Burden of Disease and Costs of Endocrine Disrupting Chemicals in the European Union

Leonardo Trasande, MD, MPP
Associate Professor of Pediatrics, Environmental Medicine, Population Health and Health Policy
Chemical environmental agents and the endocrine system

• European Union defines endocrine disrupting chemicals as “exogenous substance[s] that causes adverse health effects in an intact organism, or its progeny, secondary to changes in endocrine function”

• Highly heterogeneous group of molecules
 • industrial solvents/lubricants
 • flame retardants
 • aluminum can linings
 • plasticizers
 • pesticides
 • pharmaceutical agents
Chemical environmental agents and the endocrine system

• First observation by Herbst and Bern of cancer in young girls exposed one to two decades earlier to diethylstilbestrol (DES), a synthetic estrogen prescribed to pregnant women in the 1950s and 1960s to prevent miscarriage.

• Rapidly accumulating evidence suggests that EDCs contribute to disease and disability across the lifespan.
 - Neurodevelopmental deficits and disabilities
 - Infertility
 - Obesity and diabetes
 - Reproductive cancers
 - Birth defects
Strong scientific evidence

 - Footnote identifies only chemical and pesticide industries as having concerns about state of science
 - Concerns voiced by industry representatives rebutted by WHO/UNEP report authors in Reg Tox Pharm (Bergman et al 2015)
 - Second Endocrine Society Scientific Statement documents strengthened evidence since initial report in 2009
Strong evidence, but what are disease burden and costs of EDCs?

• No previous studies have estimated burden of disease and disability potentially produced by EDC exposure.

• High costs of alternatives are likely to outweigh concerns about the health consequences of using EDCs.

• To inform EU Commission ongoing decision making and impact assessment, our objective was to quantify a range of health and economic costs that can be reasonably attributed to EDC exposures in the European Union.
Causality criteria

• Temporal relationship required
• Others favor causality (major in bold)
 • Consistency
 • Effect size
 • Dose-response relationship
 • Biological plausibility
 • Specificity
 • Coherence (Coherent with existing theory/knowledge)
 • Experiment (Can be prevented or ameliorated)
 • Consideration of alternate explanations

Hill AB Proc Royal Soc Med 1965
Embracing uncertainty

“What I do not believe – and this has been suggested – is that we can usefully lay down some hard-and-fast rules of evidence that must be obeyed before we accept cause and effect.”

“On fair evidence we might take action on what appears to be an occupational hazard, e.g. we might change from a probably carcinogenic oil.”

Uncertainty “does not confer upon us a freedom to ignore the knowledge we already have, or to postpone the action that it appears to demand at a given time.”

Hill AB Proc Royal Soc Med 1965
So how to deal with uncertainty?

- Intergovernmental Panel on Climate Change has dealt with similar issues, developing probability weighting for ranges of scenarios.

<table>
<thead>
<tr>
<th>Confidence level</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very high</td>
<td>90-100% probability of causation</td>
</tr>
<tr>
<td>High</td>
<td>70-89% probability of causation</td>
</tr>
<tr>
<td>Medium</td>
<td>40-69% probability of causation</td>
</tr>
<tr>
<td>Low</td>
<td>20-39% probability of causation</td>
</tr>
<tr>
<td>Very low</td>
<td>0-19% probability of causation</td>
</tr>
</tbody>
</table>
How to integrate epidemiologic evidence?

- The GRADE (Grading of Recommendations Assessment, Development and Evaluation) scheme is becoming increasingly popular and the preferred approach recommended for the development of WHO guidelines in the presence of uncertainty.
<table>
<thead>
<tr>
<th>Quality of evidence</th>
<th>Interpretation</th>
<th>Study design</th>
<th>Lower the quality in presence of</th>
<th>Raise the quality in presence of</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>We are very confident that the true effect lies close to that of the estimate of the effect.</td>
<td>Randomized trial</td>
<td>Study limitations:</td>
<td>Strong association:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1 Serious limitations</td>
<td>+1 Strong, no plausible confounders, consistent and direct evidence</td>
</tr>
<tr>
<td>Moderate</td>
<td>We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.</td>
<td>Quasi-experimental (with controls) and before and after (uncontrolled) studies</td>
<td>-2 Very serious limitations</td>
<td>+2 Very strong, no major threats to validity and direct evidence</td>
</tr>
<tr>
<td>Low</td>
<td>Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect</td>
<td>Observational study</td>
<td>-1 Important inconsistency</td>
<td>+1 Evidence of a dose-response gradient</td>
</tr>
<tr>
<td>Very low</td>
<td>We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect</td>
<td>Any other evidence</td>
<td>-1 High probability of reporting bias</td>
<td>+1 All plausible confounders would have reduced effect</td>
</tr>
</tbody>
</table>

Adapted from Atkins et al BMJ 2004 and Bruce et al WHO Indoor Air Quality Guidelines 2014
Danish EPA criteria for toxicologic evidence (adapted)

<table>
<thead>
<tr>
<th>Quality of evidence</th>
<th>Interpretation</th>
<th>Study design</th>
</tr>
</thead>
</table>
| Strong, Group 1 (Endocrine disruptor) | There is a strong presumption that the chemical has the capacity to cause the health effect through an endocrine disruptor mechanism. | The animal studies provide clear evidence of the ED effect in the absence of other toxic effects, or if occurring together with other toxic effects, the ED effects should not be a secondary non-specific consequence of other toxic effects. However, when there is e.g. mechanistic information that raises doubt about the relevance of the effect for humans or the environment, Group 2 may be more appropriate. Substances can be allocated to this group based on:
• Adverse *in vivo* effects where an ED mode of action is plausible
• ED mode of action *in vivo* that is clearly linked to adverse *in vivo* effects (by e.g. read-across) | |
| Moderate, Group 2a (Suspected endocrine disruptor) | There is some evidence from experimental animals, yet the evidence is not sufficiently convincing to place the substance in Group 1. | The health effects are observed in the absence of other toxic effects, or if occurring together with other toxic effects, the ED effect should be considered not to be a secondary non-specific consequence of other toxic effects. Substances can be allocated to this group based on:
• Adverse effects *in vivo* where an ED mode of action is suspected
• ED mode of action *in vivo* that is suspected to be linked to adverse effects in vivo
• ED mode of action *in vitro* combined with toxicokinetic in vivo data (and relevant non test information such as read across, chemical categorisation and QSAR predictions) | |
| Weak, Group 2b (Potential endocrine disruptor) | There is some evidence indicating potential for endocrine disruption in intact organisms. | There is some *in vitro*/*in silico* evidence indicating a potential for endocrine disruption in intact organisms or effects in vivo that may, or may not, be ED-mediated. | |

Adapting IPCC criteria to integrate epidemiologic and toxicologic evidence

<table>
<thead>
<tr>
<th>Epidemiologic Evaluation</th>
<th>Toxicologic Evaluation</th>
<th>0.0%</th>
<th>0.0%</th>
<th>20-39%</th>
<th>40-69%</th>
<th>70-89%</th>
<th>90-100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Very High (90-100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>High (70-89%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>Medium (40-69%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Low</td>
<td>Low (20-39%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Application to estimate EDC disease burden and costs in EU (1)

• During a two-day workshop in the spring of 2014, five expert panels identified conditions where the evidence is strongest for causation, and developed ranges for fractions of disease burden that can be attributed for EDCs.

• Expert panel topics:
 • Neurodevelopment
 • Obesity and diabetes
 • Breast cancer
 • Male reproductive health
 • Female reproductive health

Trasande et al J Clin Endo Metab epub Mar 5 2015
Application to estimate EDC disease burden and costs in EU (2)

• To quantify attribution, prioritized dose-response relationships from the epidemiologic literature

• Also, in the presence of epidemiologic evidence for a dose-response relationship for another exposure that operates via a similar or identical mechanism, an estimate of an odds ratio or increment in disease was applied, when placed in the context of the strength of evidence assessment.

Trasande et al J Clin Endo Metab epub Mar 5 2015
Application to estimate EDC disease burden and costs in EU (3)

• When dose-response relationship identified, the affected population within the EU was divided into quartiles or other appropriate groupings that permitted quantification of a differential effect with precision.

• When an increment in relative risk over baseline was estimated, a prevalence of exposure was identified in order to estimate an attributable fraction, using the Levin equation:

\[
AF = \frac{\text{Prevalence}_{\text{exposure}} \times (\text{RR}-1)}{1 + (\text{Prevalence}_{\text{exposure}} \times (\text{RR}-1))}
\]

Trasande et al J Clin Endo Metab epub Mar 5 2015
<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
<th>Strength of Human Evidence</th>
<th>Strength of Toxicologic Evidence</th>
<th>Probability of Causation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polybrominated diphenyl ethers (PBDE)</td>
<td>IQ Loss and Intellectual Disability</td>
<td>Moderate-to-high</td>
<td>Strong</td>
<td>70-100%</td>
</tr>
<tr>
<td>Organophosphate pesticides</td>
<td>IQ Loss and Intellectual Disability</td>
<td>Moderate-to-high</td>
<td>Strong</td>
<td>70-100%</td>
</tr>
<tr>
<td>Dichlorodiphenytrichloroethane (DDE)</td>
<td>Childhood obesity</td>
<td>Moderate</td>
<td>Moderate</td>
<td>40-69%</td>
</tr>
<tr>
<td>Dichlorodiphenytrichloroethane (DDE)</td>
<td>Adult diabetes</td>
<td>Low</td>
<td>Moderate</td>
<td>20-39%</td>
</tr>
<tr>
<td>Di-2-ethylhexylphthalate (DEHP)</td>
<td>Adult obesity</td>
<td>Low</td>
<td>Strong</td>
<td>40-69%</td>
</tr>
<tr>
<td>Di-2-ethylhexylphthalate (DEHP)</td>
<td>Adult diabetes</td>
<td>Low</td>
<td>Strong</td>
<td>40-69%</td>
</tr>
<tr>
<td>Bisphenol A</td>
<td>Childhood obesity</td>
<td>Very low-to-low</td>
<td>Strong</td>
<td>20-69%</td>
</tr>
<tr>
<td>Polybrominated diphenyl ethers (PBDE)</td>
<td>Testicular cancer</td>
<td>Very low-to-low</td>
<td>Weak</td>
<td>0-19%</td>
</tr>
<tr>
<td>Polybrominated diphenyl ethers (PBDE)</td>
<td>Cryptorchidism</td>
<td>Low</td>
<td>Strong</td>
<td>40-69%</td>
</tr>
<tr>
<td>Benzyl and butylphthalates</td>
<td>Male Infertility, Resulting in Increased Assisted Reproductive Technology</td>
<td>Low</td>
<td>Strong</td>
<td>40-69%</td>
</tr>
<tr>
<td>Phthalates</td>
<td>Low testosterone, Resulting in Increased Early Mortality</td>
<td>Low</td>
<td>Strong</td>
<td>40-69%</td>
</tr>
<tr>
<td>Multiple exposures</td>
<td>ADHD</td>
<td>Low-to-moderate</td>
<td>Strong</td>
<td>20-69%</td>
</tr>
<tr>
<td>Multiple exposures</td>
<td>Autism</td>
<td>Low</td>
<td>Moderate</td>
<td>20-39%</td>
</tr>
</tbody>
</table>

Trasande et al J Clin Endo Metab epub Mar 5 2015
Pesticides (used in agricultural production and homes)

- 13 million lost IQ points in each EU country \rightarrow €124 billion lost earning potential

 \rightarrow 59,300 born each year with intellectual disability = additional €21.4 billion

- 1,555 obese 10 year olds = €24.6 million

- 28,200 50–64 year olds with diabetes = €835 million

Bellanger et al, Legler et al J Clin Endo Metab epub Mar 5 2015
Phthalates (used in food wraps, cosmetics, shampoos, vinyl flooring)

- 24,800 additional deaths among 55 – 64 year old men = €7.96 billion in lost economic productivity
- 618,000 additional assisted reproductive technology procedures costing €4.71 billion
- 53,900 50-64 year old women are obese = €15.6B
- 20,500 50-64 year old women are diabetic = €607M

Hauser et al, Legler et al J Clin Endo Metab epub Mar 5 2015
Flame retardants (used in electronics, furniture, mattresses)

• 873,000 lost IQ points → €8.4B lost earning potential
 → 3,290 intellectually disabled children = additional €1.9 billion

• 6,830 new cases of testicular cancer = €850 million

• 4,615 children born with undescended testis = €130 million

Bellanger et al, Hauser et al J Clin Endo Metab epub Mar 5 2015
Other estimates of burden and disease and costs

• 316 autistic 8 year olds each year (multiple EDCs) = €199 million

• 31,200 10 year olds with ADHD (multiple EDCs) = €1.7 billion

• Bisphenol A (used in aluminum can linings, thermal paper receipts): 42,400 obese 4 year olds each year = €1.54 billion

Bellanger et al, Legler et al J Clin Endo Metab epub Mar 5 2015
HEALTH EFFECTS FROM ENDOCRINE DISRUPTING CHEMICALS COST THE EU 157 BILLION EUROS EACH YEAR. This is the tip of the iceberg: Costs may be as high as €270B.

Endocrine Disrupting Chemicals (EDCs) interfere with hormone action to cause adverse health effects in people.

“THE TIP OF THE ICEBERG”
The data shown to the left are based on fewer than 5% of likely EDCs. Many EDC health conditions were not included in this study because key data are lacking. Other health outcomes will be the focus of future research.
Summary

Thirteen chronic conditions with strong scientific evidence for causation by endocrine disrupting chemicals (EDCs)

- Based on current knowledge, probable costs are €157 billion; could be as much as €269 billion
- <5% of EDCs considered
- Endometriosis, fibroids, breast cancer and many other conditions not included yet, but will be focus of future work
- Economic numbers do not consider all costs associated with these chronic conditions

- Limiting our exposure to the most widely used and potentially hazardous EDCs is likely to produce substantial economic benefit.
Implications for US

• Findings from Europe strongly suggest that a similarly large burden of disease may be attributable to EDCs in the United States

 • Data from the Centers for Disease Control and Prevention suggest that exposures to EDCs are in many cases equal to if not higher than those in the EU.

 • More importantly, this speaks to the importance of reprising these analyses in the US context.
Importance of policy

• Cost of brominated flame retardants likely to be higher in the US, as use is more stringently limited in Europe.

• Levels of phthalates (DEHP) have decreased 17-37% in the US between 2001-10 and costs of attributable disease are likely to have decreased over that period.

• EDCs are used globally, and our findings support careful regulation as part of the Strategic Approach to International Chemicals Management.
Thanks!

- **Funding**
 - John Merck Fund, Broad Reach, Oak Foundation

- **Steering committee:** R. Thomas Zoeller, Andreas Kortenkamp, Philippe Grandjean, John Peterson Myers, Joe DiGangi, Martine Bellanger, Jerry Heindel

- **Expert panel leads:** Russ Hauser, Ana Soto, Paul A. Fowler, Patricia Hunt, Juliette Legler, Ruthann Rudel, Niels Skakkebaek

- **Other participants:** Barbara Cohn, Frederic Bois, Sheela Sathyanarayana, Jorma Toppari, Anders Juul, Ulla Hass, Bruce Blumberg, Miquel Porta, Eva Govarts, Barbara Demeneix

- **Technical and logistical support:** Charles Persoz, Robert Barouki, and Marion Le Gal of the French National Alliance for Life Sciences and Health and Lindsey Marshall, Bilal Mughal, and Bolaji Seffou of UMR7221 Paris
HEALTH EFFECTS FROM ENDOCRINE DISRUPTING CHEMICALS COST THE EU 157 BILLION EUROS EACH YEAR. This is the tip of the iceberg: Costs may be as high as €270B.

€157B Cost by Health Effect

NOTE: The economic estimates do not include all costs associated with these conditions.

€157B Cost by EDC Type

Endocrine Disrupting Chemicals (EDCs) interfere with hormone action to cause adverse health effects in people.

"THE TIP OF THE ICEBERG"
The data shown to the left are based on fewer than 5% of likely EDCs. Many EDC health conditions were not included in this study because key data are lacking. Other health outcomes will be the focus of future research.

See Trasande et al. The Journal of Clinical Endocrinology & Metabolism
http://press.endocrine.org/ecd

SOME EDC-RELATED HEALTH OUTCOMES NOT INCLUDED:
- Breast Cancer
- Prostate Cancer
- Immune Disorders
- Female Reproductive Disorders
- Liver Cancer
- Parkinson’s Disease
- Osteoporosis
- Endometriosis
- Thyroid Disorders

SOME EDCs NOT INCLUDED:
- Atrazine
- 2, 4-D
- Styrene
- Triclosan
- Nonylphenol
- Polycyclic Aromatic Hydrocarbons
- Bisphenol S
- Cadmium
- Arsenic
- Ethylene glycol