

Break out group on Guidance update: Environment

ENES 7

19 November 2014

Andrew Murray, Hélène Magaud European Chemicals Agency

R16 update: key motivations

- Environmental exposure assessment in CSRs often lacking documentation on
 - the conditions of use (incl. risk management) driving the release
 - explanations on how release was estimated
- Streamline the guidance and make it easier to read

R16 update: main purpose

- **Integrate** the various parts related to environmental assessment in one document:
 - Overall scope of envi assessment from Part E
 - Conditions of use leading to releases from R13, part D (+ expansion needed based on SPERC development experience)
 - For articles, move relevant information from R17
 - Exposure estimation from R16
 - Risk characterisation from part E
 - Adding a section on information for communication

-> guidance on environmental **exposure assessment** instead of exposure estimation

• **More focus** on the conditions of use and release. Move to annex the EUSES algorithms related to distribution in the environment.

New pieces of text foreseen

- Expand section on release
- Clarification on differences between "site assessment" (own use or specific known customer) and assessment for a "generic" downstream use

Section on Release 1/2

- Clarification on release to industrial soil, release to agricultural soil and release to underground:
 - ERCs release factor to soil corresponds to release to industrial soil. Protection target is agricultural soil.
 - When direct releases to agricultural soil or underground is intended (e.g. PPP co-formulants, fracking chemicals) this is to be covered in the assessment. However exposure estimation cannot be carried out with current version of EUSES
- More focus on need for description of conditions of use (operational conditions and risk management measures)
 - As those are needed to explain release figures
 - To provide information to DUs to check against (as it is not expected that DUs check whether they are covered on the basis of release figures)

Section on Release 2/2

- Advice on how to explain the origin of the release factor
- Expansion on the section on SpERCs
 - More explanation on what they are, who is expected to develop them, which information are they expected to contain, how they can be used and their connection to use maps
- Open issue: during discussion on SpERCs it has been identified that a scenario addressing release of substance driven by occasional "exchange of bath" is to be further explored. How much can be integrated in the guidance R16?

"site" versus "generic" assessment 1/2

- For a "site assessment" (own use or specific known customer) it is possible to make use of specific information for the assessment:
 - Direct release to marine water?
 - Receiving river flow rate may be specific? (value require to be explained)
 - Biological STP settings may be specific:
 - Size of the STP (STP rate)
 - Removal efficiency may be higher due to acclimated sludge (values used to be explained)
 - Sludge may be collected for waste treatment rather than put on agricultural soil
 - For own use, the description of the conditions of use can be more specific and does not need to be communicated (no need for standard phrases)

"site" versus "generic" assessment 2/2

- For a "generic assessment", the environmental setting conditions are standard:
 - By default, release to marine environment (alternative: ES contains "do not release to marine water")
 - Default receiving river flow rate: 18000 m3/day
 - Municipal biological STP settings cannot be modified
 - Size of the STP (STP rate): 2000 m3/day
 - Removal efficiency based on standard settings (calculated by simpletreat)
 - Sludge assumed to be applied to agricultural soil

Thank you!

name.surname@echa.europa.eu

Subscribe to our news at echa.europa.eu/subscribe

Follow us on Twitter @EU_ECHA

Follow us on Facebook Facebook.com/EUECHA

