ECHA Topical Scientific Workshop on Risk Assessment for the Sediment Compartment 7-8 May 2013, ECHA, Helsinki, Finland

Sediment Ecological Risk Assessment

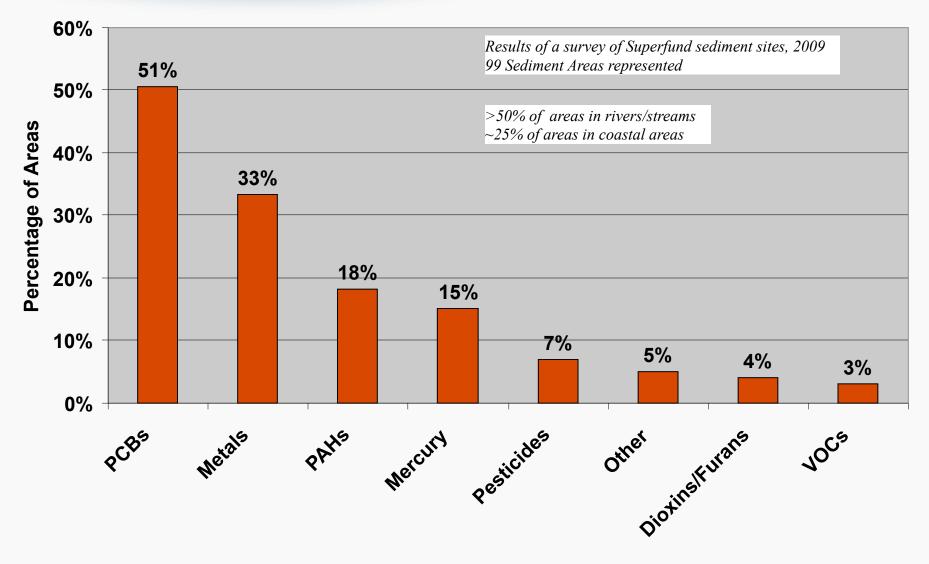
U.S. Environmental Protection Agency Status

Marc S. Greenberg, Ph.D.

U.S. EPA – Environmental Response Team 2890 Woodbridge Ave. Edison, NJ 08837 732-452-6413 greenberg.marc@epa.gov

Disclaimer –

The views or opinions expressed herein are solely those of the speaker and do not necessarily represent the policy or guidance of the U.S. Environmental Protection Agency.



- Comprehensive Environmental Response, Compensation and Liability Act (CERCLA).
- Statute charges EPA to protect human health, welfare, and the environment by reducing risks to acceptable levels

> Remedial Process (RI/FS):

- Remedial Investigation: Risk Assessments, Nature & Extent
- Feasibility Study: Screening of Alternatives
- Record of Decision

Contaminated Sediment Sites— Risk Drivers

11 Sediment Management Principles OSWER Directive 9285.6-08, Feb 2002

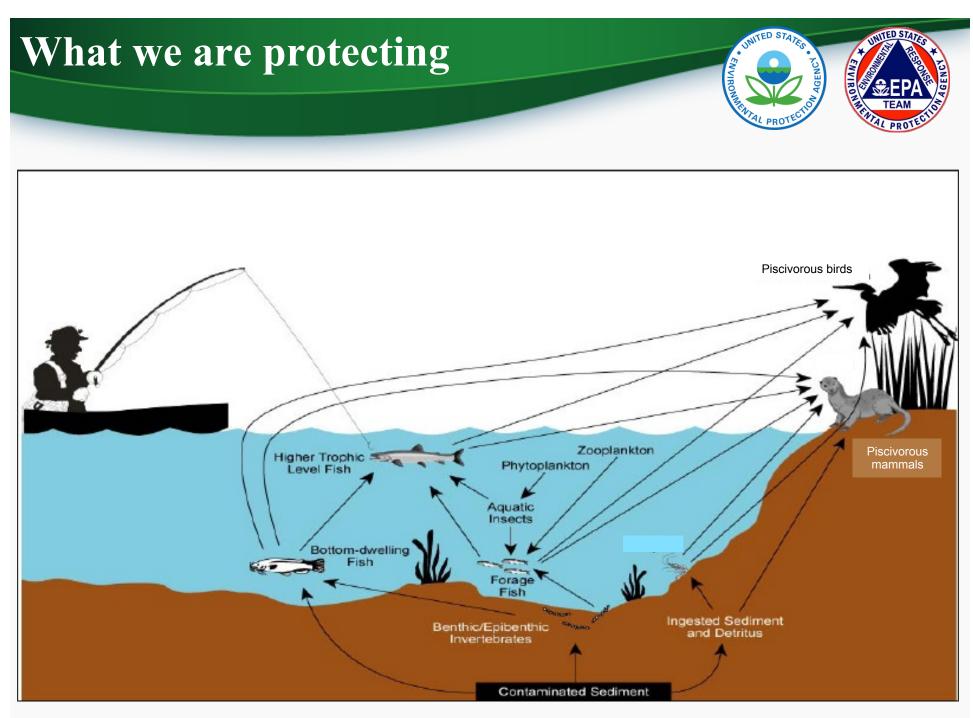
Technical

- Control sources early
- Conceptual site model that considers sediment stability.
- Iterative approach in a risk-based framework.
- Evaluate assumptions and uncertainties of data and models
- Select remedy approaches that will achieve risk-based goals.
- Tie sediment cleanup levels to risk management goals
- > Design remedies to minimize short-term risks.
- Monitor to assess and document remedy Effectiveness

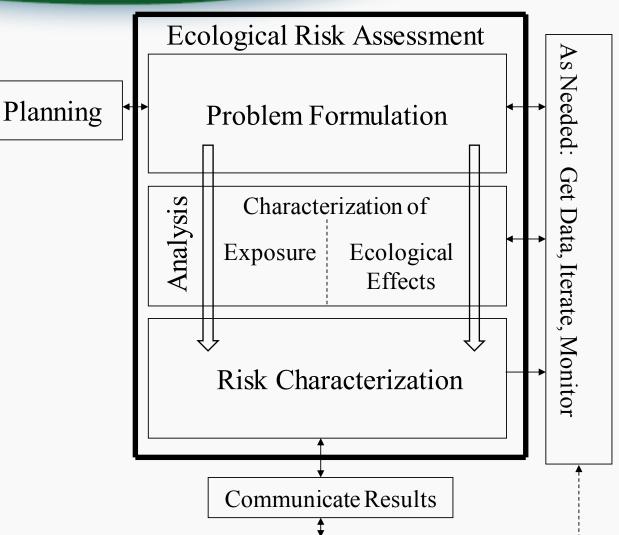
Process Oriented

- Involve the community early and often.
- Coordinate with states, local governments, tribes, and Trustees.
- Maximize the effectiveness of Institutional Controls; recognize limitations.

EPA 2005 Contaminated Sediment Remediation Guidance

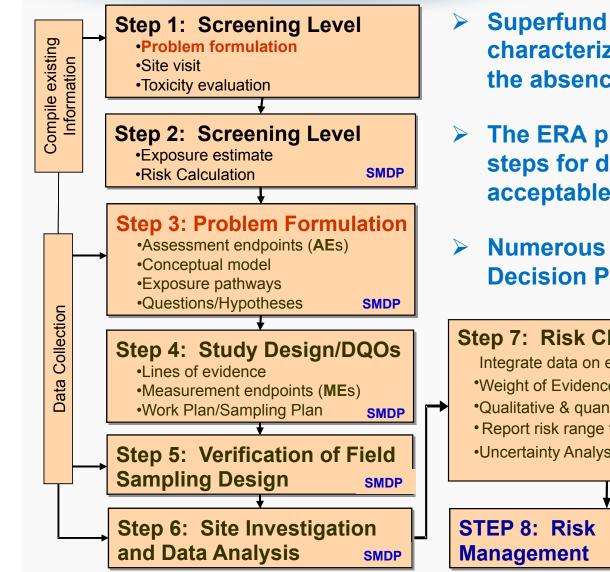

- Toxicity tests typically provide an integrated measurement of the cumulative effects of all contaminants.
- For toxicity tests to be useful, it is important to have demonstrated a concentration-response relationship.
- However, no single endpoint can quantify all possible risks
 - combination of physical, chemical, and biological endpoints usually provides best overall approach for measuring risk reduction and assessing the long-term effectiveness of a remedial action

Typical Elements of a Conceptual Site Model for Sediment


Sources of Contaminants of Concern:	Exposure Pathways for Humans:
 Upland soils Floodplain soils Surface water Ground water Non-aqueous phase liquids (NAPL) and other source materials Sediment "hot spots" Outfalls, including combined sewer outfalls and storm water runoff outfalls Atmospheric contaminants 	 Fish/shellfish ingestion Dermal uptake from wading, swimming Water ingestion Inhalation of volatiles Exposure Pathways for Biota: Fish/shellfish/benthic invertebrate ingestion Incidental ingestion of sediment Direct uptake from water
 Contaminant Transport Pathways: Sediment resuspension Surface water transport Runoff Bank erosion Ground water advection Bioturbation Food chain 	 Human Receptors: Recreational fishers Subsistence fishers Waders/swimmers/birdwatchers Workers and transients Ecological Receptors: Benthic/epibenthic invertebrates Bottom-dwelling/pelagic fish Mammals and birds (e.g., mink, otter, heron, bald eagle)

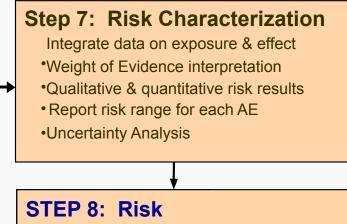
U.S. EPA 2005. Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. http://www.epa.gov/superfund/health/conmedia/sediment/guidance.htm

Ecological Risk Assessment Framework U.S. EPA (1998)


Risk Management

9

Eight Step ERA Process for Superfund



- Superfund ERAs are conducted to characterize present and future risks in the absence of remedial action
- The ERA process established technical steps for determination of risk as acceptable or unacceptable
- **Numerous Scientific-Management Decision Points (SMDP)**

SMDP

- Collect site-specific data through laboratory and/or field studies
- Toxicity testing of benthic invertebrates and foodchain modeling for assessing risks to birds and mammals are often conducted at sediment sites.
- Toxicity testing on groups of individual organisms is inferred to the site area population for the ERA
- Synoptic or observational analyses (i.e., abundance/ diversity of bottom-dwelling species, fishes, and emergent/ submergent vegetation) often treated as a supplemental LOE

General Superfund practice

We do not extensively use probabilistic risk analysis at Superfund sediment sites, but it is a tool used in some cases.

We still rely on the hazard quotient (HQ) method

- Site environmental concentrations compared to benchmarks (screening-level assessment only)
- Site tissue concentrations compared to CBRs
- Food-chain model estimates of dietary exposure concentration (e.g., daily dose) compared to a TRV

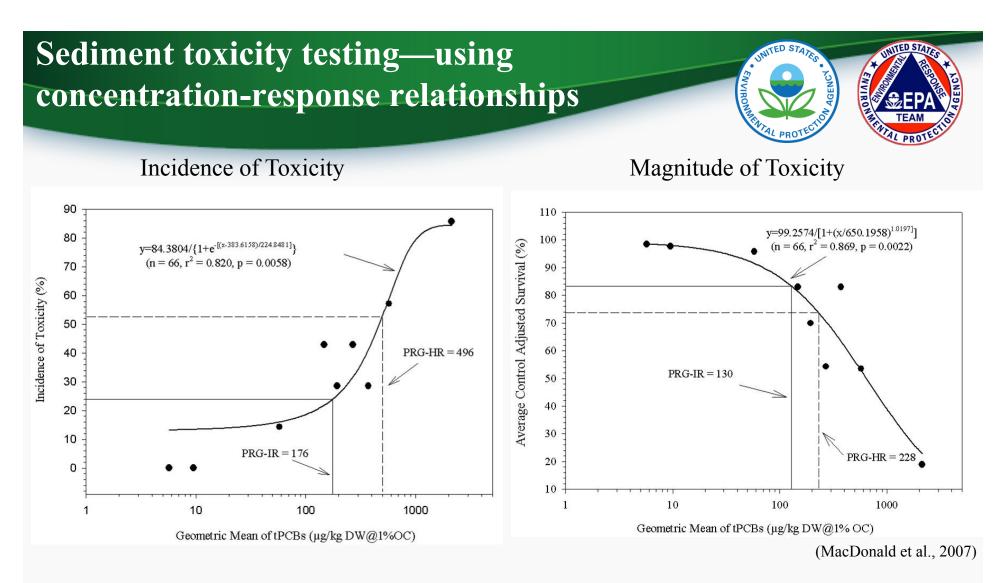
Background

- OSWER has policy (OSWER 9285.6-07P, 2002) and guidance (OSWER 9285.7-41; EPA 540-R-01-003, 2002)
- Risks associated with background are to be considered in both risk assessment and risk management
- Generally, Superfund does not set cleanup levels below background

There is an increased focus on bioavailability

- Reduce uncertainties in sediment exposure and risk assessments by including bioavailability data
- Recent technical guidance supports use of bioavailability information
- Desire for decision-oriented bioavailability methods and tools.
- Driving work in developing sediment amendments for use in remediation
- EPA has included reductions in bioavailability as a remedial action objective in site decision documents

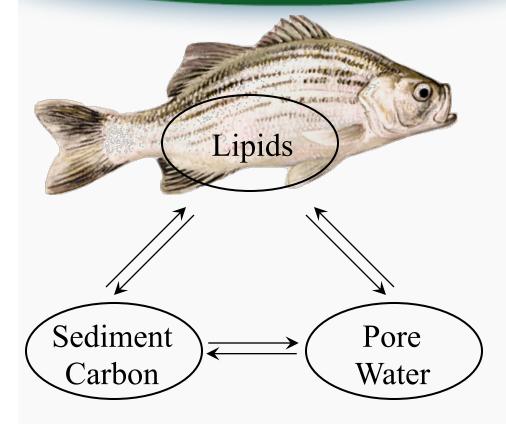
Why are we conducting Ecological Risk Assessments at Superfund Sites?



We need risk-based clean-up levels to address unacceptable risk

- EPA OSWER policy directive (OSWER 9285.7-17, 1994)
- Related to the "level of protection" question in the workshop thoughtstarter #1
- Data related to survival, growth and reproduction are the primary LOE that we prefer for determining ecologicallyprotective sediment concentrations.

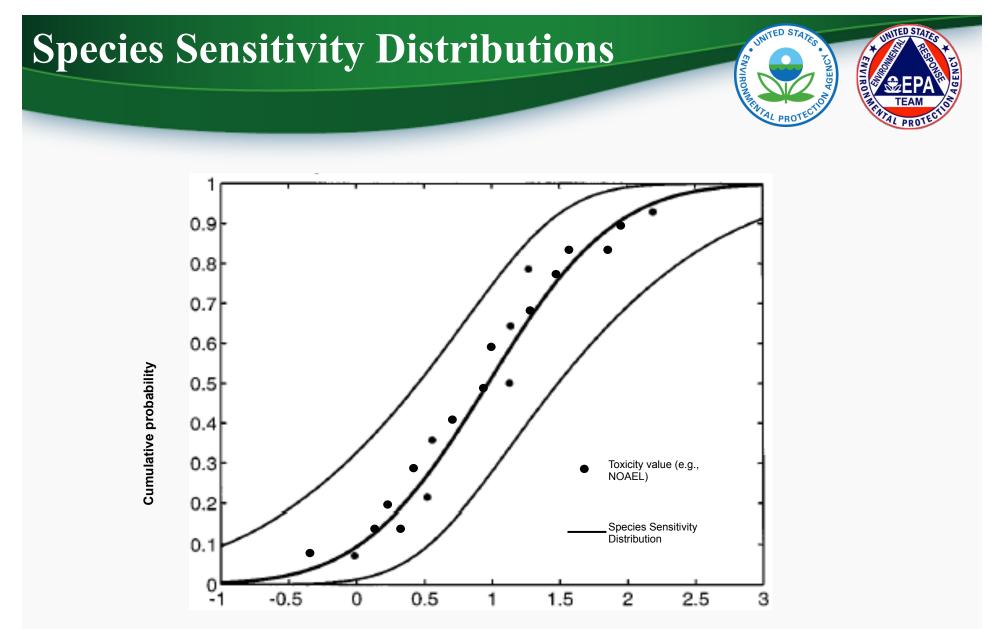
Risk range reported in the Risk Characterization


 Risk managers in communication with assessors able to select appropriate protective level from the range

- Develop site-specific relationships between sediment chemistry and toxicity
- Risk assessors should be encouraged to assist risk managers in defining level of effect for decisions

16

Equilibrium Partitioning Bioaccumulation Model


 $f_{\rm OC}$

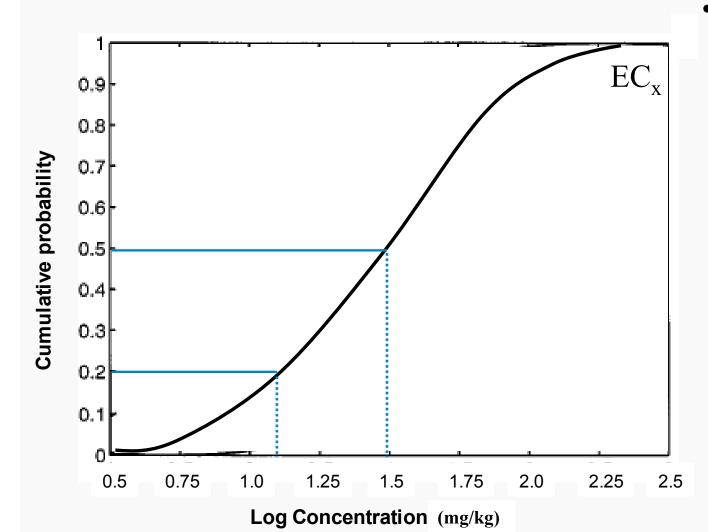
 $BSAF = \frac{C_b / f_{lipid}}{C_s / f_{OC}} = \frac{C_\ell}{C_{SOC}}$

 $SRG = \frac{C_f \cdot f_{OC}}{BSAF \cdot f_{Iinid}}$

- **BSAF** <u>Biota/Sediment Accumulation Factor (unitless; g carbon/g lipid)</u> = C_{b}
- Organism concentration at steady state (µmol/g wet wt) $f_{
 m lipid} \\ C_{
 m s}$
 - = Fractional lipid contents of the tissues (g/g wet wt)
 - = Contaminant concentration in the sediments (μ mol/g dry wt)
 - = Fractional organic carbon contents of the sediments (g/g dry wt)

Log Concentration (ug/L)

Option 1: Develop SSDs for two point estimate effects concentrations (ECx) of interest



- Select an upper and lower EC_x value, for bounding decisions.
- Then, a probability level (percentile) for protection of species is chosen
- The corresponding concentrations from the SSDs define the lower and upper bounds of the risk range

Note: Blue lines here are examples. They do not imply any technical preference or policy

Option 2: Use a single SSD developed from the data for a selected ECx

• Then two percentile levels are selected for defining the risk range off of the SSD curve.

Note: Blue lines here are examples. They do not imply any technical preference or policy

- The purpose of the ERA is to support development of riskbased cleanup levels where risks are determined to be unacceptable and risk management is needed
- EPA Sediment Management Principles require risk assessment as a basis for remedial decisions
- The 8-step ERA Guidance for Superfund provides a flexible framework to characterize ecological risks
- > Survival, growth, and reproduction endpoints are used
 - Overall ERA includes physical, chemical, and biological endpoint measurements
- New scientific approaches can be incorporated into Superfund ERA practice

Thank You

Kiitos