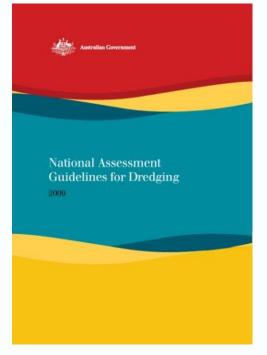
Sediment Quality Guidelines in Australia (and New Zealand)

Stuart Simpson

May 2013


CSIRO Australia www.csiro.au

Sediment Quality Guidelines

- A component of the Water Quality Guidelines within the National Water Quality Management Strategy (NWQMS)

User types

Planning

Licensing & Approvals

Monitoring, Assessment & Reporting

Problem Formulation

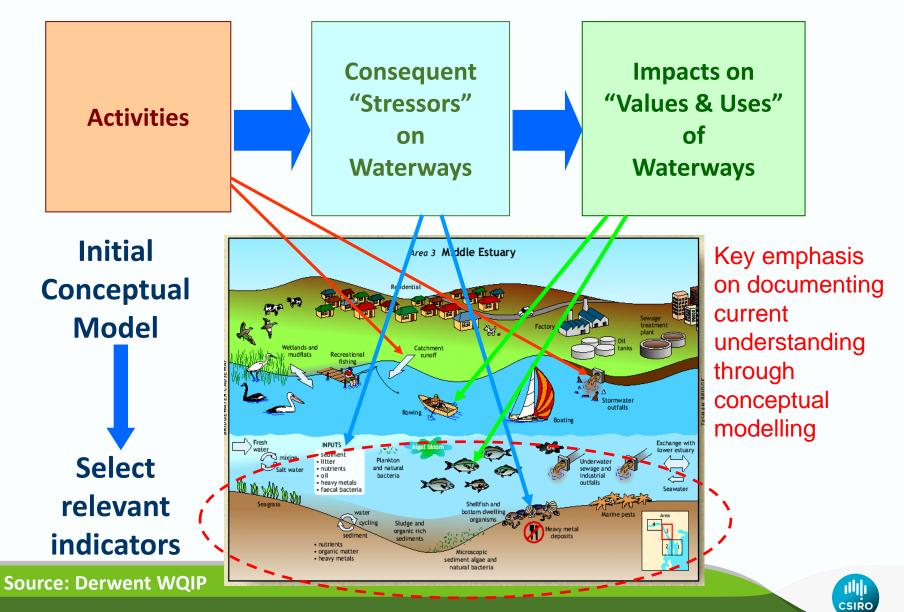
Who is the **user**?

What is the (spatial) scale of the assessment?

• Site-specific and local vs broad-scale

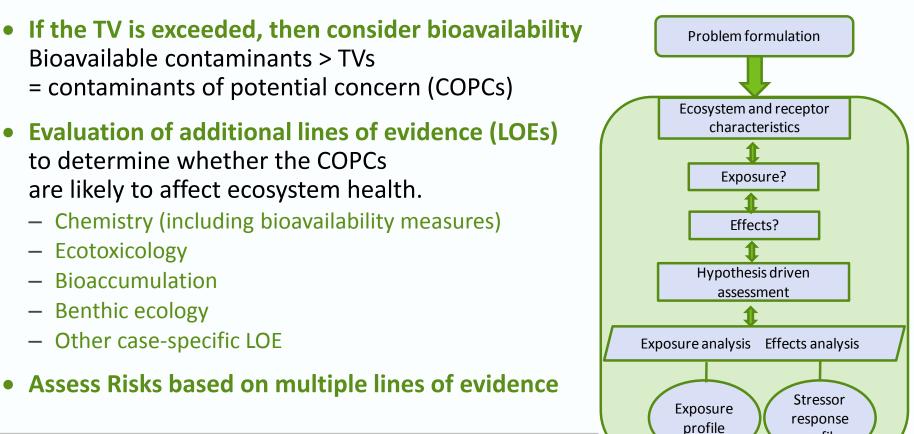
Where is the assessment being undertaken?

- Which Australian region?
- What is the ecosystem type?


What is the level of protection?

• e.g. early detection methods, more stringent default guidelines for locations of high conservation value?

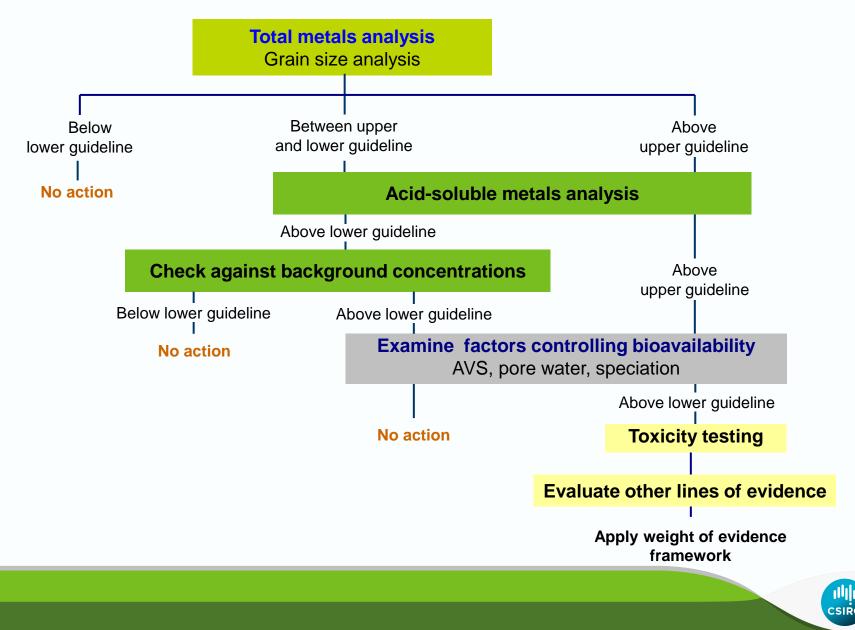
Place in context of current understanding of the system through **conceptual modelling**


Conceptual Models – Current understanding

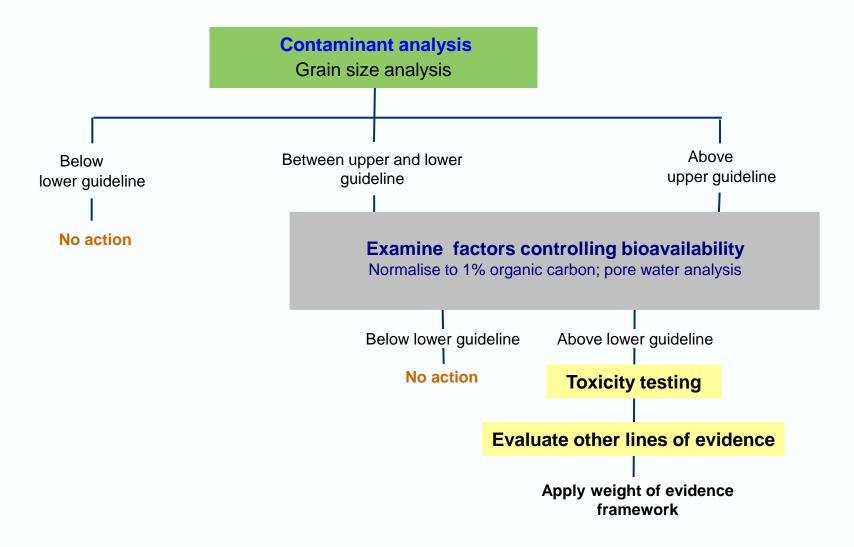
Framework for Sediment Quality Assessment

<u>A tiered, decision-tree approach</u>, in keeping with the riskbased approach introduced in the water quality guidelines.

• Compare total contaminant concentration with a trigger value (TV)



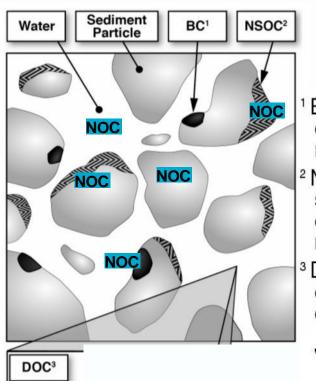
profile


Risk characterization

Contaminants with no TVs = use other lines of evidence (LOEs)

Sediment quality decision tree for metals

Sediment quality decision tree for organics



Sediments: contaminant binding and exposure Incorporating bioavailability

Metals in sediments:

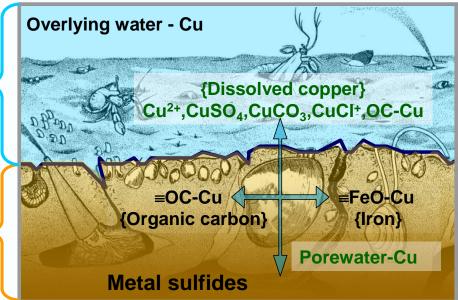
Bioavailability strongly influenced by sediment properties:

- oxidised nearer surface
- sulfidised deeper down

Water column: dissolved copper exposure

Sediments: Particulate & porewater copper exposure

 ¹ Black carbon combustion residue
 ² Natural sedimentary organic matter


Dissolved organic carbon

€PA

Organics in sediments:

Bioavailability of non-ionic organic contaminant (NOC) influenced very strongly by concentrations and forms of organic carbon

United States Environmental Protection Agency

The SQG Trigger Values (TVs)

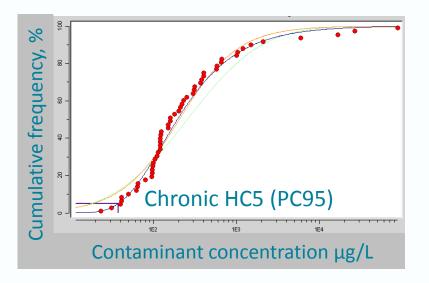
not be used on a pass/fail basis, but to trigger further assessment

Empirically derived: matching sediment chemistry and observed biological effects (from toxicity tests and benthic community information) (ERL/ERM, TEL/PEL) **Basis of the SQGs**

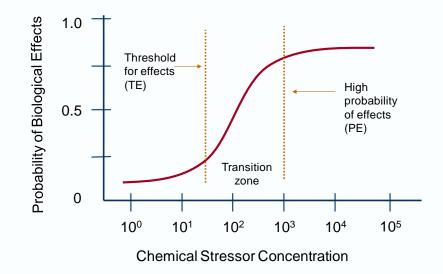
• "Would we predict this sediment to be toxic?"

<u>Mechanistically derived</u>: theoretical understanding of factors that govern bioavailability and known relationships between chemical and environmental, exposure, and toxicity interactions

"Can this contaminant, at this concentration, in this sediment, contribute to toxicity?"
 Encouraging use


Contaminants with no TVs = use of other lines of evidence (LOEs)

Co-occurrence and empirical guidelines


Water quality guidelines

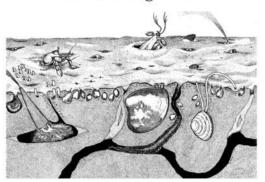
 Based on effects data for individual contaminants (SSDs of NOEC, EC10s)

Empirical sediment quality guidelines

• Effects data suffer from co-occurence of contaminants and influences the derived guideline value

Bioavailability assessment, toxicity testing ... are the key steps for improving assessment quality

Mechanistic guidelines (models)


Equilibrium partitioning sediment benchmark approached (ESBs)

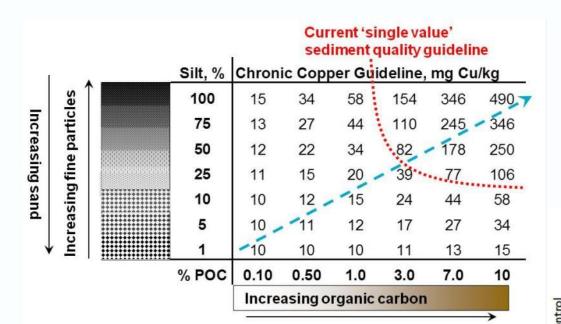
- Mixtures of non-ionic organic contaminants (e.g. PAHs)
- Metal mixtures (SEM-AVS/fOC; Cd, Cu, Pb, Ni, Zn (and Cr))
- Next generation SQGs

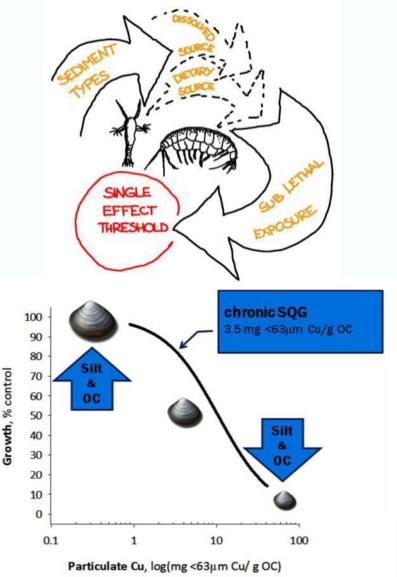
United States Environmental Protection

Procedures for the Derivation of Site-Specific Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Nonionic Organics

Advantages

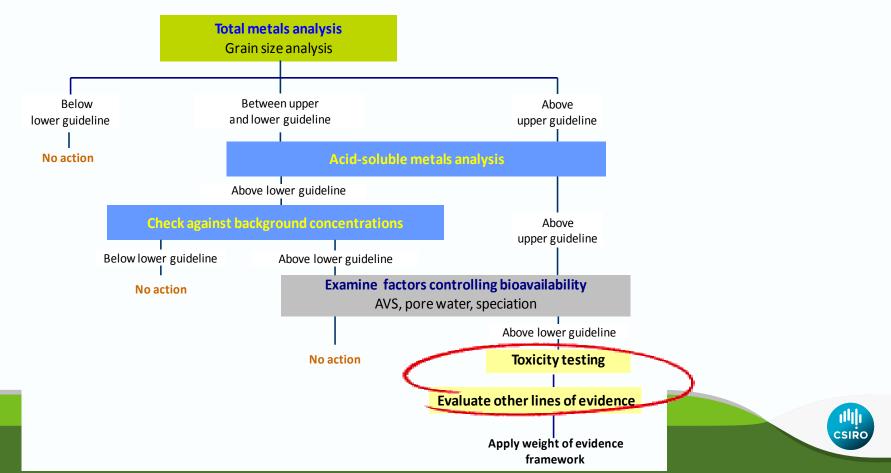
- Based on effects data for individual contaminants
- Incorporating bioavailability


Limitations


- <u>Upper thresholds</u> for model use ?
- <u>Passive samplers</u> for metals (DGT) and organics (SPME, PED) used for validating bioavailability models

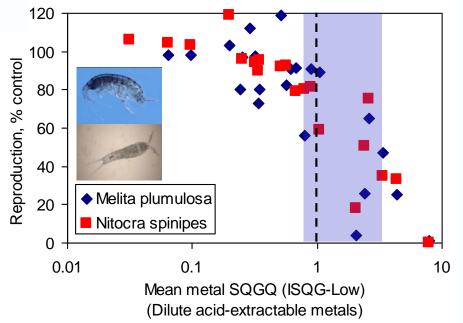
Next generation sediment quality guidelines?

e.g. dietary exposure; metals in oxidised sediments



Multiple lines of evidence

Contaminants with no TVs = use of other lines of evidence (LOEs)


- In practice, levels of protection and timeliness of information govern decisions on when to invoke different lines of evidence
- The guidelines **do not** consider different lines of evidence **at the outset**

Ecotoxicology: Rapid, sensitive, robust & sublethal

Estuarine-marine species

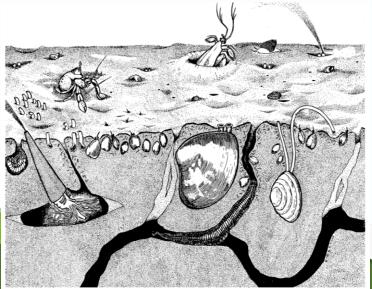
• OK, but room to improve ...

Rapid and sensitive bioassays assessing reproductive effects to amphipod *Melita plumulosa* and copepod *Nitocra spinipes*.

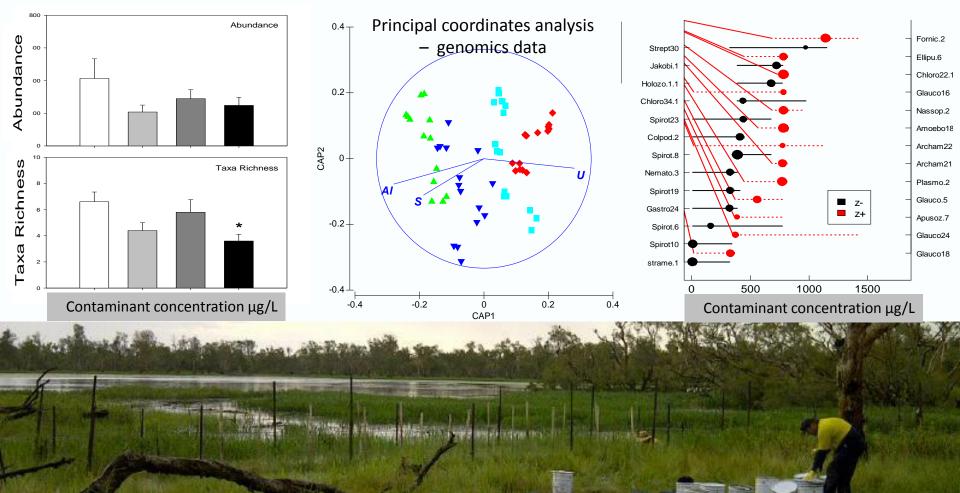
Freshwater species

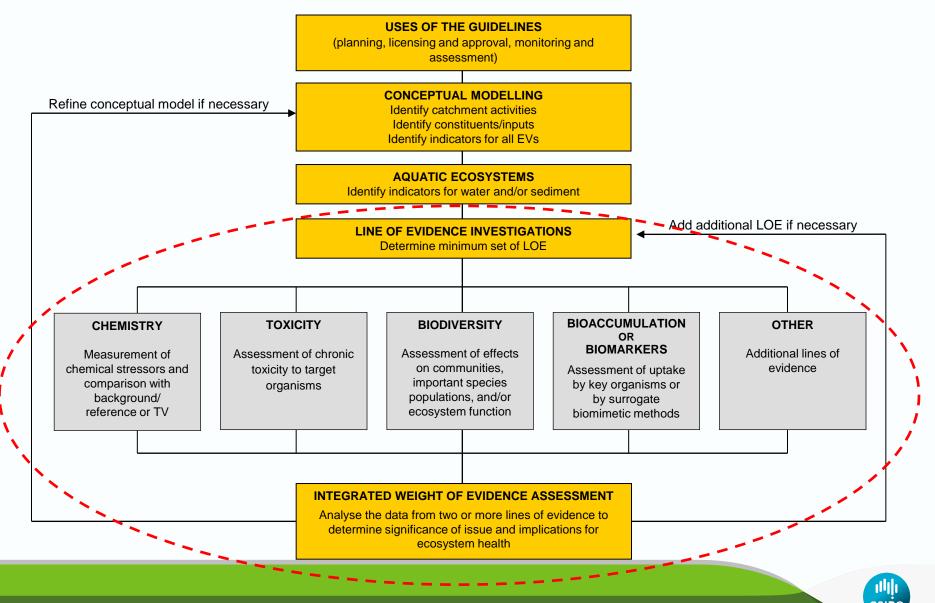
• Greater range needed ...

Midge (Chironomus tepperi)


• sub-chronic (growth, emergence, survival and sex ratios).

CSIR


Snail (Potamopyrgus antipodarum)


Ecological Assessment

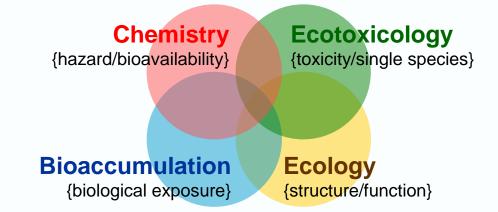
 Traditional versus ecogenomics (pyrosequencing) approaches to assessments – are they complementary ?

Advances in statistical methods

Approach to multiple lines of evidence

Approach to multiple lines of evidence

Four main lines of evidence


Simple three-level scoring matrix:

- Not significant : score 1
- Moderately significant : score 2
- Highly significant : score 3

Scoring of each LOE then combined in WOE assessment

Tabulation of a range of possible examples for each LOE

Refinement of SQGs where possible

Options include:

- Qualitative WOE studies
 best professional judgment
- Semi-quantitative approaches, e.g. Sediment quality triad - visual representations, +/- matrix effect ranking
- Quantitative rankings using probability /likelihood/multivariate approaches

Weight-of-evidence assessment

LOE	Score					
	3	2	1			
Chemistry						
Sediment contaminants	Concentration > SQG-high	Concentration > TV, < SQG-high	Concentration < TV			
Pore water contaminants	Concentration > WQG-HC10	Concentration > WQG-HC5, < WQG- HC10	Concentration < WQG-HC5			
Toxicity	≥50% effect vs control	20-50% effect vs control	<20% effect vs control			
Bioaccumulation	Significantly different (p<0.05) and > $3\times$ control	Significantly different (p<0.05) and $\leq 3 \times$ control	Not significantly different from control			
EcologySignificant and high effects on abundance and/or diversity		Significant but moderate effects on abundance and/or diversity	No significant effects on abundance and/or diversity			
Weight-of- evidence	Significant adverse effects	Possible adverse effects	No adverse effects			

TV= guideline trigger value, HC5 and HC10 = Chronic effects to 5% and 10% of species, respectively.

WOE ranking

{hazard/bioavailability} {toxi

Chemistry

Ecotoxicology {toxicity/single species}

Bioaccumulation

{biological exposure}

Ecology {structure/function}

	Line of Evidence ^a					
Case	Chemistry (metals- organics)	Toxicity	Bioaccumulation / Biomagnification	Ecology	Weight-of-evidence (WOE) Score	Overall Assessment
W1	3	3	2 or 3	3	3	Significant adverse effects from sediment contamination
W2	3	3	2 or 3	2	3	Significant adverse effects from sediment contamination
W3	2 or 3	3	2	2	3	Significant adverse effects from sediment contamination
W4	2 or 3	2	1 or 2	2	2	Possible adverse effects from sediment contamination
W5	2	2 or 3	1or 2	2	2	Possible adverse effects from sediment contamination
W6	2	2	1 or 2	2 or 3	2	Possible adverse effects from sediment contamination
W7	2 or 3	2 or 3	2 or 3	1	2	Toxic chemical stressing system but resistance may have developed at community level
W8	1	2 or 3	1	2 or 3	2	Unmeasured toxic chemicals causing effects on communities is possible
W9	1	2 or 3	1	1	2	Unmeasured physical or chemical causes of toxicity
W10	2 or 3	1	1	2 or 3	2	Chemicals are not bioavailable or community change may not be due to chemicals
W11	1	1	1	2 or 3	1	Changes probably not due to measured contaminants
W12	1 or 2	1	1 or 2	1	1	No adverse effects
W13	1	1	1	1	1	No adverse effects
W14	2 or 3	1	1	1	1	Contaminants unavailable

Revisions underway: Web-based platform for the new Guidelines

Necessitated:

- Expense in maintaining and updating hard copy versions
- Global move to e-availability of technological information and guidance
- Far superior medium for delivering complex, cross-cutting and integrative guideline components (e.g. one-screen, decision framework with hyperlinks)

Consequences for revision

- Opportunity to vastly improve:
 - Correct pathway that *different users* take in undertaking water quality assessments
 - Acquiring more accurate assessments through *weight of evidence* science, integrating information across different indicators
- Challenges in drawing in current and new information to new decision support system