Critical Comparison of the Schemes Used to Assess Soil Exposure Under EU Pesticide, Biocide and REACH legislation

Presented by

Bruce Callow Exponent International Ltd

Outline

- Summarise and compare the exposure assessment schemes for soil used for plant protection products, biocides and industrial chemicals under EU legislation
- Compare the PECsoil calculated by each scheme
- Provide comments on each of the approaches
- Conclusions and general thoughts

Introduction

- Exposure of soil can occur both directly and indirectly from the uses of pesticides, biocides and industrial chemicals
 - Direct exposure actual exposure during the use, e.g. to the soil in the field when a plant protection product is applied
 - Indirect exposure exposure does not occur during use but due to another event – e.g. spreading of sewage sludge on agricultural land
- There is the potential for risk to soil organisms and soil processes
- Schemes to assess the risk have therefore been developed to assess the potential risk from this exposure under the various regulatory regimes.
- Due to the nature of the industries and regulatory schemes involved there is some commonality in the approaches but in some instances there are significant differences.

Representative chemical

 In instances calculations are presented; the following chemical properties have been assumed.

Parameter	Value
Molecular weight (g/mol)	350
Solubility (mg/L)	1
Vapour Pressure (Pa	1 x 10-5
Degradation	Not readily biodegradable (DT50 soil 1000 days)
Koc (ml/g)	1000
Rate applied	200 g a.s./ha; 20 mg/m ²
Crop & growth stage	Winter cereals (BBCH 30-39) (PPP) N EU Oct-Feb (ECPA-LET)
Crop interception	80% (PPP) Full canopy (70%) ECPA-LET

Plant Protection Products – Current Approach

- Defined by FOCUS 1997, but it's use pre-dates this.
- Considers direct exposure at the field scale
- Simple calculation assuming distribution through a soil depth of 5 cm and a soil density of 1.5 g/cm³.
- Crop interception accounted for, and defined by EFSA 2014 and is dependent on crop and growth stage.
- Accumulated concentrations calculated for persistent substances (DT₉₀ >365 days), by assuming distribution of plateau concentration through either plough layer (20 cm, annual crops) or 5 cm permanent crops).
- PEC initial 0.053 mg/kg dry weight
- Accumulated concentration 0.099 mg/kg

Plant Protection Products – Current Approach

Comments

- Quick, simple easy to use and understand
- Choice of 5cm depth, arbitrary, based on expert judgement. (Germany use different depth for national assessments)
- Ecological considerations of soil organisms or soil function not taken into consideration
- Protection goals not defined.
- Many years use (>20 years) and fairly good agreement with residues in soil dissipation field studies
- No evidence from the field that the approach is not sufficiently protective. (e.g. from litterbag studies, earthworm field studies)

- Published by EFSA in 2014
- Approach consists of 5 Tiers.
- PECs in soil are produced for each regulatory zone (North, Central and South) across a number of depths.
- PERSAM software tool and the PEARL and PELMO simulation models are used for the calculations.
- Tier 1 calculations using PERSAM are highly conservative with canopy processes excluded.
- Tier 2A (using PEARL and PELMO) then uses similar assumptions but takes factors such as canopy processes into account.

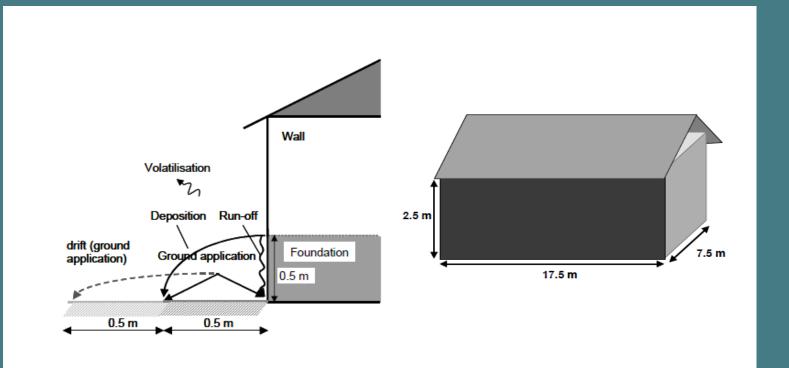
- Adjustment factors are included at Tier 1 and 2A to ensure that the concentrations exceed those at higher tiers.
- Tier 2 (2B and 2C, using PERSAM) the target percentile soil concentration is calculated from the concentration distribution within the crop area.
- Tier 3 crop specific concentrations are calculated using either pre-defined crop and substance specific adjustments (3A, though require results from PEARL/PELMO at 2A) or using substance specific parameters and specific crop scenarios defined within the PEARL and PELMO models (3B).
- Tier 4 is the use of spatially distributed modelling.
- Tier 5 is the use of post registration monitoring.

• Calculated PECs using PERSAM (mg/kg dwt)

Tier 1	1 cm depth	2.5 cm depth	5 cm depth	20 cm depth
N EU	20.991	13.412	10.886	8.991
C EU	11.278	6.707	5.183	4.040
S EU	9.069	5.135	3.824	2.840
Tier 2b	1 cm depth	2.5 cm depth	5 cm depth	20 cm depth
N EU	8.731	5.491	4.430	3.632
C EU	6.395	3.881	3.041	2.410
S EU	5.134	2.963	2.241	1.698
Tier 2c	1 cm depth	2.5 cm depth	5 cm depth	20 cm depth
N EU	1.746	1.098	0.886	0.726
C EU	1.279	0.776	0.608	0.482
S EU	1.027	0.593	0.448	0.340

Comments

- Considers direct exposure at the field scale
- Selection of depths given, but ecological relevance not established.
- Specific protection goal not defined
- Model is complex
 - Large amount of data available
 - Represents a black box
- Tier 1 PECs up to 110X those calculated using current method. Are they realistic?
- Higher tier tools (PELMO/PEARL) are introduced early (Tier 2A)


¹⁰ E^xponent^{*}

Comments

- Tiers appear artificial
- Calculations using the higher tier models (PEARL/PELMO) are required to obtain values close to those obtained using the current model
- Assessment scheme seems to be more conservative; has a regulatory or risk assessment need for a more conservative approach has been identified?

• Defined in the OECD scenario for PT18 (OECD 2008), many assumptions defined in the TGD.

Assumptions for the calculation for a soil barrier treatment:

- 0.5m band treated around a house of 17.5 x 7.5 m
- Area soil treated 26 m²
- 99% assumed to reach soil
- 0.42% drift assumed to drift to adjacent soil
- Soil depth of 50 cm assumed (previously 10cm but not considered ecologically relevant), therefore soil volume directly exposed 13 m³
- Adjacent soil volume exposed via drift 14 m³

- Bulk density of soil 1700 kg/m³ (wet)/1500 kg/m³ dry)
- PECsoil treated area
 - 0.023 mg/kg wwt (0.026 mg/kg dwt) treated area
- PECsoil non-treated area:

- 9.2 x 10⁻⁵ mg/kg wwt (1.0 x10⁻⁴ mg/kg dwt)

Comments

- Assessment of application area and immediate surroundings
- Relatively simple calculation easy to use
- Considers both direct and indirect application
- No consideration of ecological relevance appears to have been made when defining the scenario.
- Dimensions of exposed compartments set arbitrarily. Depth originally 10 cm, then changed to 50 cm.
- For outdoor barrier treatments actual treated area of soil is assessed

- Defined in the OECD scenario for PT18 (OECD 2008), many assumptions defined in the TGD.
- Assumed direct exposure does not occur, but wastewater from cleaning goes through municipal STP and sludge from the STP is spread on agricultural land.
- Indoor general surface treatment assumes 22 m² per house is treated.
- Behaviour in STP modelled by the SimpleTreat model
- Default simultaneity factor (Fsim) assumes 5.5% of houses treated per day in an STP catchment of 4000 houses (equivalent to 80,300 treatments per STP catchment per year).

¹⁶ E^{x} ponent^{*}

- Total emission:
 - 1.86 kg/day, industrial
 - 0.0488 kg/day, household.
- 11% directed to sludge in STP, Concentration in sludge 259 mg/kg
- Sludge assumed to be applied at 0.5 kg dwt/m²/yr to agricultural land and 0.1 kg dwt/m²/yr to grassland
- PECs for household use:
 - PEC agric soil (30 d TWA, 20 cm depth) 0.0978 mg/kg dwt
 - PEC agric soil (180 d TWA, 20 cm depth) 0.0971 mg/kg dwt
 - PEC grassland (180 d TWA, 10 cm depth) 0.0336 mg/kg dwt

¹⁷ $\mathbf{E}^{\mathbf{x}}$ ponent^{*}

- PECs for Industrial use:
 - PEC agric soil (30 d TWA, 20 cm depth) 3.73 mg/kg dwt
 - PEC agric soil (180 d TWA, 20 cm depth) 3.7 mg/kg dwt
 - PEC grassland (180 d TWA, 10 cm depth) 1.28 mg/kg dwt
- Assumptions used to calculate indirect exposure of soil identical to those used for industrial chemicals under REACH.

Comments

- Model considers large scale wide dispersive use by a population of 10,000 individuals (4000 households)
- 100% of the sewage sludge is assumed to contain residues
- Relatively simple model simplifying a variety of complex processes
- Dimensions of exposed compartment defined based on sludge mixing depth.
- No consideration of ecological relevance
- Protection goals not specifically defined

Comments

- Quality of data on which the Fsim is based is very poor
- There are indications that the current default assumptions (i.e. 80,000 treatments per year to 4000 households and magnitude of losses from wet cleaning) could be severely overestimating exposure

Biocide – Use in Animal Houses

- Defined in the OECD scenario for PT18 (OECD 2006)
- Soil assumed to be exposed indirectly from spreading of slurry on agricultural land
- Sludge application rates are calculated based on phosphate and nitrogen emission standards. Initial concentration calculated in upper 10cm in grass land and upper 20 cm in arable land
- Application to veal calf slurry as a larvicide:
 - PECsoil arable land 5.68 x 10⁻³ mg/kg dwt (Phosphate);
 6.78 x 10⁻³ mg/kg dwt (Nitrogen)
 - PECsoil grassland 7.76 x 10⁻³ mg/kg dwt (Phosphate);
 7.16 x 10⁻³ mg/kg dwt (Nitrogen)

Biocide – Use in Animal Houses

Comments

- Model considers fairly moderate scale exposure from spreading 100% treated slurry on agricultural land
- Fairly simple calculation
- Degradation in slurry can be taken into consideration
- Dimensions of exposed compartment defined based on slurry mixing depth.
- No consideration of ecological relevance
- Protection goals not specifically defined

REACH – PPP co-formulants

- SpERC defined by the ECPA-LET guidance:
- Closely follows the approach used for Plant Protection Products using assumptions used for FOCUS surface water
- Soil mixing depth of 5 cm assumed in soil with a density of 1700 kg/m³ (1500 kg/m³ dry soil)
- Soil PEC calculated as a 30 day time weighted average following a single application.
 - PECsoil = 0.0716 mg/kg dry weight
- Simple calculation comments made on current PPP method apply

Comparison of PECsoil

Assessment Scheme	Depth	PECsoil (mg/kg dwt)
PPP (FOCUS)	5 cm	0.053 – 0.099
PPP (PERSAM) Tier 1	5 cm	3.8 – 10.9
PPP (PERSAM) Tier 2b	5 cm	2.2 – 4.4
PPP (PERSAM) Tier 2c	5 cm	0.4 – 0.9
ECPA LET	5 cm	0.072
Biocide Outdoor	50 cm	0.026
Biocide Indoor	10–20 cm	0.03 to 3.7
Animal House Biocide	10–20 cm	0.006 - 0.008

Observations

- The calculations presented are for a range of situations under differing regulatory regimes.
 - Direct comparison not always possible.
 - Range of scales very localised to wide scale
- All exposure schemes use total soil concentration (wet or dry weight)
- Models vary in complexity
- Some cross referral sometimes developed in isolation

Observations

- Some schemes provide Tier 1 estimates, with no guidance on how such estimates can be refined
- In no instances have the protection goals or ecological relevance of the scenarios or the assumptions used been explicitly defined when creating the scenarios.
- Differing assumptions regarding what is an ecological relevant mixing depth for the same exposure route. From 5 cm for PPPs to 50 cm for biocides.

Observations

- In instances where direct comparison is possible some differences are clearly evident
 - PERSAM calculations significantly higher than the current PPP calculation
 - Slight differences between the ECPA-LET and current PPP calculation due to differences in the assumptions used for the same processes in assessing different compartments for PPPs.
- PECs for the indoor biocides use from indirect exposure are comparable (household) or significantly in excess of (industrial) some PECs for direct exposure. Overestimation of exposure?

- When creating exposure scenarios the ecological relevance and protection needs/goals need to be considered.
 - What is relevance and protection goal in assessing a 0.5 m strip around a house?
- Assumptions used in any assessment scheme need to be realistic and not lead to significant under or overestimation
- The information which the assessment scheme is based needs to be reliable.
 - Data used for Fsim for indoor biocides is not appropriate

- Tiered approaches:
 - Usefulness of overly conservative Tier 1 estimates where everything fails is limited
 - Complexity should increase as you go up the tiers with quick and simple (back of envelope?) calculations at lower tiers and more complex calculations as you go up the tiers.
 - Higher tier models should not be used as lower tier tools
 - Question the benefit where multiple tiers can be run quickly and simultaneously, surely this can be a single tier?
 - Artificial tiers must be avoided (e.g. creating unnecessary extra steps, or applying arbitrary factors to adjust lower tier estimates)

- Assumptions used should be relevant to the exposure profile but there should be consistency
 - Within regulatory regimes (e.g. mixing depths for biocides vary between PTs, crop interception varies when assessing surface and groundwater for PPPs)
 - Preferably also between regulatory regimes where appropriate
- When creating an assessment scheme an assessment of it's impact should be performed before its introduction.
 - Allows a critical review of the assumptions
 - Assess their realism
 - Assess their impact in the 'real world'
 - Increases quality of regulatory decision making
 - Reduces need to amend assumptions after introduction

- Complexity is not always necessary
 - Is a simple model adequate for the task?
 - All processes do not need to be modelled mechanistically
 - Remember! Models and assumptions used are approximations and do not represent reality
- Where possible any assessment scheme needs to be validated with real-world data.
- Any assessment scheme must be open to amendment and evolution and not be "set in stone". New information/data /science will come to light and lessons will be learnt from use. There should be a continuous dialogue.

Thank you for your attention

Any questions?

Bruce Callow, bcallow@uk.exponent.com

Exponent International Ltd, The Lenz, Hornbeam Park, Harrogate, UK

www.exponent.com

