Nickel Producers Environmental Research Association

INC.

Bioavailability based approaches for soil risk assessment of metals: Regional differences arising from distributions of soil chemical properties

EFSA/ECHA Soil Risk Assessment Workshop

Wednesday, October 7, 2015

nicke

28

58.693

Chris Schlekat – Nickel Producers Environmental Research Association (Durham, NC, USA)

Ilse Schoeters – Rio Tinto (Brussels, Belgium)

Robert Dwyer – International Copper Association (New York, NY, USA)

Katrien Delbeke – European Copper Institute (Brussels, Belgium)

Michael McLaughlin – Commonwealth Scientific Industrial Research Organization (Adelaide, Australia)

Yibing Ma – Chinese Academy of Agricultural Sciences (Beijing, China)

Introduction

- Introduction to soil bioavailability normalization process for metals
- Validation of concepts in Chinese soils using Chinese soil species
- Implementation of concepts in Australia
- Summary and points to consider

4

Environmental risk assessment of metals: Challenges

- 1. Protection goals: What are we trying to protect?
 - 95% of species?
 - Sensitive species?
 - Ecosystem function?
 - Ecosystem structure?
- 2. Regional variability:

- Metal toxicity varies as a function of matrix (soil, water, sediment) chemistry
- REACH (and other regulatory risk assessment guidance) requires use of sensitive conditions: Reasonable Worst Case

Environmental risk assessment of metals: Challenges

- 3. Dilemma:
 - Background concentrations in soils vary by an order of magnitude
 - RWC approach can lead to concentrations near natural background concentrations
 - Presents challenges in terms of environmental management
- 4. Solution:
 - Bioavailability normalization
 - Takes site-specific chemistry into account in a mechanistic way
 - Removes influence of toxicity test chemistry
 - Practical, scientific and implementable approach

http://weppi.gtk.fi/publ/foregsatlas/maps/Topsoil/t_icpms_ni_edit.pdf

Soil databases for metals: Data-rich

- Nickel as an example
- 43 process/species
- Plants: 8 different families
- Invertebrates: 3 different taxonomic groups included
- Microbial processes:
 - 6 enzymatic activities;
 - 6 process measurements;
 - 1 biomass measurement;
 - 13 fungal species

- Aging of soluble Ni increases with time of soil:Ni contact
- Not Ni-specific
- pH dependent: no ageing at pH<6, but up to factor of 3 at pH = 7.5

Incorporation of bioavailability: Importance of cation exchange capacity (CEC)

Ni toxicity in EU soils governed by CEC

- r² values for relationships range from 0.68 to 0.92
- Slopes between Ni toxicity & CEC are the same for all species
- CEC relationships can be extrapolated among different species
- Similar relationships observed for other metals, e.g., copper and zinc

Outcome of SSD bioavailability scenario analysis

Metals in Asia

- Cu and Ni
- Tested 17 Chinese soils
- Used Chinese test species (plants, microbial processes, invertebrates)

Evaluated leaching/ageing and bioavailability relationships

EC10 or NOEC (mg Ni/kg soil)

Metals in Asia: Laboratory Results

- Soil-specific results observed
 - Intra-species variability as high as 52-fold for some species
 - Relationships between soil parameters and Ni toxicity similar to that shown in EU RA soil research program
- pH related to Ni toxicity, followed by CEC
 - Together these parameters explained 80% of variability in toxicity among 17 soils (leached soils, EC₂₀)
- For copper, pH, organic carbon and CEC were most important

- Three field sites varying in soil parameters tested from June '07 until September '08
 - pH: 5.3 to 8.9
 - CEC: 7.5 to 19.3 cmol/kg
 - Maize, wheat, rice, and rapeseed grown in each soil
- Results:
 - Decrease in toxicity in alkaline soils with time, but not in acid soil (consistent with EU data)
 - In general, L/A corrected laboratory results protective of field data

Metals in Asia: Bioavailability modeling

- 1. Distributions of soil parameters in Chinese soils
 - CEC and organic carbon: lower in China than Europe
 - pH: higher in China than Europe
- 2. Multiple regression analysis for Chinese soils
 - Variability explained mainly by pH and CEC

Australia's National Environmental Protection (Assessment of Site Contamination) Measure

- Goal: Sound environmental management of contaminated soils
- Ecological Investigation Levels (EILs)
- Contaminants covered:
 - As, Cu, CrIII, naphthalene, Ni, Pb, and Zn
- Land uses:
 - Areas of ecological interest
 - urban residential areas and public open space
 - commercial and industrial land uses
- Ecotoxicity data:
 - $EC_{30}s$ (or LOEC)
- EIL = ABC + ACL
 - ABC = ambient background concentration
 - ACL = added contaminant limit

Australia's National Environmental Protection (Assessment of PERA Site Contamination) Measure: Normalization

- Source of soil normalization data:
 - Cu & Zn: Australian soils
 - Ni: EU soils
 - Cr(III): Indian soils

Broos et al. (2007) Soil factors controlling the toxicity of Cu and Zn to microbial processes in Australian soils. *Environmental Toxicology and Chemistry* **26**, 583-590.

Australia's National Environmental Protection (Assessment of Site Contamination) Measure: Background concentration

The red and blue lines are the 95%ile and 50%ile of the relationships between log Fe and background metal concentration respectively. Other %iles of the relationships could also be used.

- Ambient background concentration determination hierarchy:
 - 1. Measure trace metals at reference site, or
 - 2. Use soil Fe and/or Mn to estimate soil Cu, CrIII, Ni, Pb, and Zn, or
 - 3. Use 25th percentile of urban monitoring database values
- Added contaminant limit determination:
 - Based on soil pH, CEC, and clay content

Soil physicochemical property	CrIII	Cu	Ni	Zn
pН		\checkmark		
CEC		√	√	~
% clay	√			

Australia-specific relationships determined

EU relationships read across

India relationships read across

	-		-					
Cu added contaminant limits (ACL, mg added contaminant/kg)								
Areas of ecological significance								
CEC (cmol_kg) ^a based								
5	10	20	30	40	60			
30	65	70	70	75	80			
pH ^b based								
4.5	5.5	6	6.5	7.5	8.0			
20	45	65	90	190	270			
Urban residential/public open space ¹								
$CEC (cmol_{o}/kg)^{a} based$								
5	10	20	30	40	60			
95	190	210	220	220	230			
pH ^b based								
4.5	5.5	6	6.5	7.5	8.0			
60	130	190	280	560	800			
Commercial/industrial								
$CEC (cmol_{\sigma}/kg)^a based$								
5	10	20	30	40	60			
140	280	300	320	330	340			
pH ^b based								
4.5	5.5	6	6.5	7.5	8.0			
85	190	280	400	830	1200			

Table 1B(2)	Soil-specific added of	contaminant limits	for aged	copper in soils

Notes:

- Urban residential/public open space is broadly equivalent to the HIL A, HIL B and HIL C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.
- 2. The lower of the CEC or the pH-based ACLs for the land use and soil conditions is the ACL to be used.
- Aged values apply to contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.
- 4. The EIL is calculated from summing the ACL and the ABC.
- a = CEC measured using the silver thiourea method (Chabra et al. 1972).
- b = pH measured using the CaCl2 method (Rayment & Higginson 1992).

Migration of EU soil RA: Lessons learned

- General approach for bioavailability correction developed in the EU can be applied in other areas, taking regional factors into account
- 2. Consideration of regional protection goals
 - Bok choy, green chili and other species not considered in EU testing were sensitive to metal exposure
- 3. Evaluation of regional influences on ageing, leaching, and bioavailability
 - Soil pH and organic carbon explained variability among Chinese soils
- 4. Regional ambient background concentrations must be determined
 - HC₅s from species sensitivity distributions may be over-protective for some protection goals

 For additional information please contact me at <u>cschlekat@nipera.org</u>

