

BCA: Triumphs and Troubles

Alan Krupnick
Resources for the Future

OECD Workshop: Socioeconomic Impact Assessment of Chemical Management Helsinki, July 6, 2016

BCA is ...

Lester Lave, an economist at the Brookings Institution, said that cost-benefit analysis "is a delightful tool for economists because it is complete, flexible and allows you to look at everything."

...[In] many cases, benefit—cost analysis cannot be used to prove that the economic benefits of a decision will exceed or fall short of the costs.... [But it] can provide illuminating evidence for a decision, even if precision cannot be achieved because of limitations on time, resources, or the availability of information. (Arrow et al. 1996, 5)

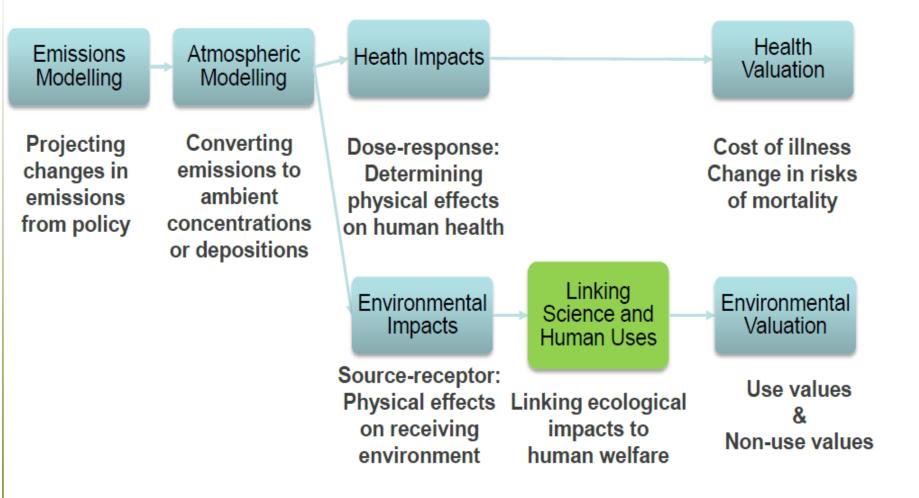
Definition

- Use of a monetary measure of aggregate change in individual well-being from a prospective policy decision/regulation
- Advantages are transparency, possibly accountability, framework for consistent data collection and gap identification, ability to aggregate over dissimilar effects.
- Disadvantages: one dimensional

Who does CBA? (Smith and Braathen, OECD EWP, No. 92

ENV/WKP(2015)13

Table 1. Summary of questionnaire responses


		Trans	sport	Ene	rgy	Oth	ner	New p	olicy	Ех р	ost
		investments		investments		investments		assessments		assessments	
		#	%	#	%	#	%	#	%	#	%
	Yes	18	90%	15	75%	10	77%	15	83%	11	65%
Are there clear criteria	No	2	10%	5	25%	3	23%	3	17%	6	35%
for how to do CBAs?	Total	20	100%	20	100%	13	100%	18	100%	17	100%
	All	3	16%	3	19%	3	25%	4	25%	0	0%
What is the share of cases in the last 3-5 years that have been CB-analysed?	Most	14	74%	6	38%	5	42%	8	50%	4	27%
	Some	1	5%	3	19%	4	33%	3	19%	6	40%
	A few	1	5%	3	19%	0	0%	1	6%	2	13%
	None	0	0%	1	6%	0	0%	0	0%	3	20%
	Total	19	100%	16	100%	12	100%	16	100%	15	100%

From Science to Policy: The Role of Economics

What makes toxic chemicals special relative to air pollution

Economics implications

- From regulatory perspective: thousands of substances, used in products, banning an option; focus on substitutes
- Endpoints: emphasis on cancer/mutagens/birth defects/serious morbidity
- Latency

Physical/biological science implications

- Multiple exposure points
- Long-lived (particularly in ecosystems)/accumulative
- Synergies across chemicals
- Creation of new chemicals with uncertain effects

EPA RIA for disinfection by-products

- No VSL adjustment for bladder cancer
- Morbidity increment of fatal bladder cancer: medical costs
- Nothing on adverse reproductive and developmental health effects.
- For non-fatal bladder cancers: 1996 (!) study on risk-risk tradeoff with curable lymphoma and death (58.3% of death). \$587K.
- Adjustments for real income growth
- Handling lags in impacts
- Use Monte Carlo simulation to handle uncertainties
- Discount rates: norm at EPA/OMB is 3% and 7%

New TOSCA rule

In proposing and promulgating a rule on a specific chemical, Administrator shall consider and publish a statement on the costs and benefits of the rule. This can be for testing a chemical, banning it, etc.

- Reauthorized TOSCA law says "without consideration of costs" about 50 times.
- Mentions "benefits" twice; focuses on risks
- Mentions costs and benefits together once. But EO would require it anyway.

Outline of Talk

- 1. What we do well
- 2. What we need to do better
- 3. What we mostly ignore
- 4. What we do that we shouldn't

Some caveats:

- Most of my experience with BCA analyses is U.S.
- Skipped environmental valuation

What we do well or at least agree on

- Market valuation in general
- Focus on linkage: Health endpoints-valuation startpoints
- Options analyses (although sometimes seems contrived); sensitivity analyses
- Adjustments for income growth
- Co-benefits
- Discounting? (sensitivity analyses, hyperbolic discounting)

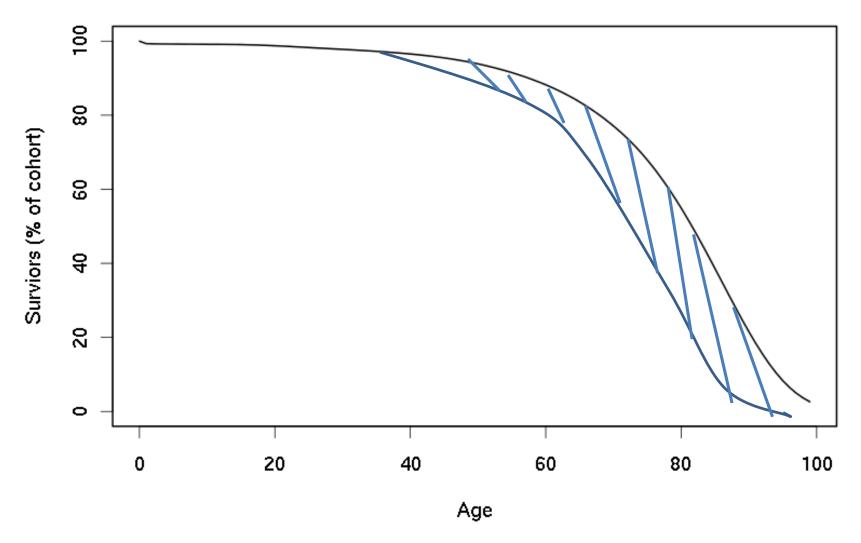
What we need to do better: mortality valuation

- EU: Braathen et al: ~ \$4 million SP studies
- US: ~\$9 million mostly RP studies
- Cancer (including latency/cessation lags)
- Public vs private context
- Children
- PPP vs. Exchange rate (for transfer)
- Income elasticity of WTP (for transfer)
- A new name: EPA trying out value of a micro risk (e.g., \$8 per 1/1,000,000)
- VSL vs. VSLY

Alberini and Scasny (1/16) (draft)

Value of Statistical Life (\$millions CAN\$)

Туре	Adult	Parent	
		for Child	
Cancer	7.0	8.7	
Road Accident	4.7	6.8	
Respiratory	5.0	7.8	
Add'l if Public	1.8	2.4	



VSLY

- Years Life Lost is "probably" a better metric than "lives lost"
 - → Need VSLY
- Just as there's no one VSL, there's no one VSLY
- Three approaches in literature
 - Amortize VSL exponential function; need discount rate (~\$300,000)
 - SP (Desaigues et al 2011; Chilton et al, 2004; Cameron and DeShazo, 2013)

Shift in Survival Function

What we need to do better: serious morbidity valuation

- Holy Grail: Choice experiment with sufficient attributes to describe/differentiate between toxic chemicals – do for products with substances and with substitutes
- Do studies for particular endpoints or chemicals
 - ECHA review (2016) of studies in Italy, Czech R, UK and Neth. (skin irritation, kidney failure and disease, fertility and developmental toxicity, cancer).
 Fertility/Birth defects study in Canada (Scazny and Zverinova, 2016)

Integrating across Morbidity/Mortality and Beyond

- Add morbidity cost to mortality
- Choice experiments with qualitatives
- Choice experiments with quantitatives
- Choice experiments with illness profiles
- Choice experiments with chemical properties

Georgiou et al (2015) ppt. WTP to reduce Deca-BDE

	Current Situation	Alternative 1	Alternative 2
Risks of death due to household fires	5 in a million	15 in a million	10 in a million
Relative level of risks of impact on wildlife	High	High	Low
Relative level of risks of impact on human health	High	Low	High
Increase in annual household expenditure	£0	£ 50	£5

Integrated morbidity/mortality valuation studies

Adamowicz et al (2011)

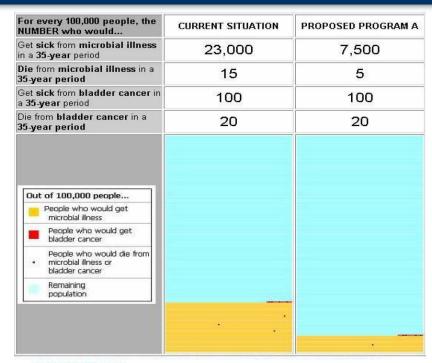


Table 8. Value of Statistical Life and Value of Statistical Illness Calculations

	Conditional Logit Models a			V	WTP Space Models a			
	V5	V6	V5 + V6	V5	V6	V5 + V6		
	17,498,000	17,135,000	17,634,000	20,016,990	21,953,310	19,677,680		
Microbial death	(4,510,100) ^b	(4,333,800)	(3,585,000)	(4,988,558)	(3,988,718)	(5,206,360)		
	25,188	18,591	24,013	34,269	19,330	31,248		
Microbial illness	(4,291)	(3,322)	(3,124)	(4,164,685)	(3,867,622)	(26,983)		
	16,021,000	8,538,000	13,559,000	16,691,720	10,927,880	15,408,610		
Cancer death	(4,057,400)	(3,261,100)	(2,785,800)	(5,404,344)	(4,331,812)	(4,628,368)		
	2,539,900	4,330,900	2,952,400	3,275,405	4,908,321	4,113,380		
Cancer illness	(903,860)	(943,830)	(624,130)	(5,978,036)	(4,123,471)	(4,685,878)		

Example: One of the 11,385 randomized choice sets. (Cameron and DeShazo, 2013)

Choose the program that reduces the illness that you most want to avoid. But think carefully about whether the costs are too high for you. If both programs are too expensive, then choose Neither Program.

If you choose "neither program", remember that you could die early from a number of causes, including the ones described below.

including the ones described below.					
	Program A for Heart Disease	Program B for Colon Cancer			
Symptoms/ Treatment	Get sick when 71 years old 2 weeks of hospitalization No surgery Moderate pain for remaining life	Get sick when 68 years old 1 month of hospitalization Major surgery Severe pain for 18 months Moderate Pain for 2 years			
Recovery/ Life expectancy	Chronic heart condition Die at 79	Recover at 71 Die of something else at 73			
Risk Reduction	5% From 40 in 1,000 to 38 in 1,000	50% From 4 in 1,000 to 2 in 1,000			
Costs to you	\$15 per month [= \$180 per year]	\$4 per month [= \$48 per year]			
Your choice	Reduce my chance of heart disease	Reduce my chance of colon cancer			
	Neither Program	1			

Valuation study for Canada's Chemicals Management Plan (Patterson et al, 2016)

EXHIBIT 1. ATTRIBUTES AND ATTRIBUTE LEVELS

ATTRIBUTE	LEVELS
Persistence	Not Persistent
	Persistent
Bioaccumulation	Does Not Bioaccumulate
	Bioaccumulates
Environmental Impacts	No Impacts
	Impacts Water Quality
	Impacts Air Quality
	Impacts Soil Quality
Toxic to Non-Human Organisms	No Effects
	Toxic to Non-Human Organisms
Carcinogenic to Humans	Not Carcinogenic
	Carcinogenic
Other Potential Health Effects on Humans	No Effects
	Respiratory/Cardiovascular Effects
	Reproductive Effects
	Developmental Effects
Additional Cost Per Month	\$0, \$5, \$30, \$60, \$90, \$120, \$150

Results (\$ per Household per Month)

EXHIBIT 25. CONDITIONAL LOGIT MODEL - IMPLIED WILLINGESS-TO-PAY TO AVOID ADVERSE EFFECTS OF CHEICALS

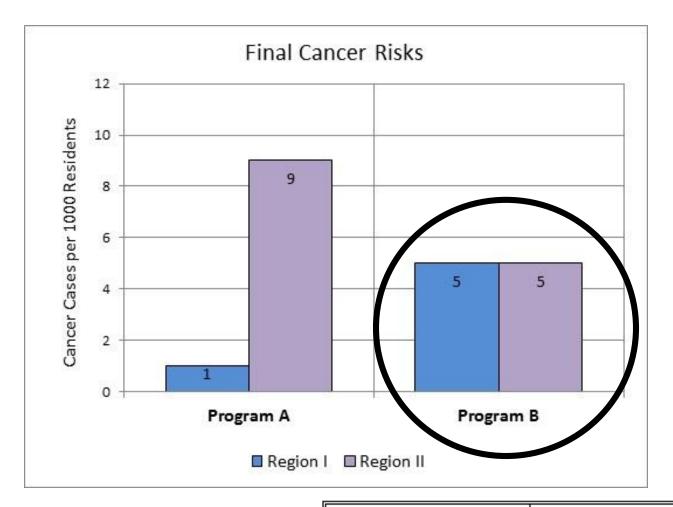
Remove chemicals that	Implied WTP
are carcinogenic to humans	\$49.23
are toxic to non-human organisms	\$41.06
affect soil quality	\$37.42
affect water quality	\$37.22
affect air quality	\$35.76
are persistent in air water or soil	\$28.83
have adverse effects on the lungs, heart, or other aspects of the respiratory or circulatory systems in humans	\$26.64
bioaccumulate	\$25.66
adversely affect a person's ability to conceive a child by damaging reproductive organs or disrupting physiological processes related to reproduction	\$23.73
increase the likelihood of birth defects or adversely affect the normal growth and development of a human foetus or child	\$17.54

What we need to do better: market valuation of chemicals policies

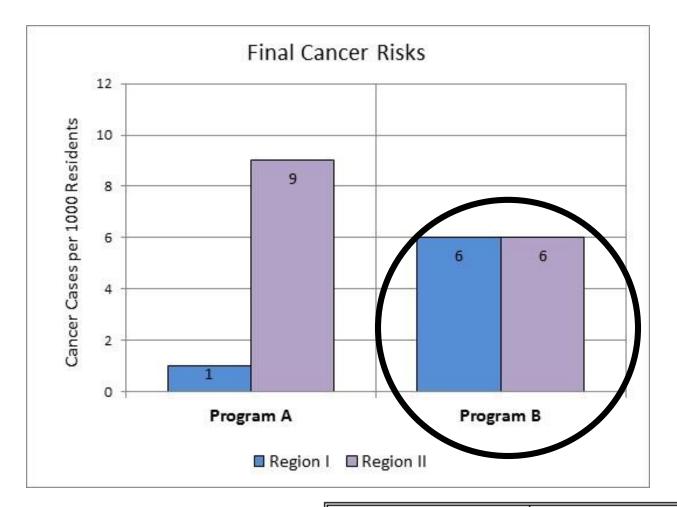
Opportunity costs of a ban: market net consumer and producer surplus and non-market value difference (accounting for substitutes)

- Don't know the feasible set of substitutes
- Sometimes don't know the health effects (let alone their value)
- Sometimes there are no approved options

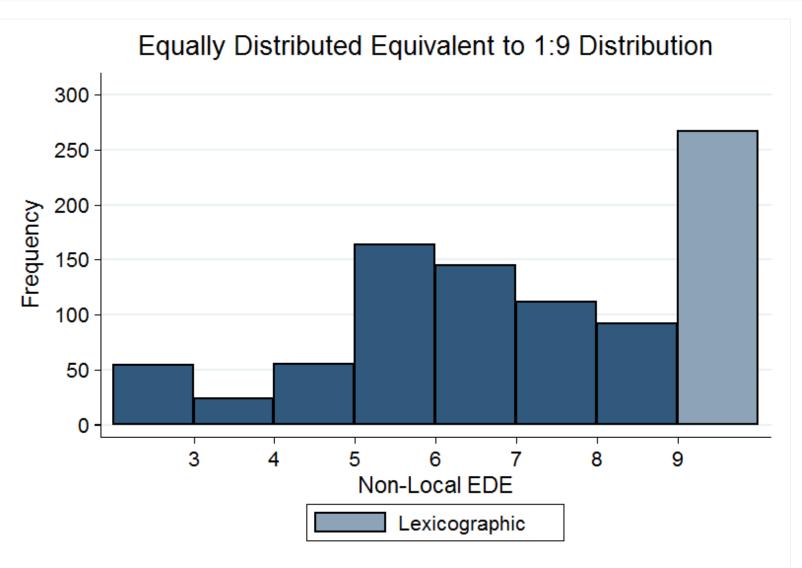
What we mostly ignore


- Equity.
 - Describe
 - Inequality aversion
- Uncertainty In net benefits
- Benefits/costs to other countries:
 - → EPA RIA for CPP: 10/15:

Inequality Aversion (Cropper et al, 2016)


- Assume an individual has a utility function defined over the distribution of <u>health risks</u> in a society.
- The Equally Distributed Equivalent risk (EDE) is the amount of risk which, if equally distributed, yields the same utility as the existing distribution of risk.
- For the Atkinson SWF over bads (Sheriff & Maguire):
 - EDE = mean risk * (1+A'), where A' is the Atkinson inequality index for health risks
 - A' can be interpreted as the proportionate increase in average risk a person would accept if the remainder were distributed equally

	Program A	Program B
Final risk for Region I	1 in 1000	5 in 1000
Final risk for Region II	9 in 1000	5 in 1000
Total cancer cases per 1000 residents	10	10



	Program A	Program B
Final risk for Region I	1 in 1000	6 in 1000
Final risk for Region II	9 in 1000	6 in 1000
Total cancer cases per 1000 residents	10	12

Results

Home on the range (Krupnick, Morgenstern, Nelson, 2005)

"A big part of my frustration was that scientists would give me a range. And I would ask, 'please just tell me at which point you are safe, and we can do that.' But they would give a range, say from 5 to 25 parts per billion (ppb). And that was often frustrating."

Christine Todd Whitman, quoted in Environmental Science and Technology Online, April 20, 2005

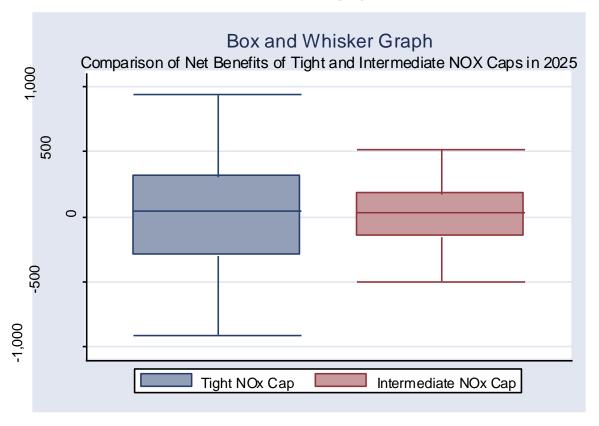
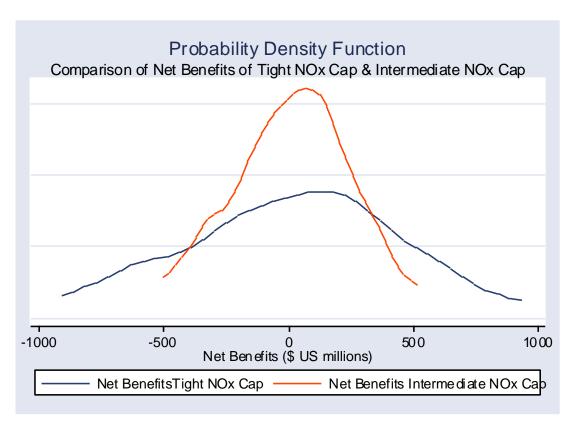
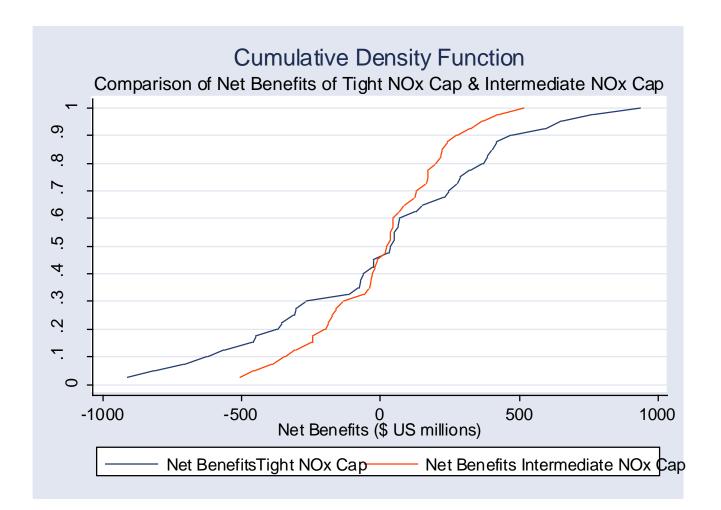
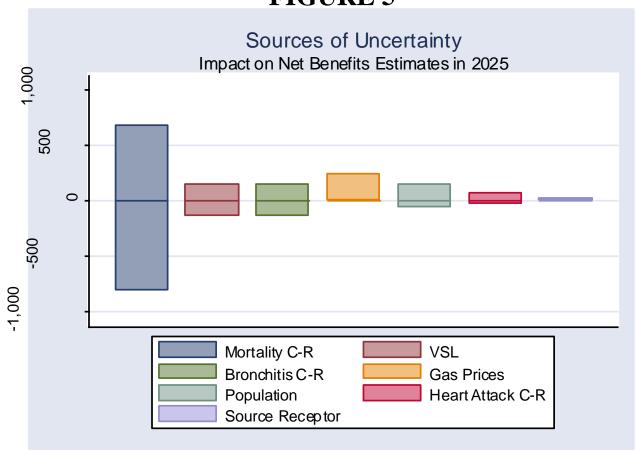


FIGURE 1


Probability that Policies Produce Net Benefits in 2025
Comparison of Tight and Intermediate NOx Caps





Communicating uncertainty - conclusions

- Pdf preferred
- CDF did not fare well
- Tables preferred over box and whisker
- Sources of uncertainty not of equal weight
- Preference for CEA or even discussion

RIA for CPP (EPA, 2015)

Table ES-9. Monetized Benefits, Compliance Costs, and Net Benefits Under the Ratebased Illustrative Plan Approach (billions of 2011\$) ^a

		Rate-Based Approach					
	20	20	20)25	20	30	
Climate Benefits b							
5% discount rate	\$0	.80	\$3	3.1	\$6.4		
3% discount rate	\$2	2.8	\$	10	\$20		
2.5% discount rate	\$4	1.1	\$15		\$29		
95th percentile at 3% discount rate	\$8	\$8.2			\$61		
		Air Quality Co-benefits Discount Rate					
	3%	7%	3%	7%	3%	7%	
Air Quality Health Co-benefits ^c	\$0.70 to \$1.8	\$0.64 to \$1.7	\$7.4 to \$18	\$6.7 to \$16	\$14 to \$34	\$13 to \$31	
Compliance Costs d	\$2.5		\$1.0		\$8.4		
Net Benefits e	\$1.0 to \$2.1	\$1.0 to \$2.0	\$17 to \$27	\$16 to \$25	\$26 to \$45	\$25 to \$43	

Domestic SCC: 7-23% of global value

What "we" do but shouldn't

 "We do so little, so we better keep doing it." Arthur Fraas, formerly of OMB

- RP dominant over SP (a US problem)
- Casual approach to "unknown costs"

"Process" recommendations/suggestions

- 1. Need clear decision rules for CBA and legislative requirements where necessary. EO12291 issue
- 2. Outside peer review; linking to literature; raising standards to academic levels
- 3. CBA early in process even dictating info needed (matching RA)
- 4. Expand set of policy options
- 5. More money for analysis
- Emphasize best estimates (not worst cases) of physical consequences and also emphasize CEA in certain cases
- 7. More retrospective analyses

Triumphs and Troubles

Triumphs

- BCA becoming ever more legitimate within governments
- Health valuation becoming more legitimate primarily because of huge valuation benefits – environmental community sold
 - BUT: Health science community is a tough sell

Troubles

- Continued Issues with VSL/VSLY in many directions
- Equity
- Institutional Issues
- tribulation

Questions? Contact Krupnick@RFF.org

