,[§] Tara Barton-Maclaren,[†] and Russell S. Thomas (*)

"National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711; ¹Healthy Environments and Consumer Safety Branch, Health Canada, Covernment of Canada, Ottawa, Ontario, Canada, K10AKS⁹, Hinovations in Food and Chemical Safety Programme and Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, 138671, Singapore, ¹Computational Assessment Unit, European Chemicals Agency, European Chemicals Agency Annakasku IB 20, 058 (2000). F100121 Heishik Usuiman, Finland: "National Health and The primary objective of this work was to compare PODs based on high-throughput predictions of bioactivity, exposure predictions, and traditional hazard information for 448 chemicals.

Mg/kg/day

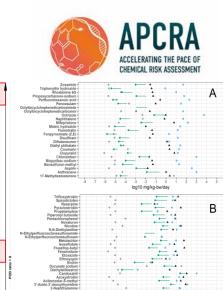
Katie Paul Friedman, et al. <u>Toxicol Sci.</u> 2020 Jan 1;173(1):202-225. doi: 10.1093/toxsci/kfz201

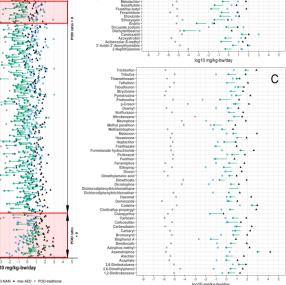
Accelerating the Pace of Chemical Risk Assessment


Retrospective Study

Of the 448 substances, 89% had POD_{NAM} lower than traditional POD (POD_{trad})

Conclusion: NAM can be already used for conservative priority setting


Katie Paul Friedman, et al. <u>Toxicol Sci.</u> 2020 Jan 1;173(1):202-225. doi: 10.1093/toxsci/kfz201



Accelerating the Pace of Chemical Risk Assessment Retrospective Study

- → Hazard estimates were over conservative in comparison to systemic in vivo data. Can we improve the accuracy of NAM estimates by applying an optimised NAM battery?
- → Additional research to include expanded and improved highthroughput **toxicokinetics** and in vitro disposition kinetics. Would this help improve POD_{NAM} estimates?
- → Specific types of chemicals may be currently outside the domain of **applicability.** How do we identify these in the future?
- → Chemicals assessed (drugs, pesticides, biocides) bioactive, strong MoA. Will it work in a similar way for **less potent** compounds?

Katie Paul Friedman, et al. <u>Toxicol Sci.</u> 2020 Jan 1;173(1):202-225. doi: 10.1093/toxsci/kfz201

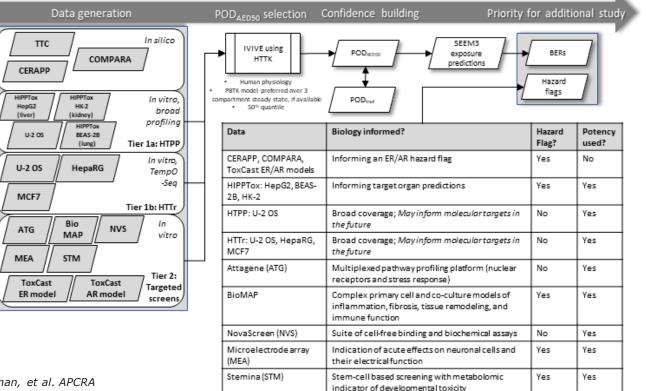
APCRA prospective Study - Ongoing work Objective

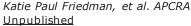
To identify a portable and scalable combination of toxicokinetic and toxicodynamic NAMs that provides a robust estimate of:

- → POD for wider range of systemic effects from RDT studies
- → Mechanistically-based RDT specific hazard flags/indications

Design

- 200 chemicals from ToxCast library
- Generate data
- Derive POD_{NAM}
- Compare to exposure estimates
- Evaluate hazard flags
- Pick chemicals for further investigation


Led by ECHA - **Tomasz Sobanski** With substantial support EPA – **Katie Paul Friedmann** and valuable contributions from NTP - HC- JRC - A*STAR



APCRA prospective Study - Ongoing work

Data integration Workflow

APCRA prospective Study - Ongoing work

- → Build a broad NAM-informed framework for the prediction of in vivo effects, with more biological information
- → Implement a chemical safety assessment workflow that is extensible and available for iterative improvement
- → Investigate the potential value of bioactivity estimates and hazard flags together in different scenarios
- \rightarrow Estimate the accuracy of the derived PODs

→ Deploy the best available science to address well focused regulatory questions for a common objective

Final remarks

- → The 117(3) report shows our efforts to promote NAMs and presents an outlook towards an animal-free system
- → ECHA is proactive to promote NAMs, and our activities in this respect are going beyond the regulatory implementation
- → Short-term opportunities should be seized to better integrate NAMs in the current system
- → Long-term: full replacement requires advancement in science and policy changes
- → It is a collective effort and requires buy-in by all stakeholders, including the public

Thank you mounir.bouhifd@echa.europa.eu echa.europa.eu/subscribe

Connect with us

echa.europa.eu/podcasts

@one_healthenv_eu

EUchemicals