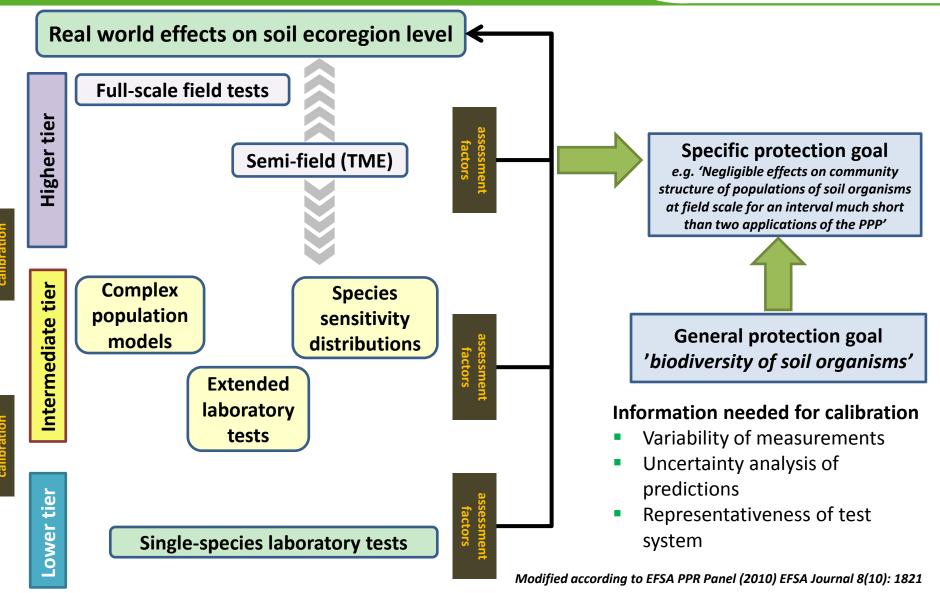


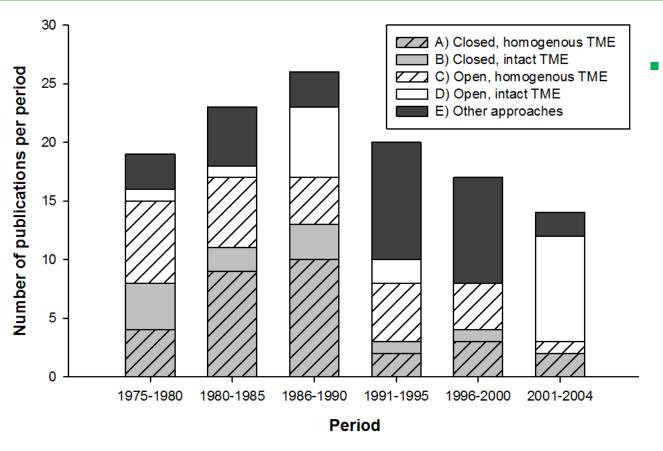
Assessing the risks of pesticides to soil communities using Terrestrial Model Ecosystems

Björn Scholz-Starke

Chair of Environmental Biology and Chemodynamics (UBC) Andreas Schäffer, Martina Roß-Nickoll Working Group 'Quantitative Ecology' Working Group 'Community Ecology and Ecotoxicology'


- Originally developed for risk assessment of plant protection products
- Address the general protection goal 'no unacceptable effects on biodiversity and ecosystems' of arable fields or grasslands (not directly off-field structures)
- Include several species of (relevant) soil taxa to reflect a realistic species composition, diversity and food web structure compared to lower tier studies
- Start of an experiment with a complex community or after establishment of interaction patterns typical for the respective habitat type
- Run for several weeks up to months, including at least one complete reproduction cycle for most taxa
- Systems reflect (semi-) natural population dynamics typical for the seasons around the year

Calibration of soil risk assessment by semi-field


reference tiers

Availability of methods I

Widely agreed: intact, open TME equipped with complex communities provide better opportunities to address biodiversity issues than assembled, homogenous systems

ENVIRONMENTAL

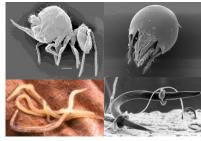
 Numerous different approaches from basic (ecological) to applied (ecotoxicological) research available

Scholz-Starke (2013) RWTH Aachen University. pp. 291.

Wide variety of approaches have been described in the literature...

- Species composition → from assembled to natural originating from different ecosystems
- Different test substances → pesticides, veterinary pharmaceuticals, heavy metals, biocides
- Different endpoints → survival, reproduction, feeding rates, microbial, vegetation and soil animal communities
- No guidance documents but recent workshop proceedings , e.g. PERAS (*Schäffer et al. 2011. CRC Press. pp. 106.*)

Design of case study I Sequential sampling


Coring

Recycling

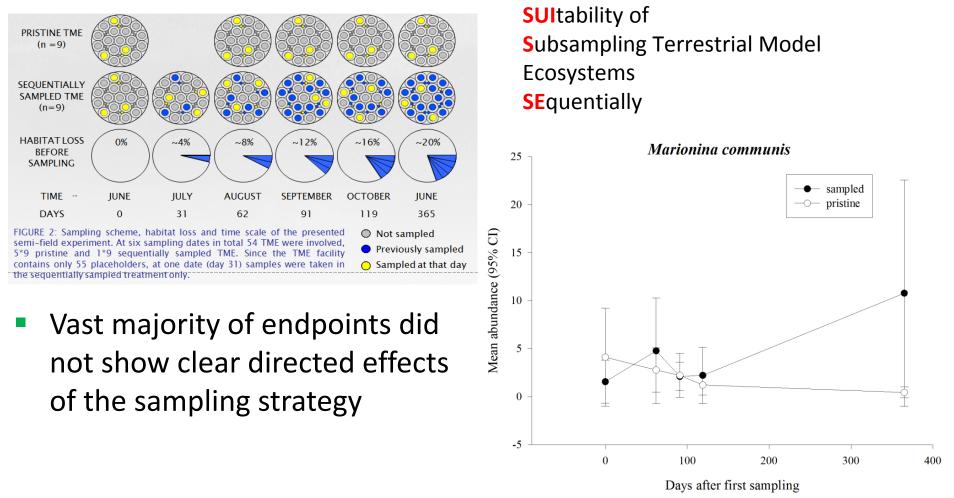
Determination

Extraction of organisms

Storage under controlled conditions

Application of a test item

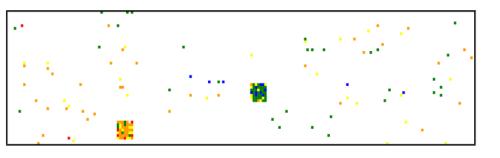
Sub-sampling



Design of case study II

Stability over time

One-year 'control' study with full set of endpoints



Theißen, Scholz-Starke, Hammers-Wirtz, Kölzer, Leicher, Schäffer, Roß-Nickoll (2010) Proceedings SETAC Annual Meeting, Sevilla.

Design of case study III Avoidance of excess variation

(1) Systematic sampling on designated coring site

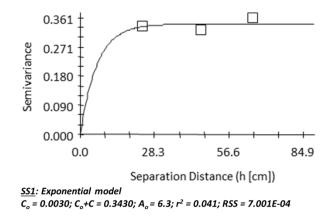
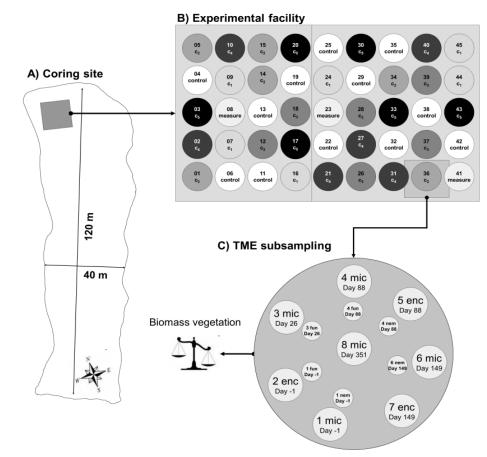

(2) Description of distribution patterns

Figure V-10: Kriging diagram of I. palustris (abundance per sample) (data: bsc).

Scholz-Starke (2013) RWTH Aachen University. pp. 291.

(3) Modelling of spatial autocorrelation

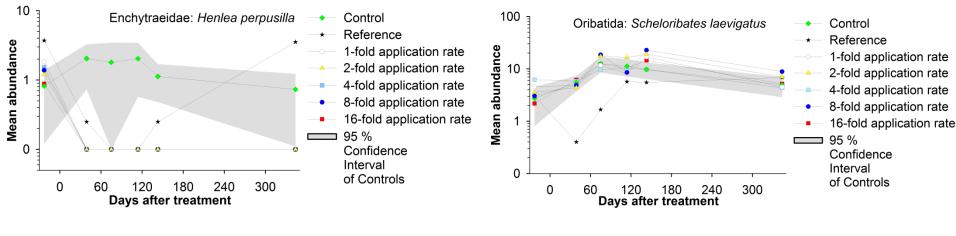

(4) Best-fit coring strategy → e.g. not exceed 5 m distance for soil coring

Design of case study IV Endpoints

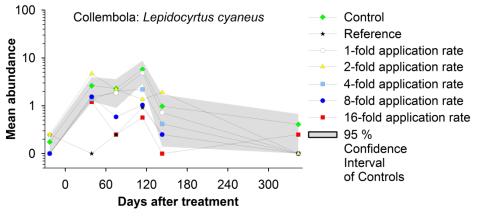
- Replication N_{control replicates} = 12; N_{treatment replicates} = 6; N treatments = 5
- Sampling period day -1 351 after application of lindane, 5 sampling dates
- Endpoints
- Collembolans (species abundance)
- Oribatids (species abundance)
- Enchytraeids (species abundance)
- Nematodes (species abundance)
- Fungi (DGGE-patterns)
- [species abundance Lumbricids]
- [Plant biomass]
- Application of lindane/alternative insecticide
- C₁ = 0.032 mg lindane / kg dry soil OR 250 g a.i. / kg dry soil
- C₂ = 0.1 mg lindane / kg dry soil **OR** 500 g a.i. / kg dry soil
- C₃ = 0.32 mg lindane / kg dry soil OR 1000 g a.i. / kg dry soil
- C₄ = 1.0 mg lindane / kg dry soil OR 2000 g a.i. / kg dry soil
- C₅ = 3.2 mg lindane / kg dry soil OR 4000 g a.i. / kg dry soil

Scholz-Starke (2013) RWTH Aachen University. pp. 291.

Effects on population level


Very sensitive \rightarrow all treatments at all dates after

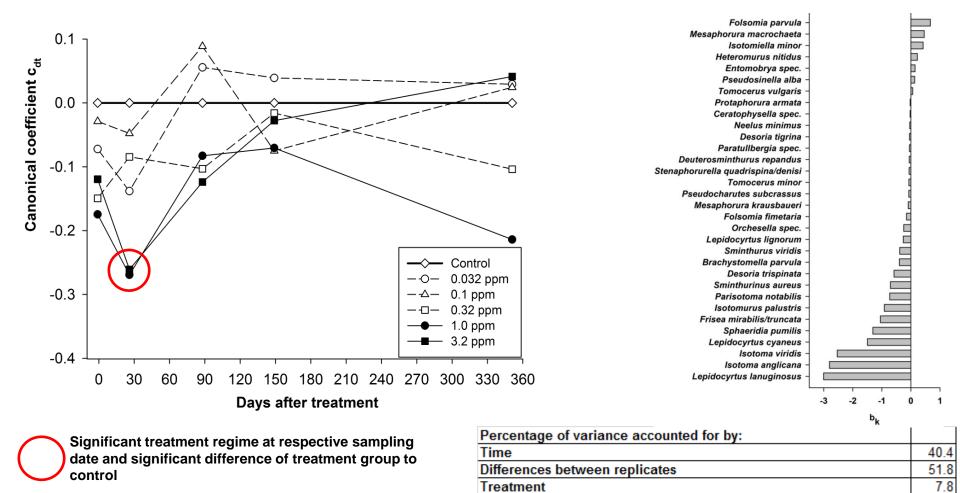
treatment were significantly different from controls


 Insensitive → no treatment related effects, reference demonstrates principle sensitivity

NSTITUTE

FOR ENVIRONMENTAL

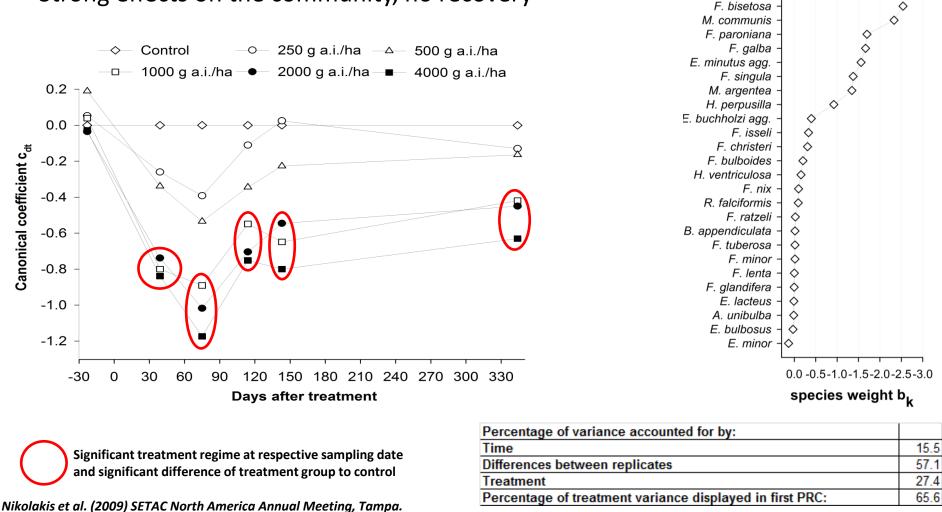
- Sensitive with recovery \rightarrow initial effects


 Patterns of differentially sensitive populations, recovery could be demonstrated

Scholz-Starke et al. (2009) SETAC Annual Meeting, Gothenburg.

Effects on community level I

- Collembolans, lindane, Principal Response Curve method
- Initial effects in the highest treatments, recovery and increasing variation


Scholz-Starke (2013) RWTH Aachen University. pp. 291.

Percentage of treatment variance displayed in first PRC:

24.1

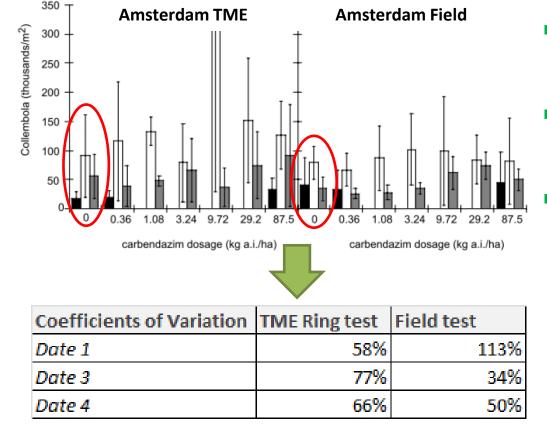
Effects on community level II

- Enchytraeids, alternative insecticide, Principal Response Curve method
- Strong effects on the community, no recovery

Use of data in ERA- Classification of effects

1	No treatment-related effects
2	Slight treatment-related transient effects, usually on one or a few isolated sampling dates only
3	Clear effects on several consecutive sampling dates, lasting less than 2 months post last application of the test item in the test system
4	Clear effects on several consecutive sampling dates, lasting longer than 2 months but full recovery within 1 year post last application of the test item in the test system
5	Clear long-term effects; full recovery not within 1 year post last application of the test item in the test system

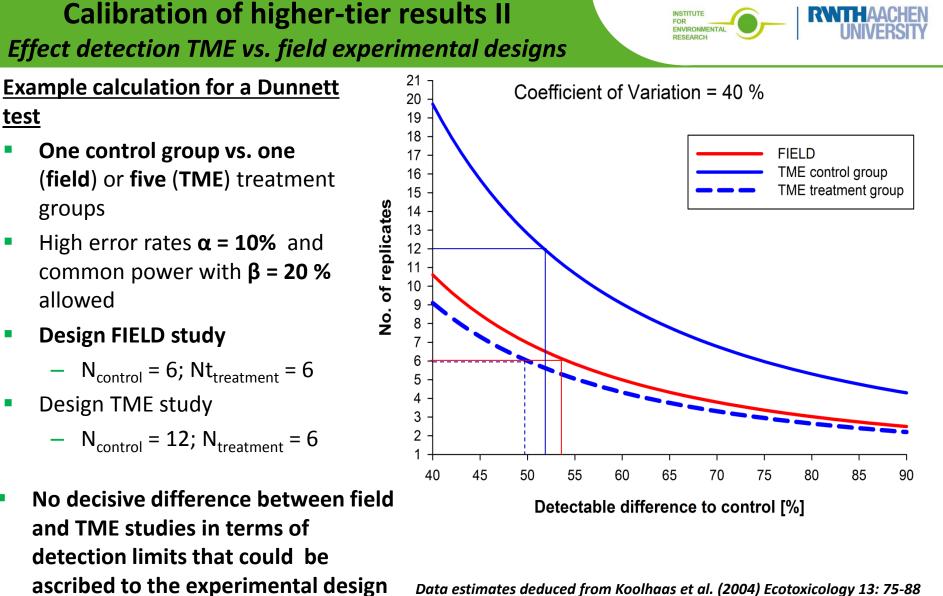
 Specific protection goal has to be defined: Which deviation over which period of time for which organism group and which endpoint could be acceptable for which general protection goal (e.g. agrobiodiversity) Recovery-based classification of all endpoints including effects on diversity indices and single population densities allow for a comprehensive assessment


Endpoints Effects of γ-HCH (mg	Dose-response study					Range-finding study	
a.i./kg soil)	0.032	0.1	0.32	1	3.2	10	100
Principle Response	1	1	2	2	2	5	5
Shannon index	1	1	1	1	1	4	4
Evenness	1	1	1	1	1	4	
Taxa richness	1	1	2	2	2	5	5
Total abundance	1	1	2	2	2	5	5
Brachystomella parvula	1	1	2	2	2		
Entomobrya spec.	1	1	1	2	2		
Desoria trispinata	1	1	1	1	1	4	
Isotoma anglicana	1	1	2	2	2	5	5
Isotoma viridis	1	2	2	3	3	4	4
Isotomurus palustris	1	1	1	1	1	4	4
Lepidocyrtus cyaneus	1	1	1	1	1	5	5
Lepidocyrtus lanuginosus	1	1	2	2	2	5	5
Lepidocyrtus lignorum	1	1	1	1	1	4	4
Mesaphorura macrochaeta	1	1	1	1	1		
Orchesella spec.	1	1	1	1	1	1	2
Parisotoma notabilis	1	1	1	2	2	4	4
Sminthurinus aureus	1	1	4	4	4	3	3
Sphaeridia pumilis	1	1	1	1	1	2-3	2-3
Lowest Community-NOEC			х			<	
Lowest population-NOEC		х				<	
NOEAEC					х	?	
Qinnilarita (Qtainhanna (Jadam)				0			
Similarity (Steinhaus' Index) Similarity (Standers' Index)	1	1	1	2	2	4	4

Scholz-Starke et al. (2009) SETAC Europe Annual Meeting, Gothenburg.

Koolhaas et al. (2004) Ecotoxicology 13: 75-88

Calibration of higher-tier results I Variation of TME & Field data

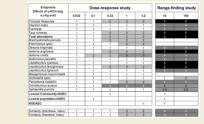

- Field 6 controls, 4 replicates for each treatment, 3 comparable dates
- **TME lab**: N = 6 for controls
- **CoV** estimate for untransformed data and control systems/plots

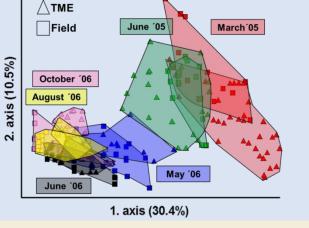
- Similar mean variation for TME and field testing
- More 'variable variability' for field tests
- Variation depends on distribution of organisms, which is on a scale far smaller than a typical semi-field test system

Collembolans

Data estimates deduced from Koolhaas et al. (2004) Ecotoxicology 13: 75-88 Design field study . Römbke et al. (2009) Soil Organisms 81: 237-264. Design TME study Scholz-Starke (2013) RWTH Aachen University.

or system characteristics




Terrestrial Model Ecosystems could serve as a reliable higher-tier test system

- Methodology is well developed, however standardisation is not considered necessary
- High statistical power to detect differences of treatments to control levels due to homogenous test units and high replication
- High stability over time and minor influence of subsampling
- Fit-to-purpose → Various fate and effect endpoints for many organism groups (microbes, fungi, arthropods, lumbricids) and substance classes (pharmaceuticals, metals, pesticides) applicable
- Data can be used for complex effects modelling (Filser et al. (2014) SETAC Europe Annual Meeting, Basel.)

Use of TME in Environmental Risk Assessment Calibration & reference tier linking specific protection goals

- Estimation of representativeness by 'general' reference communities for the type of habitat
 - Query site-related soil zoology repositories (e.g. Edaphobase.org)
 - Compare actually tested species composition with indicator assemblages
- Estimation of representativeness by 'internal' references → Coring site communities compared to TME communities
- Classification schemes of effects should incorporate specific protection goals

Thank you for your attention

Institute for Environmental Research

Andreas Schäffer, Bernhard Theißen, Andreas Toschki, Hans-Toni Ratte, Julia Bless, Martina Roß-Nickoll

Cooperation & Funding Bayer Grops clence Thorsten Leicher, Alexander Nikolakis, Fred Heimbach, Christa Lechelt-Kunze, Ursula Kölzer