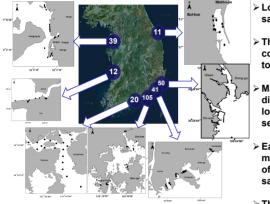
THE DERIVATION OF MARINE AND FRESHWATER SEDIMENT QUALITY GUIDELINES FOR METALS USING SEDIMENT TOXICITY DATABASE ESTABLISHED BY KOREAN SPECIES


Jong-Hyeon Lee

Institute of Environmental Safety and Protection, NeoEnBiz Co

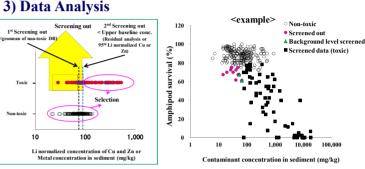
Abstract

During the recent several decades, the management and control of contaminants in sediments of marine environment have been risen as one of the most important issue for the environmental scientists, industrial engineers, and regulatory authorities. Since there is no standards or guidelines prepared for the sediment contaminants in Korean coasts, several guidelines developed by other countries (such as ERLs, ERMs, TELs, PELs) were considered as references for the management of coastal sediments. In 2008, Ministry of Land and Transport and Maritime Affairs in Korea launched a new project to develop marine environmental standards for sediments. For deriving sediment quality guidelines for protection of marine organisms, not only chemical data but also toxicity data should be obtained in parallel. For 278 sediments sampled from coast of Korea, we applied sediment toxicity testing methods previously developed using Korean indigenous species (benthic amphipods, copepods and sea urchin) to the sediment quality assessment and derived new sediment quality guidelines for metals as TEL (threshold effect level) and PEL (probable effect level) with the consideration of regional specificity, grain size characteristics, and background concentrations.

Materials and Methods

1) Database Establishment

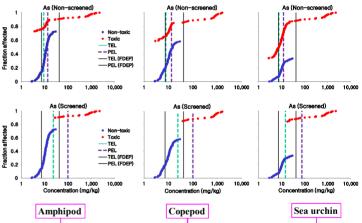
Test organisms



Location map of 278 sampling sites.

- The sampling were conducted from 2009 to 2011
- Map of Korea displaying the location of sediments sample.
- > Each number on map was individuals of sediment samples.
- > The numbers pointed out zoom-up the sampling sites.

Test method (End-point)



1. Confirm toxic or non-toxic samples.

- 2. Screen out toxic samples with metal concentration lower than those of nontoxic samples in the same region.
- 3. Screen out toxic samples below background concentration.
- 4. Calculation of possible and probable effect ranges from screened database

Results (Arsenic as an example)

Con

Unit: mg/kg												mg/kg
Ohaniaala	Canada		Australia		NOAA		Hong kong		FDEP		This study	
Chemicals	ISQG	PEL	ISQG-Low	ISQG-High	ERL	ERM	ISQV-Low	ISQV-High	TEL	PEL	TEL	PEL
As	7.24	41.6	20	70	8.2	70	8.2	70	7.24	41.6	14.5	75.5
Cu	18.7	108	65	270	34	270	65	270	18.7	108	50.5 ¹⁾	126 ¹⁾
Cr	52.3	160	80	370	81	370	80	370	52.3	160	88.72)	123 ²⁾
Ni	-	-	21	52	20.9	51.6	40	-	15.9	42.8	45.5 ²⁾	62.1 ²⁾
Pb	30.2	112	50	220	46.7	218	75	218	30.2	112	44.0	119
Zn	124	271	200	410	150	410	200	410	124	271	179 ¹⁾	421 ¹⁾
Cd	0.7	4.2	1.5	10	1.2	9.6	1.5	9.6	0.68	4.21	0.75	2.72
Hg	0.13	0.7	0.15	1	0.15	0.71	0.28	1	0.13	0.7	0.11	0.62

ISQG: Interim Sediment Quality Guideline, ISQV: Interim Sediment Quality Value, ERL: Effect Range Low, ERM: Effect Range Median, FDEP: Florida Department of Environmental Protection, TEL: Threshold Effect Levels, PEL: Probable Effect Levels

1) Used concentrations of Cu and Zn were normalized by Li concentration

2) Cr and Ni are necessary to refine by constructing further sediment toxicity database

Further study

Additional construct DB for Cr, Ni sediment spiking test are necessary.

Marine amphipod 10 days acute sediment toxicity test (Survival)

Marine copepod 14 days chronic sediment toxicity test (Reproduction)

Sea urchin Pore-water fertilization test (Fertilization)

2) Derivation of SQGs (TEL, PEL)

$TEL = \sqrt{EDS - L \times NEDS - M}$

TEL = Threshold effect level EDS-L = 15th percentile concentration in the effects data set NEDS-M = 50th percentile concentration in the no effects data set

$PEL = \sqrt{EDS - M \times NEDS - H}$

PEL = Probable effect level EDS-M = 50th percentile concentration in the effects data set (ERM) NEDS-H = 85th percentile concentration in the no effects data set

10 100 1,000 10,000 Concentration (mg/kg)			1	1 10 100 1,000 10 Concentration (mg/kg)				0 100 Concentration		
1	4mph	ipod			Co	pepod			S	ea
C	lus	ions					N	linimum	value	9
	Canada		Australia		NOAA		Hong	FDEP		
ls	ISQG	PEL	ISQG-Low	ISQG-High	ERL	ERM	ISQV-Low	ISQV-High	TEL	PE